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We proposed an approach that has the ability to detect spatial clusterswith skewed or irregular distributions. Amixture of Dirichlet
processes (DP) was used to describe spatial distribution patterns.The effects of different batches of data collection efforts were also
modeled with a Dirichlet process. To cluster spatial foci, a birth-death process was applied due to its advantage of easier jumping
between different numbers of clusters. Inferences of parameters including clustering were drawn under a Bayesian framework.
Simulations were used to demonstrate and assess the method.We applied the method to an fMRI meta-analysis dataset to identify
clusters of foci corresponding to different emotions.

1. Introduction

This work was motivated by a study aiming to detect centers
of activated foci from a functionmagnetic resonance imaging
(fMRI) metadataset. In summary, fMRI metadata is a col-
lection of fMRI studies identifying areas of the brain that
are significantly activated by stimuli to examine a specific
outcome. FMRIs are expensive which leads to small sample
sizes and therefore can use metadata to increase sample size
and power. To identify spatial clusters, finite mixture models
are generally implemented [1–3].Mixture components, repre-
senting a cluster, typically share a common parametric family
with each component containing respective parameters [1, 2].
Each component also has a mixing proportion or weight that
is respective to the frequency of data in that component [1].
Because of the model’s ease of implementation, this allows
various applications such as pattern recognition, computer
vision, signal and image analysis, andmachine learning to list
a few [4].

One commonly used distribution in the aforementioned
finite mixtures is the normal distribution [1, 5], appreciat-
ing its established properties and, in the Bayesian context,
conjugacy. However, when it comes to clustering, assuming
normality for each part of the mixture can potentially lead to

oversensibility, e.g., when one cluster is formed by a mixture
of two normal distributions but with rather close centers.
This type of oversensibility in many research fields should be
avoided; one example is emotional foci inferred from brain
imaging data, where a certain emotion is covered by a wide
region.

To infer the number of clusters, under the Bayesian
framework, different methods have been proposed. Revers-
ible jump Markov chain Monte Carlo has been commonly
used to infer the number of clusters [6, 7]. At each iteration,
a decision is made between splitting one cluster to two, com-
bining two clusters to one, or no movement. One potential
difficulty of this approach is the risk of being trapped at a local
maximum.Recently, theDirichlet process (DP) has beenused
often to estimate the number of clusters [8, 9]. This process
has the ability to capture irregular patterns. DP has the ability
to detect clusters without being burdened about additional
clustering parameters. However, this feature of clustering also
has an inherit weakness in that it tends to produce more
clusters, making interpretations more difficult.

To overcome the aforementioned gaps, we implemented
a mixture of Dirichlet processes (DP). These processes have
the ability to describe irregular patterns [8, 9] and by using
it as our common parametric family allows the model to
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identify more complex patterns than the normal distribution
would be able to identify. Furthermore, motivated from our
previous work with the spatial Cox process application in
[10], we elected to incorporate the birth-death process to
statistically determine the number of clusters. Compared to
other clustering approaches noted earlier, the birth-death
process has the advantage of quick convergence and, by
controlling birth rate, embraces a potential of generating
redundant clusters.

The remainder of the article is organized as follows. In
Section 2, we introduce the model structure, notation,
and priors and hyperpriors, simulations are presented in
Section 3, the application of the model to an fMRI meta-
analysis dataset is in Section 4, and conclusions and discus-
sion are in Section 5.

2. Methods

2.1. The Model. We let 𝑠𝑟𝑗 denote the (𝑥, 𝑦, 𝑧) coordinate of a
spatial point in a three-dimensional space, in particular, point
j in group (study) r, 𝑗 = 1, . . . , 𝐽𝑟 and 𝑟 = 1, . . . , 𝑅. We have∑𝑅𝑟=1 𝐽𝑟 = 𝑛, where 𝑛 is the total number of observed points.
It straightforwardly follows that 𝑠 = (𝑠1,1 ⋅ ⋅ ⋅ 𝑠𝑅,𝐽𝑅) represents
all points in the study. We model 𝑠𝑟𝑗 as

𝑠𝑟𝑗 = 𝑝𝑟 + 𝜃𝑟𝑗 + 𝜖, (1)

where 𝑝𝑟 denotes the effect of group 𝑟, while 𝜃𝑟𝑗 represents
the mean of 𝑠𝑟𝑗 for the 𝑗𝑡ℎ point in group 𝑟 after adjusting
for group effects, 𝑝𝑟, and 𝜖 denotes some random error. By
modeling the random error as a standardmultivariate normal
distribution, the distribution of 𝑠𝑟𝑗 satisfies

𝑠𝑟𝑗 ∼ 𝑀𝑉𝑁3 (𝑝𝑟 + 𝜃𝑟𝑗, Σ) (2)

with

𝑃 (𝑠𝑟𝑗 | 𝑝𝑟, 𝜃𝑟𝑗, Σ) = (2𝜋)−3/2 |Σ|−1/2
⋅ exp [−12 (𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗)󸀠 Σ−1 ((𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗))] ,

(3)

where Σ = 𝜎2𝐼3 is the covariance matrix.

2.2. Prior and Hyperprior Distributions. We start from the
prior distribution of 𝜃𝑟𝑗. To detect underlying clusters of 𝑠𝑟𝑗
due to similarities of 𝜃𝑟𝑗, we describe the prior of 𝜃𝑟𝑗 as a
mixture of distribution 𝐺𝑘, 𝑘 = 1, . . . , 𝐾. Common choices of𝐺𝑘 are normal distributions. To improve flexibility, we relax
such normalizing assumptions in the mixture and assume𝐺𝑘
is generated from a DP, i.e., 𝐺𝑘 ∼ 𝐷𝑃(𝛼,𝐺0𝑘), where 𝛼 is
the precision parameter and 𝐺0𝑘 is a base distribution and
taken as𝐺0𝑘 = 𝑀𝑉𝑁3(𝜇𝑘, Σ𝑘). In particular, 𝜃𝑟𝑗 ∼ ∑𝐾𝑘=1 𝜋𝑘𝐺𝑘,
where 0 < 𝜋𝑘 < 1 such that ∑𝐾𝑘=1 𝜋𝑘 = 1. For the number of
clusters K, we assign a truncated Poisson prior distribution
to 𝐾, 𝑃(𝐾) = (𝜆𝐾/𝐾!) exp(−𝜆), 𝐾 = 1, . . . , 𝑛. We assign a
Dirichlet distribution with parameter 1 to 𝜋 = (𝜋1, . . . , 𝜋𝐾),
which implies that 𝜋 is k-dimensional uniformly distributed.

