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The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is
vital in parametric statistical modeling and inference.Thus, this study develops a new class of distributions called the extended odd
Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet
Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and
the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The
maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of
the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from
the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.

1. Introduction

The fundamental reason for parametric statistical modeling
is to identify the most appropriate model that adequately
describes a data set obtained from experiment, observa-
tional studies, surveys, and so on. Most of these modeling
techniques are based on finding the most suitable proba-
bility distribution that explains the underlying structure of
the given data set. However, there is no single probability
distribution that is suitable for different data sets. Thus,
this has triggered the need to extend the existing classical
distributions or develop new ones. Barrage of methods for
defining new families of distributions have been proposed in
literature for extending or generalizing the existing classical
distributions in recent time. Some of these methods include
Weibull-G [1], odd generalized exponential family [2], odd
Lindley-G family [3], Topp-Leone odd log-logistic-G family
[4], odd Burr-G family [5], odd Fréchet-G family [6], odd
gamma-G family [7], transformed-transformer method [8],
exponentiated transformed-transformer method [9], expo-
nentiated generalized transformed-transformer method [10],
alpha power transformed family [11], alpha logarithmic trans-
formed family [12], Kumaraswamy-G family [13], beta-G
family [14], Kumaraswamy transmuted-G family [15], trans-
muted geometric-G family [16], and beta extended Weibull
family [17].Thesemethods are developedwith themotivation

of defining new models with different kinds of failure
rates (monotonic and nonmonotonic), constructing heavy-
tailed distributions for modeling different kinds of data
sets, developing distributions with symmetric, right skewed,
left skewed, reversed J shape, and consistently providing a
reasonable parametric fit to given data sets.

Recently, [6] developed the odd Fréchet family of dis-
tributions and defined its cumulative distribution function
(CDF) as

𝐻(𝑥) = 𝑒−[(1−𝐺(𝑥;𝜓))/𝐺(𝑥;𝜓)]𝜃 , 𝑥 ∈ R, (1)

where 𝐺(𝑥;𝜓) is the baseline CDF and 𝜓 is a 𝑝 × 1 vector
of associated parameters. Using the transformed-transformer
method proposed by [8], an extension of the odd Fréchet
family of distributions called the extended odd Fréchet-G
(EOF-G) family of distributions is developed by integrating
the Fréchet probability density function (PDF). Hence, the
CDF of the EOF-G family is defined as

𝐹 (𝑥) = ∫𝐺(𝑥;𝜓)𝛼/(1−𝐺(𝑥;𝜓)𝛼)
0

𝜃𝑥−𝜃−1𝑒−𝑥−𝜃𝑑𝑥
= 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃 , 𝛼 > 0, 𝜃 > 0, 𝑥 ∈ R,

(2)

where𝛼 and 𝜃 are extra shape parameters.The corresponding
PDF of the new family is obtained by differentiating equation
(2) and is given by

Hindawi
Journal of Probability and Statistics
Volume 2018, Article ID 2931326, 12 pages
https://doi.org/10.1155/2018/2931326

http://orcid.org/0000-0001-6652-4251
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2931326


2 Journal of Probability and Statistics

𝑓 (𝑥)
= 𝛼𝜃g (𝑥;𝜓) (1 − 𝐺 (𝑥;𝜓)𝛼)

𝜃−1

𝐺(𝑥;𝜓)𝛼𝜃+1 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃 ,
𝛼 > 0, 𝜃 > 0, 𝑥 ∈ R.

(3)

The associated hazard rate function of the EOF-G family is
defined as

ℎ (𝑥) = 𝛼𝜃g (𝑥;𝜓) (1 − 𝐺 (𝑥;𝜓)𝛼)𝜃−1
𝐺(𝑥;𝜓)𝛼𝜃+1 (1 − 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃)
⋅ 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃 ,

𝛼 > 0, 𝜃 > 0, 𝑥 ∈ R.
(4)

Hereafter, a randomvariable𝑋 following the EOF-Gdistribu-
tion is denoted by𝑋 ∼ EOF−G(𝑥; 𝛼, 𝜃,𝜓) and for the purpose
of simplicity, 𝐺(𝑥;𝜓) can be written as 𝐺(𝑥). The CDF of the
EOF-G family of distributions is tractablewhichmakes it easy
to generate random numbers provided that the CDF of the
baseline distribution is also tractable. The 𝑢𝑡ℎ quantile of the
EOF-G family is given by

𝑥𝑢 = 𝐺−1[[
( 1
1 + (− log (𝑢))1/𝜃)

1/𝛼]
]
, 𝑢 ∈ [0, 1] , (5)

where 𝐺−1(𝑢) is the baseline quantile function. When 𝛼 =1, the EOF-G family of distributions reduces to the odd
Fréchet family of distributions. Adopting the interpretation
of the CDF of the odd Weibull family as given in [18], the
physical interpretation of the CDF of the EOF-G family is
given as follows: Suppose𝑌 is a lifetime random variable with
continuous CDF, 𝐺(𝑥;𝜓)𝛼. The odds ratio that an individual
(component) having the lifetime 𝑌 will die (fail) at time 𝑥
is 𝐺(𝑥;𝜓)𝛼/1 − 𝐺(𝑥;𝜓)𝛼. Given that the variability of these
odds of death is denoted by the random variable 𝑋 and that
it follows the Fréchet distribution, then

P (𝑌 ≤ 𝑥) = P(𝑋 ≤ 𝐺 (𝑥;𝜓)𝛼
1 − 𝐺 (𝑥;𝜓)𝛼) = 𝐹 (𝑥) , (6)

which is given in (2).The rest of the paper is organized as fol-
lows: In Section 2, special distributions of the EOF-G family
are discussed. In Section 3, the mixture representation of the
PDF and CDF of the EOF-G family is given. The statistical
properties of the new family are derived in Section 4. In
Section 5, the estimators for the parameters of the family are
developed using the technique of maximum likelihood esti-
mation. Monte Carlo simulations are performed in Section 6
to assess the performance of the estimators. In Section 7, the
application of the special distributions is demonstrated using
real data set. Finally, the concluding remarks of the study are
given in Section 8.

2. Special Distributions of the EOF-G Family

In this section, two special distributions of the EOF-G family
are discussed.

2.1. EOF-Nadarajah-Haghighi (EOFNH) Distribution. Sup-
pose the baseline CDF is that of the Nadarajah-Haghighi
distribution; that is, 𝐺(𝑥; 𝛽, 𝜆) = 1 − 𝑒(1−(1+𝜆𝑥)𝛽) with corre-
sponding PDF g(𝑥; 𝛽, 𝜆) = 𝛽𝜆(1 + 𝜆𝑥)𝛽−1𝑒(1−(1+𝜆𝑥)𝛽) and
positive parameters 𝛽, 𝜆 > 0. The PDF of the EOFNH
distribution is given by

𝑓 (𝑥)
= 𝛼𝛽𝜆𝜃 (1 + 𝜆𝑥)

𝛽−1 𝑒(1−(1+𝜆𝑥)𝛽) [1 − (1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼]𝜃−1
(1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼𝜃+1

⋅ 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−𝛼−1]𝜃 ,
(7)

where 𝛼, 𝛽, 𝜃 > 0 are shape parameters, 𝜆 > 0 is a scale
parameter, and 𝑥 > 0. Figure 1 shows the plots of the PDF of
the EOFNH distribution for some selected parameter values.
The density function exhibits different kinds of shapes.

The corresponding hazard rate function is given by

ℎ (𝑥)
= 𝛼𝛽𝜆𝜃 (1 + 𝜆𝑥)

𝛽−1 𝑒(1−(1+𝜆𝑥)𝛽) [1 − (1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼]𝜃−1
(1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼𝜃+1 (1 − 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−𝛼−1]𝜃)

⋅ 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−𝛼−1]𝜃 , 𝑥 > 0.
(8)

The plots of the hazard rate function of the EOFNH distribu-
tion for some selected parameter values are shown inFigure 2.
The hazard rate function can assume decreasing, bathtub,
upside down bathtub, and other nonmonotonic failure rate
forms.

The quantile function of the EOFNHdistribution is given by

𝑥𝑢 = [1 − log (1 − (1 + (− log (𝑢))1/𝜃)−1/𝛼)]1/𝛽 − 1
𝜆 ,

𝑢 ∈ [0, 1] .
(9)

Equation (9) can be used to generate random numbers from
the EOFNH distribution. The first quartile, median, and
upper quartile of the distribution are obtained by substituting𝑢 = 0.25, 0.5, and 0.75, respectively, into (9).
2.2. EOF-Weibull (EOFW) Distribution. Consider the
Weibull distribution with shape parameter 𝛽 > 0 and scale
parameter 𝜆 > 0, where the CDF and PDF for 𝑥 > 0 are
given by 𝐺(𝑥; 𝛽, 𝜆) = 1 − 𝑒−𝜆𝑥𝛽 and g(𝑥; 𝛽, 𝜆) = 𝛽𝜆𝑥𝛽−1𝑒−𝜆𝑥𝛽 .
Substituting the PDF and CDF of the Weibull distribution in
(3), the PDF of the EOFW distribution is defined as