The prior distribution of 𝜇𝑘 from the base distribution 𝐺0𝑘
is chosen to be 𝜇𝑘 ∼ 𝑀𝑉𝑁3(𝜉, 𝜅−1), where 𝜉 = (𝜉1, 𝜉2, 𝜉3),
which are known and set as the midpoint of observed interval
of variation of the data. Parameter 𝜅 is set as

𝜅 =
[[[[[[[
[

1𝑅21 0 0
0 1𝑅22 0
0 0 1𝑅23

]]]]]]]
]
, (4)

where 𝑅21, 𝑅22, and 𝑅23 are the range of the data for each
dimension. This prior setting is adopted from [1] and we feel
it is reasonable for this setting given the fact that the number
and location of clusters are unknown. We let Σ𝑘 = 𝜎𝑘𝐼3 with𝜎𝑘 ∼ 𝐼𝐺(20, 0.5) since the range of the observed data is small.
For group effect, 𝑝𝑟, we assume it is small with 𝑝𝑟 ∼ 𝐺𝑝,
where 𝐺𝑝 ∼ 𝐷𝑃(𝛼𝑝, 𝐺0𝑝) with 𝛼𝑝 specified later and 𝐺0𝑝 =𝑇𝑀𝑉𝑁3(𝜇𝑝, Σ𝑝, 𝑙𝑜𝑤𝑒𝑟 = −𝑙, 𝑢𝑝𝑝𝑒𝑟 = 𝑙), where the lower and
upper limits are defined as 10% of the absolute range of the
data. We let 𝜇𝑝 ∼ 𝑀𝑉𝑁3(0, 𝐼3) and Σ𝑝 = 𝜎2𝑝𝐼3, with 𝜎2𝑝 ∼𝐼𝐺(5, 0.5). The variance component of the random error,Σ = 𝜎2𝐼3, 𝜎2 is assumed to follow a relatively noninformative
Inverse Gamma (IG) distribution, 𝜎2 ∼ 𝐼𝐺(0.5, 0.5). The
precision parameters 𝛼 and 𝛼𝑝 are selected byminimizing the
deviance information criterion (DIC) [11, 12].

2.3. Conditional Posterior Distributions and Posterior Com-
puting. Sampling parameter estimates from their posterior
distributions can be achieved via Gibbs sampler, in which
the statistical inference on the number of clusters is modeled
using the birth-death process. The birth-death process is one
type of continuous-time Markov chain originally introduced
in [13]. This process is often used to simulate realizations of
point processes as they can be difficult to directly sample
from [1]. These realizations are further used for likelihood
inferences for model parameters [1]. The birth-death scheme
allows events to randomly occur throughout the chain; these
events are either a “birth” or “death.” If a birth occurs, the
number of components increases by one, while if a death
occurs, the number of components decreases by one.

Recall considering a finite mixture prior for 𝜃𝑟𝑗 such
that all 𝜃𝑟𝑗 are assumed independently distributed with each
generated from one of 𝐾 Dirichlet processes denoted as 𝐺𝑘,
i.e.,

𝑃 (𝜃𝑟𝑗 | 𝐾,𝜋,𝜙, 𝛼) = 𝐾∑
𝑘=1

𝜋𝑘𝐺𝑘 (𝛼, 𝐺0𝑘) , (5)

where each 𝐺𝑘(𝛼, 𝐺0𝑘) represents a DP but 𝐾 is unknown,
𝜋 = (𝜋1, . . . , 𝜋𝐾) are the mixing proportions, and 𝜙 =(𝜇1, Σ𝑘, . . . ,𝜇𝐾, Σ𝐾) are the component specific parameters
for each DP. For cluster assignment, we introduce an index
variable 𝑍𝑟𝑗 that indicates the assignment of observation
rj and 𝑍𝑟𝑗 takes the values of 1 to 𝐾. Denoted by 𝑧𝑟𝑗 ∈
𝑧, where 𝑧 = (𝑧1,1, . . . , 𝑧𝑅,𝐽𝑅) represents the realization of
independently and identically distributed discrete random
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variables 𝑍 = (𝑍1,1, . . . , 𝑍𝑅,𝐽𝑅) with probability mass func-
tion,

𝑃 (𝑍𝑟𝑗 = 𝑘 | 𝜋,𝜙, 𝜂) = 𝜋𝑘 (𝑘 = 1, . . . , 𝐾) . (6)

The joint posterior distribution is proportional to

𝑃 (𝜗 | 𝑠) ∝ 𝑅∏
𝑟

𝑃 (𝑝𝑟 | 𝐺𝑝) 𝑃 (𝐺𝑝 | 𝛼, 𝐺0𝑝)
⋅ 𝐺0𝑝 (𝑝𝑟; 𝜇𝑝, 𝜎2𝑝) 𝑃 (𝜇𝑝) 𝑃 (𝜎2𝑝)
⋅ 𝐽𝑟∏
𝑗

𝑃 (𝑠𝑟𝑗 | 𝜙)
× 𝑃 (𝜃𝑟𝑗 | 𝑧,𝜋, 𝐺1, . . . , 𝐺𝐾)
⋅ 𝐾∏
𝑘=1

𝑃 (𝐺𝑘 | 𝛼, 𝐺0𝑘) 𝐺0𝑘 (𝜃𝑟𝑗; 𝜇𝑘, 𝜎2𝑘)
⋅ 𝑃 (𝜇𝑘) 𝑃 (𝜎2𝑘) × 𝑃 (𝜋) 𝑃 (𝐾) 𝑃 (𝑍) 𝑃 (𝜎2) ,

(7)

where 𝜗 = (𝑝𝑟, 𝜃𝑟𝑗, 𝜎2, 𝛼𝑝,𝜇𝑝, 𝜎2𝑝, 𝐾,𝜇1, . . . ,𝜇𝐾, 𝜎21 , . . .,𝜎2𝐾, 𝛼,𝜋) is a vector of all estimable parameters. From here,
the birth-death algorithmandMarkov chain can be described
for introducing and assigning clusters for 𝜃𝑟𝑗:

(1) Starting with the initial model 𝑦 = {(𝜋1, 𝜙1), . . .,(𝜋𝐾, 𝜙𝐾)}, let (𝜋𝑘, 𝜙𝑘) represent themixing proportion
and cluster specific parameters for the unique 𝜃𝑟𝑗
clusters. Let the birth rate be 𝛽(𝑦) = 𝜆𝑏.

(2) Calculate the death rate for each component:

𝛿𝑘 (𝑦) = 𝐿 (𝑦 \ (𝜋𝑘, 𝜙𝑘))𝐿 (𝑦) 𝑃 (𝐾 − 1 | 𝛼, ⋅)𝐾𝑃 (𝐾 | 𝛼, ⋅)
(𝑘 = 1, . . . , 𝐾) .

(8)

(3) Calculate the total death rate 𝛿(𝑦) = ∑𝐾𝑘=1 𝛿𝑘(𝑦). To
quicken convergence, we elected not to model the
time to next jump as exponential and allowed an event
to occur at each iteration of the Markov chain.

(4) Simulate the type of event, birth or death, with the
respective probabilities:

𝑃 (𝑏𝑖𝑟𝑡ℎ) = 𝛽 (𝑦)𝛽 (𝑦) + 𝛿 (𝑦) ,
𝑃 (𝑑𝑒𝑎𝑡ℎ) = 𝛿 (𝑦)𝛽 (𝑦) + 𝛿 (𝑦) .

(9)

(5) Adjust the model 𝑦 to reflect the birth or death by the
following:

(i) Birth: Simulate a new component (𝜋𝐾+1, 𝜙𝐾+1)
from each parameter's respective (independent)
prior distributions, 𝜋𝐾+1 from 𝐾(1 − 𝜋)𝐾−1
and 𝜙𝐾+1 from base distribution, such that the

model becomes 𝑦 = {(𝜋1, 𝜙1), . . . , (𝜋𝐾, 𝜙𝐾),(𝜋𝐾+1, 𝜙𝐾+1)}. It can be mentioned that 𝐾(1 −𝜋)𝐾−1 is the Beta distribution with parameters(1, 𝐾) and can be easily simulated from 𝑌1 ∼𝐺(1, 1) and 𝑌2 ∼ 𝐺(𝐾, 1) such that 𝜋𝐾+1 =𝑌1/(𝑌1 + 𝑌2).
(ii) Death: Select a component to die with the prob-

abilities 𝛿𝑘(𝑦)/𝛿(𝑦) for 𝑘 = 1, . . . , 𝐾 such that
the model becomes 𝑦 = {(𝜋1, 𝜙1), . . . , (𝜋𝐾−1,𝜙𝐾−1)}.

(6) Given the current state of themodel at time 𝑡, simulate
values for all remaining parameters.

(7) Go to step (2).
Incorporating the birth-death process into our model, we

need to further define the likelihood for removing cluster 𝑖:
𝑃 (Φ \ (𝜋𝑖, 𝐺𝑖) | 𝑠) ∝ 𝑅∏

𝑟

𝑃 (𝑝𝑟 | 𝐺𝑝) 𝑃 (𝐺𝑝 | 𝛼, 𝐺0𝑝)
⋅ 𝐺0𝑝 (𝑝𝑟; 𝜇𝑝, 𝜎2𝑝) 𝑃 (𝜇𝑝) 𝑃 (𝜎2𝑝) 𝐽𝑟∏

𝑗

𝑃 (𝑠𝑟𝑗 | 𝜙)
× 𝑃 (𝜃𝑟𝑗 | 𝑧,𝜋, 𝐺1, . . . , 𝐺𝐾) 𝐾(𝑖)∏

𝑘=1

𝑃 (𝐺𝑘 | 𝛼, 𝐺0𝑘)
⋅ 𝐺0𝑘 (𝜃𝑟𝑗; 𝜇𝑘, 𝜎2𝑘) × 𝑃 (𝜇𝑘) 𝑃 (𝜎2𝑘) 𝑃 (𝜋) 𝑃 (𝐾) 𝑃 (𝑍)
⋅ 𝑃 (𝜎2) ,

(10)

where 𝐾(𝑖) = 𝑖 ∉ (1, . . . , 𝐾). The birth-death process is
conditional on the prespecified birth rate, 𝜆𝑏. By setting
this birth rate, which controls how often a “birth” of a new
component occurs, equal to 𝜆 as suggested and done in [1],
this computationally allows the death rates to be a likelihood
ratio absent of 𝜆. In other words, the likelihood of the data
drives the death rates and ultimately the decision of a new
cluster. Given that decision is a “birth,” the new cluster’s
parameters 𝜇𝐾+1,𝜎2𝐾+1, and 𝜋𝐾+1 are sampled from their prior
distributions:

𝜇𝐾+1 ∼ 𝑀𝑉𝑁3 (𝜉, 𝜅−1)𝜎2𝐾+1 ∼ 𝐼𝐺 (20, 0.5)𝜋𝐾+1 ∼ 𝐾 (1 − 𝜋)𝐾−1 .
(11)

The mixing proportions are adjusted by multiplying all
current proportions by (1−𝜋𝐾+1) if a birth occurs or dividing
by (1 − 𝜋𝑖) if a death occurs.

To simulate values for all remaining parameters and
hyperparameters, we implement the Gibbs sampler. Condi-
tional posterior distributions are listed below. Note that “⋅”
denotes data and other parameters not listed.The conditional
posterior of 𝑍𝑟𝑗 is

𝑃 (𝑍𝑟𝑗 = 𝑘 | 𝜋, 𝜃𝑟𝑗, 𝐺𝑘, ⋅)
∝ 𝑃 (𝜃𝑟𝑗 | 𝑍𝑟𝑗 = 𝑘, 𝐺𝑘, ⋅) 𝑃 (𝐺𝑘 | ⋅) 𝑃 (𝑍𝑟𝑗 = 𝑘)



4 Journal of Probability and Statistics

= {{{
𝛼𝑀𝑉𝑁3 (𝜇𝑘, Σ𝑘)𝛼 + 𝑛𝑘 − 1 + ∑𝐶𝑘𝑐=1 𝛿𝑐 (𝜃𝑟𝑗)𝛼 + 𝑛𝑘 − 1

}}}𝜋𝑘,
(12)

where 𝑐 = 1, . . . , 𝐶𝑘 is the number of subclusters for cluster𝑘 ∈ (1, . . . , 𝐾), 𝑛𝑘 is the number of foci in cluster 𝑘, and 𝛿𝑐(𝜃𝑟𝑗)
denotes the unit point mass,