𝑓 (𝑥) = 𝛼𝛽𝜆𝜃𝑥
𝛽−1𝑒−𝜆𝑥𝛽 [1 − (1 − 𝑒−𝜆𝑥𝛽)𝛼]𝜃−1

(1 − 𝑒−𝜆𝑥𝛽)𝛼𝜃+1
⋅ 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−𝛼−1]𝜃 ,

(10)

where𝛼,𝛽, 𝜃 > 0 are shape parameters, 𝜆 > 0 is scale parameter,
and 𝑥 > 0. Figure 3 displays some of the possible shapes of
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Figure 1: Plots of the EOFNH distribution density function.

the density function of the EOFW distribution. The density
exhibits unimodal and reversed J-shape among others.

The hazard rate function of the EOFW distribution is
given by

ℎ (𝑥) = 𝛼𝛽𝜆𝜃𝑥
𝛽−1𝑒−𝜆𝑥𝛽 [1 − (1 − 𝑒−𝜆𝑥𝛽)𝛼]𝜃−1

(1 − 𝑒−𝜆𝑥𝛽)𝛼𝜃+1 (1 − 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−𝛼−1]𝜃)
⋅ 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−𝛼−1]𝜃 , 𝑥 > 0.

(11)

The hazard rate function can assume decreasing, bathtub,
and upside down bathtub forms for some selected parameter
values as shown in Figure 4.

The quantile function of the EOFW distribution is
defined as

𝑥𝑢 =
{{{{{{{
− log [1 − (1 + (− log (𝑢))1/𝜃)−1/𝛼]

𝜆
}}}}}}}

1/𝛽

,
𝑢 ∈ [0, 1] .

(12)

The generation of random numbers from the EOFW distri-
bution can easily be done using (12).

3. Mixture Representation

In this section, the mixture representation of the PDF and
CDF of the EOF-G family of distributions is discussed.
The mixture representation is useful when deriving the
statistical properties of this new family of distributions.
Using the Taylor series expansion, the PDF can be written
as

𝑓 (𝑥) = 𝛼𝜃∞∑
𝑖=0

(−1)𝑖 g (𝑥;𝜓) [1 − 𝐺 (𝑥;𝜓)𝛼]𝜃(𝑖+1)−1
𝑖!𝐺 (𝑥;𝜓)𝛼𝜃(𝑖+1)+1 . (13)

Equation (13) can be written as
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Figure 2: Plots of the EOFNH distribution hazard rate function.

𝑓 (𝑥) = 𝛼𝜃∞∑
𝑖=0

(−1)𝑖 g (𝑥;𝜓) [1 − 𝐺 (𝑥;𝜓)𝛼]𝜃(𝑖+1)−1 [1 − (1 − 𝐺 (𝑥;𝜓))]−[𝛼𝜃(𝑖+1)+1]
𝑖! . (14)

Applying the generalized binomial series expansion yields

𝑓 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

(−1)𝑖𝑖! (𝛼𝜃 (𝑖 + 1) + 𝑗𝑗 ) g (𝑥;𝜓)
⋅ [1 − 𝐺 (𝑥;𝜓)]𝑗 [1 − 𝐺 (𝑥;𝜓)𝛼]𝜃(𝑖+1)−1 .

(15)

Now using the binomial series expansion, (1 − 𝑧)𝜂−1 =∑∞𝑗=0(−1)𝑗 ( 𝜂−1𝑗 ) 𝑧𝑗, |𝑧| < 1, thrice yields

𝑓 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞g (𝑥;𝜓) 𝐺 (𝑥;𝜓)𝑞 , (16)

where

𝜔𝑖𝑗𝑘𝑚𝑞 = (−1)𝑖+𝑘+𝑚+𝑞𝑖!
⋅ (𝛼𝜃 (𝑖 + 1) + 𝑗𝑗 )(𝜃 (𝑖 + 1) − 1𝑘 )(𝛼𝑘𝑚)(

𝑚 + 𝑗
𝑞 ) .