𝜋 | Z ∼ 𝐷𝑖𝑟 (𝑛1 + 1, . . . , 𝑛𝐾 + 1) , (13)

and

𝑃 (𝜃𝑟𝑗 | 𝑘, ⋅) ∝ ∏
𝑍𝑟𝑗∈𝑘

𝑃 (𝑠𝑟𝑗 | 𝑝𝑟, 𝜃𝑟𝑗, ⋅)
⋅ 𝑃 (𝜃𝑟𝑗 | 𝑍𝑟𝑗 = 𝑘, 𝐺𝑘) 𝑃 (𝐺𝑘 | 𝐺0𝑘, 𝛼)
⋅ 𝐺0𝑘 (𝜃𝑟𝑗;𝜇𝑘, 𝜎2𝑘) = ∏

𝑍𝑟𝑗∈𝑘

{𝑀𝑉𝑁3 (𝑝𝑟 + 𝜃𝑟𝑗, Σ)}

⋅ {{{
𝛼𝑀𝑉𝑁3 (𝜇𝑘, Σ𝑘)𝛼 + 𝑛𝑘 − 1 + ∑𝑛𝑘𝑞=1,𝑞 ̸=𝑟𝑗 𝛿𝜃𝑞 (𝜃𝑟𝑗)𝛼 + 𝑛𝑘 − 1

}}} ,

(14)

which is the distribution of a DP with 𝛿𝜃𝑞(𝜃𝑟𝑗) being the unit
point mass and 𝑛𝑘 the number of foci in some cluster 𝑘 ∈(1, . . . , 𝐾),

𝜇𝑘 | ⋅ ∼ 𝑀𝑉𝑁3 ((𝜅 + 𝑛𝑘𝜎−2𝑘 𝐼3)−1
⋅ (𝜅𝜉 + 𝑛𝑘𝜎−2𝑘 𝐼3𝜃𝑟𝑗) , (𝜅 + 𝑛𝑘𝜎−2𝑘 𝐼3)−1) , (15)

where 𝜃𝑟𝑗 = ∑𝑟𝑗∈𝑘 𝜃𝑟𝑗/𝑛𝑘 and denotes the average of all 𝜃𝑟𝑗 in
cluster k,

𝜎2𝑘 | ⋅ ∼ 𝐼𝐺(3 × 𝑛𝑘2 + 20, 0.5
+ 12 ∑
𝑍𝑟𝑗∈𝑘

(𝜃𝑟𝑗 − 𝜇𝑘)󸀠 (𝜃𝑟𝑗 − 𝜇𝑘)) ,
(16)

where 𝑛𝑘 is the number of foci in cluster 𝑘, 𝑘 = 1, . . . , 𝐾. The
conditional posterior of 𝑝𝑟 is generated from a DP again:

𝑃 (𝑝𝑟 | ⋅) ∝ 𝑅∏
𝑟=1

𝑃 (𝑠𝑟𝑗 | 𝑝𝑟, 𝜃𝑟𝑗, ⋅) 𝑃 (𝜃𝑟𝑗 | ⋅) 𝑃 (𝑝𝑟 | 𝐺𝑝)
⋅ 𝑃 (𝐺𝑝 | 𝐺0𝑝, 𝛼𝑝) 𝐺0𝑝 (𝑝𝑟; 𝜇𝑝, 𝜎2𝑝)
= 𝑅∏
𝑟=1

{𝑀𝑉𝑁3 (𝑝𝑟 + 𝜃𝑟𝑗, Σ)}
⋅ {{{
𝛼𝑝𝑇𝑀𝑉𝑁3 (𝜇𝑝, Σ𝑝, −𝑙, 𝑙)𝛼𝑝 + 𝑅 − 1

+ ∑𝑅𝑞=1,𝑞 ̸=𝑟 𝛿𝑝𝑞 (𝑝𝑟)𝛼𝑝 + 𝑅 − 1
}}} ,

(17)

where 𝛿𝑝𝑞(𝑝𝑟) is the unit point mass. The conditional poste-
rior distributions for the related hyperparameters are

𝜇𝑝 | ⋅ ∼ 𝑀𝑉𝑁3 ((1 + 𝑅𝜎−2𝑝 )−1
⋅ (𝑅𝜎−2𝑝 (𝑝𝑟)) , (1 + 𝑅𝜎−2𝑝 )−1 𝐼3) , (18)

where𝑝𝑟 = ∑𝑟∈𝑅 𝑝𝑟/𝑅 and represents the average group effect
and

𝜎2𝑝 | ⋅ ∼ 𝐼𝐺(3 × 𝑅2 + 5, ∑𝑅𝑟=1 (𝑝𝑟 − 𝜇𝑝)2 + 12 ) . (19)

Lastly, the sampling distribution for Σ is

𝜎2 | ⋅ ∼ 𝐼𝐺(3 × 𝑛 + 12 ,
1 + ∑𝑍𝑟𝑗∈𝑛 (𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗)󸀠 (𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗)2 ) .

(20)

The sampling of unique values for 𝜃𝑟𝑗 and 𝑝𝑟 can be
performed using Neal’s algorithm 8 [14]. It works by intro-
ducing 𝑚 auxiliary parameters that are independent to other
parameters to represent potential values for 𝜃𝑟𝑗 and 𝑝𝑟 [14].
Algorithm 8 for updating clustering assignments, denoted as𝑐, is as follows:

(i) The state of the Markov chain consists of 𝑐 ={𝑐1, . . . , 𝑐𝑛} and Φ = (𝜙𝑐; 𝑐 ∈ 𝑐1, . . . , 𝑐𝑛) with 𝜙𝑐
denoting cluster parameters, e.g., 𝜃𝑐 in our applica-
tion. Repeatedly sample as follows:

(ii) For 𝑖 = 1, . . . , 𝑛, let 𝑘− be the number of distinct 𝑐𝑙
for 𝑙 ̸= 𝑖, and ℎ = 𝑘− + 𝑚. Label these 𝑐𝑙 with values
in {1, . . . , 𝑘−}. If 𝑐𝑖 = 𝑐𝑙 for some 𝑙 ̸= 𝑖, draw values
independently from base distribution 𝐺0 for those 𝜙𝑐
for which 𝑘− < 𝑐 ≤ ℎ. If 𝑐𝑖 ̸= 𝑐𝑙 for all 𝑙 ̸= 𝑖, let 𝑐𝑖
have the label 𝑘− + 1, and draw values independently
from 𝐺0 for those 𝜙𝑐 for which 𝑘− + 1 < 𝑐 ≤ ℎ. Draw
a new value for 𝑐𝑖 from {1, . . . , ℎ} using the following
probabilities:

𝑃 (𝑐𝑖 = 𝑐 | 𝑐−𝑖, 𝑦𝑖, 𝜙1, . . . , 𝜙ℎ)
= {{{{{

𝑛−𝑖,𝑐𝑛 − 1 + 𝛼𝐹 (𝑦𝑖, 𝜙𝑐) for 1 ≤ 𝑐 ≤ 𝑘−(𝛼/𝑚)𝑛 − 1 + 𝛼𝐹 (𝑦𝑖, 𝜙𝑐) for 𝑘− < 𝑐 ≤ ℎ,
(21)

where 𝐹(𝑦𝑖, 𝜃𝑐) is the likelihood with 𝜃𝑐 and observa-
tion 𝑖, 𝑦𝑖, involved. In our case, it is 𝑠𝑖𝑗,

(iii) where 𝑛−𝑖,𝑐 is the number of 𝑐𝑙 for 𝑙 ̸= 𝑖 that are equal
to 𝑐 and 𝑏 is the appropriate normalizing constant.
Change the state to contain only those 𝜙𝑐 that are now
associated with one or more observation.
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(iv) For all 𝑐 ∈ {𝑐1, . . . , 𝑐𝑛}, draw new values from 𝜙𝑐 | 𝑦𝑖
such that 𝑐𝑖 = 𝑐, or perform some other update to 𝜙𝑐
that leaves this distribution invariant [14].

Thus, the value for 𝜃𝑟𝑗 for those foci in cluster 𝑘 and subcluster𝑐may be sampled from

𝜃𝑘,𝑐 | ⋅ ∼ 𝑀𝑉𝑁3 ((𝜎−2𝑘 + 𝑛𝑘,𝑐𝜎−2)−1
⋅ (𝜎−2𝑘 𝜇𝑘 + 𝑛𝑘,𝑐𝜎−2(𝑠𝑟𝑗 − 𝑝𝑟)) , (𝜎−2𝑘 + 𝑛𝑘𝜎−2)−1
⋅ 𝐼3) ,

(22)

where 𝑛𝑘,𝑐 are the number of foci in some cluster 𝑘 and
subcluster 𝑐 and (𝑠𝑟𝑗 − 𝑝𝑟) denotes the mean of the observed
data after adjusting for group effect.The value for 𝑝𝑟 for those
groups (studies) in group cluster 𝑐 (different 𝑐 notation than
subclusters above) may be sampled from

𝑝𝑐 | ⋅ ∼ 𝑇𝑀𝑉𝑁3 ((𝜎−2𝑝 + 𝑛𝑐𝜎−2)−1
⋅ (𝜎−2𝑝 𝜇𝑝 + 𝑛𝑐𝜎−2(𝑠𝑟𝑗 − 𝜃𝑟𝑗)) , (𝜎−2𝑝 + 𝑛𝑐𝜎−2)−1 𝐼3,
− 𝑙, 𝑙) ,

(23)

where 𝑛𝑐 is the number of groups in cluster 𝑐 and similarly(𝑠𝑟𝑗 − 𝜃𝑟𝑗) denotes the mean of the observed data after
adjusting for individual effect.

2.4. Determining the Clusters. To estimate the number of
clusters and the center of each cluster and cluster assignment,
we implement the same least-squared Euclidean distance
method introduced in [15] and used previously in our work
in [10] and reiterated below. This method draws inferences
on clusters based on a set of converged MCMC iterations
and chooses one iteration as the final estimates for the
clusters and related parameters. This final MCMC iteration is
selected due to its smallest Euclidean distance to the expected
cluster assignments estimated based on a set of independent
converged MCMC iterations. This approach incorporates
all clustering information in the MCMC sampling process
[15]:

(1) After the prespecified number of MCMC burn-ins,
let the MCMC simulations continue for an additional𝑊 iterations. An averaged clustering matrix is then
created, denoted as𝐴, and is an 𝑛×𝑛matrix with each
block or (𝑖, 𝑗)𝑡ℎ entry denoting how often foci 𝑖 and𝑗 (𝑖, 𝑗 = 1, . . . , 𝑛) are in the same cluster. Specifically,
each (𝑖, 𝑗)𝑡ℎ entry is the proportion of theW iterations
that two foci are in the same cluster.

(2) Let the MCMC run additional 𝐹 iterations, where, for
each iteration,

(a) create an 𝑛×𝑛matrix using indicators to denote
which foci are clustered together; i.e., let the

(𝑖, 𝑗)𝑡ℎ entry denote a 1 if foci 𝑖 and 𝑗 are in one
cluster and 0 otherwise.

(b) use Euclidean distance to determine the sim-
ilarity between this indicator matrix and the
averaged clustering matrix 𝐴.

(3) Among the 𝐹 iterations, select the iteration and re-
spective clustering pattern, number of clusters, and
parameters that produce the smallest Euclidean dis-
tance.

3. Inference

3.1. Simulation Settings. Simulations were utilized to illus-
trate and assess the proposed method. We assumed an fMRI
metadata study setting including 50 studies, with each study
containing 10 foci. Collectively these foci were simulated
from three clusters centered as (x,y,z) talairach coordinates
at (1, 1, 1)𝑇, (2, 2, 2)𝑇, and (4, 4, 4)𝑇 containing 150, 150, and
200 foci, respectively. It was also assumed that half the data,
250 foci or half from each individual cluster, came from one
study cluster centered at (0.1, 0.1, 0.1)𝑇 and the remaining
data from a second study cluster centered at (0.4, 0.4, 0.4)𝑇.
These study clusters were linear shifts to cluster centers. For
example, 75 foci in cluster one were centered at (1.1, 1.1, 1.1)𝑇
and the other half were centered at (1.4, 1.4, 1.4)𝑇; the study
effect was a linear shift to all three dimensions from the
cluster center. We made various alterations to this general
setting:

(1) Normal setting: We simulated data from a multivari-
ate normal for each cluster with respective means
described above and a variance of Σ = 0.002𝐼3. This
creates spheres with little variation and we expect the
method to have the ability to correctly identify the
clusters.

(2) Chi-squared (skewed) setting: The method’s ability
to cluster in the presence of abnormal patterns is an
important factor in spatial clustering. For this setting,
we applied the same scenario as in the normal setting
in respect of clusters 1 and 2 but simulated cluster
3 using a chi-squared distribution with 4 degrees of
freedom.