(17)

Alternatively (16) can be written in terms of the
exponentiated-G (exp-G) density function as

𝑓 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔∗𝑖𝑗𝑘𝑚𝑞𝜋𝑞+1 (𝑥) , (18)

where 𝜔∗𝑖𝑗𝑘𝑚𝑞 = 𝜔𝑖𝑗𝑘𝑚𝑞/(𝑞 + 1) and 𝜋𝑞+1(𝑥) = (𝑞 +1)g(𝑥;𝜓)𝐺(𝑥;𝜓)𝑞 is the exp-G density function with power



Journal of Probability and Statistics 5

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

x

f(x
)

f(x
)

f(x
)

f(x
)

f(x
)

f(x
)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

x
0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

x

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x
0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

x
0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

=3, =0.1, =1.4, =3.8 =1.4, =0.1, =1.6, =1.6 =10.6, =2.4, =0.1, =0.1

=1.1, =3, =0.1, =0.3 =0.1, =2.2, =0.1, =0.1 =3.5, =0.1, =1.6, =3.2

Figure 3: Plots of the EOFW distribution density function.

parameter 𝑞 + 1. By integrating (18), the mixture representa-
tion of the CDF is given by

𝐹 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔∗𝑖𝑗𝑘𝑚𝑞Π𝑞+1 (𝑥) , (19)

where Π𝑞+1(𝑥) = 𝐺(𝑥;𝜓)𝑞+1 is the CDF of the exp-G family
with power parameter 𝑞 + 1.
4. Statistical Properties

In this section, the moments, incomplete moments, gener-
ating function, entropies, and order statistics of the EOF-G
family are derived.

4.1. Moments. The 𝑟𝑡ℎ noncentral moment of a random
variable 𝑋 is given by 𝐸(𝑋𝑟) = ∫∞

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥. Hence, using

this definition the 𝑟𝑡ℎ noncentral moment of the EOF-G
random variable is given by

𝐸 (𝑋𝑟) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞𝜏𝑟,𝑞, (20)

where 𝜏𝑟,𝑞 = ∫∞
−∞

𝑥𝑟g(𝑥;𝜓)𝐺(𝑥;𝜓)𝑞𝑑𝑥 is the probability
weighted moment of the baseline distribution. The 𝑟𝑡ℎ non-
central moment can also be expressed in terms of the quantile
of the baseline distribution. Letting 𝐺(𝑥; (𝜓)) = 𝑢, the 𝑟𝑡ℎ
noncentral moment in terms of the quantile is given by

𝐸 (𝑋𝑟) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫1
0
𝑄𝐺 (𝑢)𝑟 𝑢𝑞𝑑𝑢, (21)

where𝑄𝐺(𝑢) is the quantile function of the baseline distribu-
tion.

4.2. Incomplete Moments. The 𝑟𝑡ℎ incomplete moment of a
random variable 𝑋 is defined as 𝑚𝑟(𝑦) = ∫𝑦

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥.

Thus, the 𝑟𝑡ℎ incomplete moment of the EOF-G random
variable is given by

𝑚𝑟 (𝑦)
= 𝛼𝜃 ∞∑

𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫𝑦
0
𝑥𝑟g (𝑥;𝜓) 𝐺 (𝑥;𝜓)𝑞 𝑑𝑥 (22)
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Figure 4: Plots of the EOFW distribution hazard rate function.

In terms of the quantile function of the baseline distribution,
the 𝑟𝑡ℎ incomplete moment is given by

𝑚𝑟 (𝑦) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫𝐺(𝑦)
0

𝑄𝐺 (𝑢)𝑟 𝑢𝑞𝑑𝑢. (23)

Utilize the power series expansion of the quantile of the
baseline; that is,

𝑄𝐺 (𝑢) = ∞∑
ℎ=0

𝑒ℎ𝑢ℎ, (24)

where 𝑒ℎ(ℎ = 0, 1, . . .) are suitably chosen real numbers
that depend on the parameters of the 𝐺(𝑥;𝜓) distribution.
Furthermore, for positive integer 𝑟 (𝑟 ≥ 1),

𝑄𝐺 (𝑢)𝑟 = (∞∑
ℎ=0

𝑒ℎ𝑢ℎ)
𝑟 = ∞∑

ℎ=0

𝑒𝑟,ℎ𝑢ℎ, (25)

where 𝑒𝑟,ℎ = (ℎ𝑒0)−1∑ℎ𝑧=1[𝑧(𝑟+1)−ℎ]𝑒𝑧𝑒𝑟,ℎ−𝑧 and 𝑒𝑟,0 = (𝑒0)ℎ.
For more details on quantile power series expansion, see [19].
Hence,

𝑚𝑟 (𝑦) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫𝐺(𝑦)
0

∞∑
ℎ=0

𝑒𝑟,ℎ𝑢ℎ+𝑞𝑑𝑢

= 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞𝑒𝑟,ℎ𝐺(𝑦)
ℎ+𝑞+1

ℎ + 𝑞 + 1 .
(26)