(3) Large variance setting: The last scenario is designed
to assess the robustness of the method with respect
to the distance between and among clusters. To this
end, we applied the normal setting but considered
increasing levels (referred to large1, large2, large3, and
large4 settings, resp.) of Σ: Σ = 0.01𝐼3, 0.05𝐼3, 0.1𝐼3,
and 0.2𝐼3, representing gradually closer distances
among clusters.

For each setting, we implemented a grid search for a
single dataset to estimate values of 𝛼𝑝 and 𝛼 based on the
minimization of DIC. We let precision parameter values be
0.01, 0.05, 0.1, 0.5, 1, 2, and 5. Based on 𝛼𝑝 and 𝛼 estimates,
100MCdatasets were generated with 2500 burn-in iterations,
500 working iterations to calculate the probability matrix
for determining the clusters, and 100 additional iterations
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Table 1: Simulation assessments for three foci-level clusters.

Scenario (𝛼𝑝 , 𝛼) Median Num. of
Clusters (SD)∗ Cluster index Average Sensitivity

(SD)∗ Average Specificity
(SD)∗ Average Accuracy

(%) (SD)∗
Normal (0.1, 1.0)

∗∗IC: 3 (0.88) 1 0.96 (0.13) 1 (0)
0.96 (0.13)2 0.96 (0.13) 1 (0)

3 0.96 (0.13) 1 (0)

∗∗SC: 2 (0.32) 1 0.93 (0.26) 1 (0.04) 0.96 (0.13)
2 1 (0.04) 0.93 (0.26)

Chi-squared (0.05, 0.1)
IC: 19 (2.17)

1 0.94 (0.09) 0.91 (0.15)
2 0.74 (0.43) 0.96 (0.02) 0.54 (0.13)
3 0.09 (0.03) 0.94 (0.16)

SC: 2 (0.56) 1 0.76 (0.37) 0.9 (0.1) 0.82 (0.18)
2 0.88 (0.11) 0.78 (0.36)

Large 1 (0.05, 0.1)
IC: 3 (0.82)

1 0.96 (0.13) 1 (0)
0.96 (0.13)2 0.96 (0.13) 1 (0)

3 0.96 (0.13) 1 (0)

SC: 2 (0.29) 1 0.92 (0.27) 1 (0) 0.96 (0.14)
2 1 (0) 0.92 (0.27)

Large 2 (0.01, 0.5)
IC: 3 (0.77)

1 0.99 (0.04) 1 (0)
0.99 (0.02)2 0.99 (0.03) 1 (0)

3 1 (0.01) 1 (0)

SC: 2 (0.14) 1 1 (0.02) 1 (0.01) 1 (0.01)
2 1 (0.01) 1 (0)

Large 3 (0.05, 0.05)
IC: 5 (1.25)

1 0.91 (0.13) 1 (0)
0.92 (0.07)2 0.88 (0.16) 1 (0)

3 0.96 (0.09) 1 (0)

SC: 2 (0.37) 1 0.97 (0.06) 0.98 (0.03) 0.97 (0.04)
2 0.98 (0.03) 0.98 (0.03)

Large 4 (0.01, 2.0)
IC: 9 (1.3)

1 0.66 (0.14) 0.99 (0.01)
0.62 (0.09)2 0.33 (0.08) 0.99 (0.01)

3 0.8 (0.17) 1 (0)

SC: 1 (0.36) 1 0.04 (0.17) 0.99 (0.05) 0.51 (0.08)
2 0.98 (0.07) 0.05 (0.18)

∗SD: standard deviation across 100 MC replicates; ∗∗IC: individual foci cluster; SC: study effect clusters.

to infer the number of clusters and individual foci cluster
centers.

Model assessment consists of three evaluations: sensitiv-
ity, specificity, and accuracy. Sensitivity and specificity are
defined by their generic definitions, the proportion of foci
that are correctly assigned to their simulated cluster, and
the proportion of foci that are correctly not assigned their
nonsimulated cluster. Accuracy is defined as the percentage
of foci that are correctly clustered. Note that the definition
of accuracy takes into account both true positive and true
negatives. In addition to our methodology, we applied a
very common existing clustering approach for continuous
data, K-means, to our simulation settings. Although this
method cannot adjust for additional covariates, it allows for
a comparison to existing methods. Lastly, to highlight the
advantage of using a mixture of DPs over existing clustering

approaches, we applied our approach, a revised version
of our approach using a mixture of multivariate normal
distributions rather than DPs, and Kmeans to the normal and
chi-squared simulation scenarios. As the emphasis was on
clustering performance, the group effect was assumed to be
known for these two settings.

3.2. Simulation Results. Table 1 summarizes the findings on
the three foci-level cluster identifications and the quality of
the identified clusters. The proposed method gives high sen-
sitivities and specificities across all scenarios. The accuracy
of cluster assignment overall is higher than 90% when the
variation in the data is relatively small and only dropping
once clusters were large enough to overlap (scenario Large 4).
The proposed methodology was also accurate at identifying
the correct number of clusters as indicated by the median
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Table 2: Kmeans simulation assessments for three foci-level clusters.

Scenario: Median Num. of
Clusters (SD)∗ Cluster index Average Sensitivity

(SD)∗ Average Specificity
(SD)∗ Average Accuracy

(%) (SD)∗
Normal 5 (0.95)

1 0.73 (0.29) 0.98 (0.09)
0.7 (0.12)2 0.72 (0.3) 0.98 (0.08)

3 0.67 (0.26) 1 (0)

Chi-squared 10 (0.5)
1 0.58 (0.19) 0.99 (0.01)

0.5 (0.09)2 0.86 (0.28) 0.92 (0.03)
3 0.16 (0.08) 0.98 (0.11)

Large 1 5 (0.98)
1 0.68 (0.33) 1 (0.04)

0.7 (0.13)2 0.76 (0.26) 0.96 (0.12)
3 0.67 (0.26) 1 (0)

Large 2 7 (1.29)
1 0.61 (0.27) 0.99 (0.06)

0.58 (0.11)2 0.61 (0.27) 0.99 (0.06)
3 0.54 (0.27) 1 (0)

Large 3 9 (0.94)
1 0.49 (0.19) 1 (0)

0.46 (0.08)2 0.47 (0.17) 1 (0)
3 0.43 (0.24) 1 (0)

Large 4 10 (0.57)
1 0.43 (0.16) 1 (0.01)

0.41 (0.07)2 0.42 (0.14) 1 (0.01)
3 0.38 (0.2) 1 (0)

∗SD: standard deviation across 100 MC replicates.

number of individual and study clusters. In comparison,
results from the Kmeans approach indicate relatively lower
statistics in sensitivity and specificity (Table 2). The accuracy
is around 70%, when the variations in the data are relatively
small. However, compared to the proposed method, the
Kmeans approach often inferred a higher number of clusters
as indicated by the larger median number of clusters. The
computation time of a single dataset for the mixture of
DPs took, on average, 7-8 hours on a high performance
computer (Dell cluster with 88 compute nodes, 3120 total
central processing unit cores, 20664 Giga-bytes of RAM, and
61440 total graphic processing unit cores).

After removing study effects, the comparison between
the mixture of DPs, mixture of normal, and Kmeans is as
expected (Table 3). Both mixtures performed exceptionally
well at identifying the three normally distributed clusters
while the Kmeans performance was adequate with an overall
accuracy of 80% (compared to 100% for bothmixtures). Once
the data deviated from normality, the mixture of normals
approach was unable to differentiate the clusters resulting
in low accuracy (32%). The Kmeans approach performed
similarly to the mixture of DPs with both approaches having
low sensitivities for the third cluster which was skewed but
with the mixture of DPs resulting in superior accuracy. The
mixture of DPs was able to differentiate clusters 1 and 2 as
indicated by 99% sensitivity and 100% specificity measures
but tended to “overcluster” cluster 3 into smaller clusters
as indicated by the large median number of clusters, 14%
sensitivity, and 100% specificity. In regard to overall accuracy,

the mixture of DPs outperformed themixture of normals and
Kmeans when the data are skewed.

4. Real Data Application

For this application, we applied the proposed method to
a meta-analysis dataset. Constructed originally in [16], this
data consists of a total of 162 neuroimaging publications,
of which 57 were PET and 105 were fMRI. Among these
162 publications, there were 437 contrasts or studies. Only
those foci that were deemed significantly activated by their
study specific criteria were included for a total of 2,478 foci.
Summary statistics for this data can be seen in Tables 4 and
5.

As with the simulation studies, grid search and DIC were
used to estimate values for 𝛼𝑝 and 𝛼. Potential precision
parameters values were 0.01, 0.05, 0.1, 0.5, 1, 2, 5, and 7.5. Each
combination was performed over 2,600 iterations, 2,000 of
those for burn-in, 500 for the probability matrix calculation,
and final 100 to infer individual clusters and their centers. To
assist with the magnitude of the likelihood calculations, the
data was scaled down by 10.

It was found that the precision parameter combination
of 𝛼𝑝 = 0.05 and 𝛼 = 1 produced the smallest DIC.
Convergence, with the initial 2,000 discarded, was checked
based on trace plots. Based on the proposed method, we
identified four study clusters and 14 individual foci clusters.
A single DIC setting for this data took, on average, 72
hours to run on the HPC. The break down of the 14



8 Journal of Probability and Statistics

Table 3: Comparison of approaches for selected simulated settings assuming study effect is known.

Setting Approach Median Num. of
Clusters (SD)∗ Cluster index Average Sensitivity

(SD)∗ Average Specificity
(SD)∗

Average
Accuracy (%)

(SD)∗

Normal

DP 3 (0)
1 1 (0) 1 (0)

1 (0)2 1 (0) 1 (0)
3 1 (0) 1 (0)

Mixture 3 (0)
1 1 (0) 1 (0)

1 (0)2 1 (0) 1 (0)
3 1 (0) 1 (0)

Kmeans 3 (0.6)
1 0.81 (0.36) 0.93 (0.16)

0.8 (0.22)2 0.79 (0.38) 0.94 (0.15)
3 0.79 (0.25) 1 (0)

Chi-squared

DP 16 (1.76)
1 0.99 (0.01) 0.99 (0.01)

0.65 (0.01)2 0.99 (0.01) 0.97 (0.01)
3 0.14 (0.03) 1 (0)

Mixture 1 (0.29)
1 0.06 (0.24) 0.98 (0.11)

0.32 (0.1)2 0.95 (0.22) 0.06 (0.24)
3 0.05 (0.21) 1 (0)

Kmeans 10 (0.22)
1 0.99 (0.06) 0.98 (0.01)

0.62 (0.1)2 0.87 (0.34) 0.93 (0.03)
3 0.16 (0.06) 0.94 (0.17)

∗SD: standard deviation across 100 MC replicates.

Table 4: Descriptive statistics∗.
Min. 1st Qu. Median Mean 3rd Qu. Max.

Number of foci per pub. 1.00 5.75 10.00 15.11 17.25 110.00
Number of foci per study 1.00 2.00 4.00 5.67 7.00 47.00
Number of subjects per pub. 4.00 9.00 11.00 12.26 14.00 40.00
Number of studies per pub. 1.000 1.000 2.000 2.67 4.000 12.000
∗Min: minimum, 1st Qu: 25% percentile, 3rd Qu: 75% percentile, Max: maximum, pub: publication.

Table 5: Frequency of emotions.

Emotions Frequency of studies Frequency of foci
(% of total studies) (% of total foci)

aff∗ 175 (40.05%) 881 (35.55%)
anger 26 (5.95 %) 166 (6.7%)
disgust 44 (10.07%) 337 (13.6%)
fear 68 (15.56%) 367 (14.81%)
happiness 36 (8.24%) 178 (7.18%)
mixed 41 (9.38%) 195 (7.87%)
sadness 45 (10.3%) 348 (14.04%)
surprise 2 (0.46%) 6 (0.24%)
Total 437 2478
∗aff: affective.

individual foci clusters by center location, brain location, foci
frequency, and study frequency can be seen in Table 6. The
frequency of each foci-associated emotion within each of
the 14 clusters can be seen in Table 7. The affective emotion
was dominating in all clusters with fear being the second

dominating emotion in clusters 1, 2, 3, 11, and 13, disgust
in clusters 5 and 14, sadness in clusters 6 and 10, and a
mixture of emotions in the remaining clusters. When only
focusing on those foci that fell within known brain regions
of interest, as seen in Table 8, the dominating emotion, other
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Table 6: Meta-data cluster results.