The incomplete moments are used in the computation of
other useful statistical measures such as the mean deviations
about the mean (𝛿1 = 𝐸(|𝑋 − 𝜇1|)) and about the median(𝛿2 = 𝐸(|𝑋 −𝑀|)). The mean deviation about the mean and
about the median can further be expressed as

𝛿1 = 2𝜇1𝐹 (𝜇1) − 2𝑚1 (𝜇1) ,
𝛿2 = 𝜇1 − 2𝑚1 (𝑀) , (27)

where 𝜇1 = 𝜇 is the mean obtained by putting 𝑟 = 1 into (20),𝑀 is themedian obtained by substituting 𝑢 = 0.5 into (5), and𝑚1(𝑦) = ∫𝑦−∞ 𝑥𝑓(𝑥)𝑑𝑥 is the first incomplete moment which
can be obtained from (23) by substituting 𝑟 = 1.
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4.3. Generating Function. In this subsection, two formulae
for the computation of the moment generating function𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) are given. Using the Taylor series expansion,𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∑∞

𝑟=0(𝑡𝑟/𝑟!)𝐸(𝑋𝑟). Thus, the moment
generating function is given by

𝑀𝑋 (𝑡) = ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

∞∑
𝑟=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞𝜏𝑟,𝑞. (28)

Alternatively, the moment generating function can be
expressed in terms of the quantile function of the baseline
distribution as

𝑀𝑋 (𝑡) = ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫1
0
𝑒𝑡𝑄𝐺(𝑢)𝑢𝑞𝑑𝑢. (29)

4.4. EntropyMeasures. Entropies aremeasures of uncertainty
or variation of a random variable. In this subsection, the
Rényi, Shannon, and 𝛿 entropies are studied. The Rényi
entropy [20] of a random variable𝑋with PDF𝑓(𝑥) is defined
as

𝐼𝑅 (𝛿) = 11 − 𝛿 log [∫∞
−∞

𝑓 (𝑥)𝛿 𝑑𝑥] , 𝛿 > 0, 𝛿 ̸= 1. (30)

Using similar concepts for expanding the PDF,

𝑓 (𝑥)𝛿 = (𝛼𝜃)𝛿 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜛𝑖𝑗𝑘𝑚𝑞g (𝑥;𝜓)𝛿 𝐺 (𝑥;𝜓)𝑞 , (31)

where

𝜛𝑖𝑗𝑘𝑚𝑞 = (−1)𝑖+𝑘+𝑚+𝑞 𝛿𝑖𝑖!
⋅ (𝛼𝜃 (𝑖 + 𝛿) + 𝛿 + 𝑗 − 1𝑗 )(𝜃 (𝑖 + 𝛿) − 𝛿𝑘 )(𝛼𝑘𝑚)(

𝑚 + 𝑗
𝑞 ) .

(32)

Hence,

𝐼𝑅 (𝛿) = 11 − 𝛿 log[
[
(𝛼𝜃)𝛿 ∞∑

𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜛𝑖𝑗𝑘𝑚𝑞

⋅ ∫∞
−∞

g (𝑥;𝜓)𝛿 𝐺 (𝑥;𝜓)𝑞 𝑑𝑥]
]
, 𝛿 > 0, 𝛿 ̸= 1.

(33)

The Shannon entropy [21] of a random variable 𝑋, say 𝜂𝑋 =𝐸(− log𝑓(𝑋)). The Shannon entropy is a special case of the
Rényi entropy when 𝛿 ↑ 1. The 𝛿−entropy is given by

𝐻(𝛿) = 1𝛿 − 1 log [1 − ∫
∞

−∞
𝑓 (𝑥)𝛿 𝑑𝑥] ,

𝛿 > 0, 𝛿 ̸= 1.
(34)

Thus, the 𝛿−entropy is

𝐻(𝛿) = 1𝛿 − 1 [[
1 − (𝛼𝜃)𝛿 ∞∑

𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜛𝑖𝑗𝑘𝑚𝑞

⋅ ∫∞
−∞

g (𝑥;𝜓)𝛿 𝐺(𝑥;𝜓)𝑞 𝑑𝑥]
]
, 𝛿 > 0, 𝛿 ̸= 1.

(35)

4.5. Order Statistics. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 represent a random
sample from EOF-G family and 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑛:𝑛

be the order statistics. Then the PDF, 𝑓𝑝:𝑛(𝑥), of the 𝑝𝑡ℎ order
statistic 𝑋𝑝:𝑛 is

𝑓𝑝:𝑛 (𝑥) = 𝑛!(𝑝 − 1)! (𝑛 − 𝑝)!
𝑛−𝑝∑
𝑖=0

(−1)𝑖 𝐹 (𝑥)𝑝+𝑖−1 𝑓 (𝑥) . (36)

Substituting the PDF and the CDF of the EOF-G random
variable into the last equation yields

𝑓𝑝:𝑛 (𝑥) = 𝑛!𝛼𝜃(𝑝 − 1)! (𝑛 − 𝑝)!
⋅ ∞∑
𝑗,𝑘=0

∞∑
𝑞,𝑠=0

𝑘+𝑠∑
𝑤=0

𝑛−𝑝∑
𝑖=0

𝜑𝑖𝑗𝑘𝑞𝑠𝑤g (𝑥;𝜓) 𝐺 (𝑥;𝜓)𝑤 ,
(37)

after some algebraic manipulation, where

𝜑𝑖𝑗𝑘𝑞𝑠𝑤 = (−1)𝑖+𝑗+𝑞+𝑠+𝑤 (𝑝 + 𝑖)
𝑗

𝑗!
⋅ (𝑛 − 𝑝𝑖 )(𝛼𝜃 (𝑗 + 1) + 𝑘𝑘 )(𝜃 (𝑗 + 1) − 1𝑞 )(𝛼𝑞𝑠 )(

𝑘 + 𝑠
𝑤 ) .

(38)

The PDF of the 𝑝𝑡ℎ order statistic can be expressed in terms
of the exp-G density function as

𝑓𝑛:𝑝 (𝑥)
= 𝑛!𝛼𝜃(𝑝 − 1)! (𝑛 − 𝑝)!

∞∑
𝑗,𝑘=0

∞∑
𝑞,𝑠=0

𝑘+𝑠∑
𝑤=0

𝑛−𝑝∑
𝑖=0

𝜑∗𝑖𝑗𝑘𝑞𝑠𝑤Δ𝑤+1 (𝑥) , (39)

where 𝜑∗𝑖𝑗𝑘𝑞𝑠𝑤 = 𝜑𝑖𝑗𝑘𝑞𝑠𝑤/(𝑤 + 1) and Δ𝑤+1(𝑥) = (𝑤 +1)g(𝑥;𝜓)𝐺(𝑥;𝜓)𝑤 is the exp-G density function with power
parameter 𝑤 + 1.
5. Parameter Estimation

In this section, the maximum likelihood technique is
employed to develop estimators for estimating the parameters
of the EOF-G family of distributions. Suppose 𝑥1, 𝑥2, . . . , 𝑥𝑛
are possible outcomes of a random sample obtained from
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𝑋 ∼ EOF − G(𝑥; 𝛼, 𝜃,𝜓) and 𝜗 = (𝛼, 𝜃,𝜓)𝑇 is a parameter
vector; then the total log-likelihood function is given by

ℓ = 𝑛 log (𝛼𝜃) + 𝑛∑
𝑖=1

log g (𝑥𝑖;𝜓)

+ (𝜃 − 1) 𝑛∑
𝑖=1

log [1 − 𝐺 (𝑥𝑖;𝜓)𝛼]

− (𝛼𝜃 + 1) 𝑛∑
𝑖=1

log𝐺(𝑥𝑖;𝜓)

− 𝑛∑
𝑖=1

[1 − 𝐺 (𝑥𝑖;𝜓)𝛼𝐺 (𝑥𝑖;𝜓)𝛼 ]𝜃 .

(40)

By finding the partial derivatives of (40), the components of
the score vector 𝑈(𝜗) = (𝜕ℓ/𝜕𝛼, 𝜕ℓ/𝜕𝜃, 𝜕ℓ/𝜕𝜓)𝑇 are
𝜕ℓ𝜕𝛼 = 𝑛𝛼 + (𝜃 − 1)

𝑛∑
𝑖=1

𝐺 (𝑥𝑖;𝜓)𝛼 log𝐺 (𝑥𝑖;𝜓)1 − 𝐺 (𝑥𝑖;𝜓)
− 𝜃 𝑛∑

𝑖=1

log𝐺 (𝑥𝑖;𝜓)

+ 𝜃 𝑛∑
𝑖=1

[1 − 𝐺 (𝑥𝑖;𝜓)𝛼]𝜃−1 log𝐺 (𝑥𝑖;𝜓)
𝐺 (𝑥𝑖;𝜓)𝛼𝜃 ,

(41)

𝜕ℓ𝜕𝜃 = 𝑛𝜃 +
𝑛∑
𝑖=1

log [1 − 𝐺 (𝑥𝑖;𝜓)𝛼] − 𝛼 𝑛∑
𝑖=1

log𝐺(𝑥𝑖;𝜓)

− 𝑛∑
𝑖=1

[1 − 𝐺 (𝑥𝑖;𝜓)𝛼𝐺(𝑥𝑖;𝜓)𝛼 ]𝜃 log[1 − 𝐺 (𝑥𝑖;𝜓)𝛼𝐺 (𝑥𝑖;𝜓)𝛼 ] ,
(42)

𝜕ℓ𝜕𝜓 =
𝑛∑
𝑖=1

g (𝑥𝑖;𝜓)
g (𝑥𝑖;𝜓)

+ 𝛼 (𝜃 − 1) 𝑛∑
𝑖=1

𝐺 (𝑥𝑖;𝜓) 𝐺 (𝑥𝑖;𝜓)𝛼−11 − 𝐺 (𝑥𝑖;𝜓)
− (𝛼𝜃 + 1) 𝑛∑

𝑖=1

𝐺 (𝑥𝑖;𝜓)𝐺 (𝑥𝑖;𝜓)

+ 𝛼𝜃 𝑛∑
𝑖=1

𝐺 (𝑥𝑖;𝜓) [1 − 𝐺 (𝑥𝑖;𝜓)𝛼]𝜃−1
𝐺 (𝑥𝑖;𝜓)𝛼𝜃+1 ,

(43)

where g(𝑥𝑖;𝜓) = 𝜕g(𝑥𝑖;𝜓)/𝜕𝜓 and𝐺(𝑥𝑖;𝜓) = 𝜕𝐺(𝑥𝑖;𝜓)/𝜕𝜓.
In order to obtain the estimators for the parameters, we set
(41), (42), and (43) to zero and solve the system numerically
using methods such as the quasi-Newton algorithms since
the equations do not have closed form. To obtain interval
estimates of the parameters, a 𝑝 × 𝑝 observed information

matrix can be estimated as 𝐽(𝜗) = 𝜕2ℓ/𝜕𝑞𝜕𝑟 (for 𝑞, 𝑟 =𝛼, 𝜃,𝜓), whose elements are evaluated numerically. To com-
pute the approximate confidence intervals of the parameters,
the multivariate normal distribution 𝑁𝑝(0, 𝐽(�̂�)−1). Here,𝐽(�̂�) is the observed information evaluated at �̂�. To investigate
whether the EOF-G distributions are superior to the odd
Fréchet family of distributions for given data sets, the like-
lihood ratio (LR) test can be performed using the following
hypotheses: 𝐻0 : 𝛼 = 1 versus 𝐻𝑎 : 𝐻0 is false. The
LR test statistic is given by 𝐿𝑅 = 2{ℓ(�̂�) − ℓ(𝜗)}, where
�̂� is the vector of unrestricted estimates under 𝐻𝑎 and 𝜗 is
the vector of restricted maximum likelihood estimates under𝐻0. The LR test statistic is asymptotically distributed as Chi-
square random variable with degrees of freedom equal to the
difference between the numbers of parameters of the two
models. As a decision rule, the null hypothesis is rejected
when the LR test statistic exceeds the upper 100(1 − 𝜂)%
quantile of the Chi-square distribution.

6. Simulation Study

In this section, Monte Carlo simulations are performed
to assess the accuracy and consistency of the maximum
likelihood estimators. For the purpose of illustration, the sim-
ulations are performed using the estimators of the parameters
of the EOFNHdistribution.Thequantile function given in (9)
is used to generate random observations from the EOFNH
distribution. The simulations are repeated 𝑁 = 1, 000 times
each with sample size 𝑛 = 25, 75, 150, 300, 600, 800 and
parameter values I : 𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5, 𝜃 = 0.5,
II : 𝛼 = 3.3, 𝛽 = 0.8, 𝜆 = 0.2, 𝜃 = 0.8, and III :𝛼 = 0.9, 𝛽 = 0.4, 𝜆 = 0.2, 𝜃 = 0.6. Table 1 presents the
average bias (AB), the root mean square error (RMSE), and
coverage probability (CP) of the 95% confidence intervals for
the estimators of the parameters. The results indicated that
the ABs and RMSEs decrease as the sample size increases.
These results clearly show the accuracy and the consistency of
the maximum likelihood estimators. Also, the CPs are quite
close to the nominal value. Thus, the maximum likelihood
technique works very well to estimate the parameters of the
EOFNH distribution.

7. Application

In this section, the application of the EOFNH and EOFW
distributions is illustrated using a real data set. The data
consists of the Fatigue time of 101 6061-T6 aluminumcoupons
cut parallel to the direction of rolling and oscillated at 18
cycles per second. The data set given in Table 2 can be
found in Birnbaum and Saunders [22]. The performance of
the EOFNH and EOFW distributions is compared with that
of the odd Fréchet Nadarajah-Haghighi (OFNH) and odd
FréchetWeibull (OFW) distributions using the Akaike infor-
mation criterion (AIC) [23, 24] and Bayesian information
criterion (BIC) [25]. The maximum likelihood estimates of
the parameters of the fitted distributions are computed by
maximizing the log-likelihood function via the subroutine
mle2 uisng the bbmle package in the R software [26].
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Table 2: Fatigue time of 101 6061-T6 aluminum coupons.

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212

Table 3: Maximum likelihood estimates and goodness-of-fit statistics.

Model Parameter estimates −ℓ AIC BIC

EOFNH

�̂� = 1.5838 (0.2023)
𝛽 = 1.1413 (0.4131) -470.3600 948.7255 959.1860
�̂� = 0.0071 (0.0041)
𝜃 = 2.7505 (0.1088)

OFNH
�̂� = 0.4650 (0.4204)
�̂� = 0.0174 (0.0263) -473.6000 953.1958 961.0412
𝜃 = 4.7456 (1.8584)

EOFW

�̂� = 2.2281 (1.0985)
𝛽 = 1.0205 (0.3152) -471.2600 950.5259 960.9864
�̂� = 0.0099 (0.0166)
𝜃 = 2.3066 (0.6716)

OFW
𝛽 = 0.2785 (0.0181)
�̂� = 0.1823 (0.0156) -473.8200 953.6325 961.4778
𝜃 = 13.2247 (0.0007)

The PDFs of the OFNH and OFW distributions are,
respectively, given by

𝑓 (𝑥)

= 𝛽𝜆𝜃 (1 + 𝜆𝑥)
𝛽−1 𝑒(1−(1+𝜆𝑥)𝛽) [1 − (1 − 𝑒1−(1+𝜆𝑥)𝛽)]𝜃−1
(1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝜃+1

⋅ 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−1−1]𝜃 , 𝑥 > 0,

(44)

and

𝑓 (𝑥) = 𝛽𝜆𝜃𝑥
𝛽−1𝑒−𝜆𝑥𝛽 [1 − (1 − 𝑒−𝜆𝑥𝛽)]𝜃−1

(1 − 𝑒−𝜆𝑥)𝜃+1
⋅ 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−1−1]𝜃 , 𝑥 > 0.

(45)

Table 3 displays the maximum likelihood estimates of the
parameters of the EOFNH, EOFW, OFNH, and OFW distri-
butions with their corresponding standard errors in bracket
and the model selection criteria. The results revealed that
the EOFNH distribution provided the best fit for the data
since it has the least values of AIC and the BIC. The EOFW
distribution also performed better than the OFNH and
OFW distributions. The OFNH distribution is a submodel

of the EOFNH distribution with 𝛼 = 1. Hence, testing𝐻0 : 𝛼 = 1 versus 𝐻𝑎 : 𝛼 ̸= 1 using the LR test
gave a test statistic of 6.4703 with corresponding 𝑝−value
of 0.01097. This implies that there is enough evidence to
reject 𝐻0 at the 5% significance level and conclude that the
EOFNH distribution provides better fit to the data than the
OFNH distribution. Similarly, the LR test was performed to
compare the performances of the EOFW distribution and
the OFW distribution. The analysis gave a test statistic of
5.1065 with a corresponding 𝑝−value of 0.0238. This implies
that the EOFW distribution performs better than the OFW
distribution at the 5% significance level.

Figure 5 displays the histogram of the data with the fitted
densities and the empirical CDF with the fitted CDFs.

The P-P plots of the fitted distributions are displayed in
Figure 6.

8. Conclusion

The development of new statistical distribution plays a
critical role in parametric statistical inference. Because of
this, researchers in the field of distribution theory attempt
to develop generators for generalizing the existing distri-
butions. In line with this, the study developed and studied
a new class of distributions called the EOF-G family. The
statistical properties including the moments, incomplete
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Figure 5: Plots of histogram of data and fitted densities; and empirical CDF and fitted CDF.
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moments, generating function, entropies, and order statistics
are derived. The maximum likelihood method is used to
develop estimators for the parameters of the new family. The
application of the special distributions developed using the
EOF-G family is demonstrated using a real data set and the
result compared with other existing distributions. From the
application, it is evident that the special models developed
from the EOF-G family can provide reasonable parametric
fit to a given data set. Hence, it is hoped that the new class of
distributions will attract wider applications in different fields
of study.
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