Cluster Centers Brian Regions Cluster Index # of foci per cluster (% of total foci) # of studies per cluster (% of all studies)
(-9.11, -14.45, 1.4) Temporal Mid L 1 1615 (65.17) 386 (88.33)
(-0.83, -4.64, 0.54) Temporal Mid L 2 188 (7.59) 139 (31.81)
(16.75, -10.63, -11.33) Temporal Mid R 3 148 (5.97) 117 (26.77)
(3.48, -5.52, -2.15) Temporal Inf L 4 102 (4.12) 84 (19.22)
(2.08, -4.61, -0.14) Temporal Mid R 5 77 (3.11) 67 (15.33)
(0.87, -7.7, -0.63) Temporal Pole Sup L 6 67 (2.7) 59 (13.5)
(0.99, -6.33, 2.62) Cerebelum 6 R 7 55 (2.22) 43 (9.84)
(2.3, -5.89, 0.32) NA 8 54 (2.18) 46 (10.53)
(0.43, -6.59, 0.6) Postcentral L 9 41 (1.65) 36 (8.24)
(-0.18, -4.99, 0.11) Cerebelum 6 R 10 39 (1.57) 38 (8.7)
(1.69, -5.25, 1.43) Temporal Sup R 11 38 (1.53) 34 (7.78)
(-0.64, -5.93, 1.77) Postcentral L 12 22 (0.89) 20 (4.58)
(1.29, -5.28, 1.23) Precentral R 13 18 (0.73) 17 (3.89)
(0.45, -5.31, -0.87) Occipital Inf R 14 14 (0.56) 14 (3.2)
R: right hemisphere, L: left hemisphere.

than affective, was sadness, fear, and disgust, respectively.
When compared to the number of clusters identified by the
spatial Cox Point process (53) and Kmeans (20) performed
in [10], fewer clusters were identified with our current
application. It should be noted that this particular data does
not visually indicate distinct clusters and is closer to a more
uniform distribution throughout the brain which may lead
to an inaccurate number of identifiable clusters. However,
given the results from our previous analysis in [10] and
findings in simulation studies, it is possible that the clusters
formed were rather subtle and actually might not be distinct
enough.

5. Conclusion and Discussion

Modeling the realization of observed foci as a linear associ-
ation of study effect and individual foci cluster effect with
a multivariate normal random error was motivated by the
limitation of the spatial Cox process to statistically distin-
guish between a cluster and a mode or peak of a cluster. The
overall aim remained to identify activated regions within the
brain using fMRI coordinate-based metadata. By modeling
the data in this fashion, it was hopeful that the distribution
could statistically differentiate between clusters and modes
of clusters while retaining the flexibility and robustness to
mimick the behavior of the data.

Simulation studies demonstrated that the method can
fit data generated from normal or abnormal distributions.
Furthermore, it was able to identify clusters within covariates
while retaining the integrity to identify individual clus-
ters. Both the proposed method and Kmeans were unable
to correctly identify clusters when they were large and
overlapped and both the mixture of normals and mixture
of DPs performed poorly at identifying a cluster severely
skewed.

When applied to a fMRI metadataset, the method iden-
tified a relatively low number of clusters. Given the low

sensitivity findings in the simulated study with high noise,
it can be concluded that this data had a high likelihood of
being too broad. When the same data was analyzed with the
spatial Cox process, the difference in the results was extreme.
Not only were the number of clusters substantially less, but
also none of the cluster centers identified from the proposed
method came close to those identified in the firstmethod. It is
worthmentioning that themeta-analysis data is not distinctly
grouped and is more uniformly distributed throughout the
brain and perhaps the model used did not provide the best
fit.

The primary advantage to this method, besides its flexi-
bility, is its ability to describe irregular spatial patterns and its
sampling design to statistically differentiate clusters. Because
of its adaptable nature, this model can also adjust for any
covariate(s) of interest. However, based on simulation studies
and the fMRI metadata application, the proposed method
tends to be too insensitive and has a difficult time identi-
fying clusters when data are not distinctly differentiated. A
potential limitation in the approach is that eachDPwithin the
mixture was assumed to have the same precision parameter.
It was noted that, during the simulation studies when the
mixture of DPs was attempting to fit the Chi-squared simula-
tions (without study effect), it was overclustering the skewed
cluster. However, when the precision parameter was smaller,
the identifiability of cluster 3 became more accurate but
became more inaccurate for clusters 1 and 2. Thus, to further
improve flexibility and accuracy for this approach when
data is skewed, each DP potentially requires its own unique
precision parameter. Furthermore, this method’s clustering
ability is limited by the identification of study effects which
may be improved by implementing stronger restrictions
or could be an effect of having multiple DPs. Our future
work will focus on these issues, allowing study effect to
be random rather than a fixed effect, and identifying if a
large number of DPs within the model is indeed a limita-
tion.
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Table 7: Breakdown of emotions and their frequencies by individual foci cluster∗.
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)

Cluster: 1 1615 Cluster: 2 188 Cluster: 3 148
aff 562 (34.8) aff 57 (30.32) aff 53 (35.81)
anger 110 (6.81) anger 10 (5.32) anger 12 (8.11)
disgust 225 (13.93) disgust 18 (9.57) disgust 22 (14.86)
fear 234 (14.49) fear 35 (18.62) fear 31 (20.95)
happiness 121 (7.49) happiness 17 (9.04) happiness 8 (5.41)
mixed 131 (8.11) Mixed 18 (9.57) mixed 8 (5.41)
sadness 228 (14.12) sadness 33 (17.55) sadness 13 (8.78)
surprise 4 (0.25) surprise 1 (0.68)

Cluster: 4 102 Cluster: 5 77 Cluster: 6 67
aff 44 (43.14) aff 35 (45.45) aff 22 (32.84)
anger 6 (5.88) anger 3 (3.9) anger 4 (5.97)
disgust 15 (14.71) disgust 13 (16.88) disgust 5 (7.46)
fear 9 (8.82) fear 5 (6.49) fear 14 (20.9)
happiness 9 (8.82) happiness 5 (6.49) happiness 6 (8.96)
mixed 4 (3.92) Mixed 7 (9.09) Mixed 4 (5.97)
sadness 15 (14.71) sadness 9 (11.69) sadness 11 (16.42)

surprise 1 (1.49)

Cluster: 7 55 Cluster: 8 54 Cluster: 9 41
aff 21 (38.18) aff 19 (35.19) aff 13 (31.71)
anger 7 (12.73) anger 2 (3.7) anger 5 (12.2)
disgust 7 (12.73) disgust 9 (16.67) disgust 8 (19.51)
fear 6 (10.91) fear 7 (12.96) fear 8 (19.51)
happiness 3 (5.45) mixed 9 (16.67) happiness 2 (4.88)
mixed 4 (7.27) sad 8 (14.81) mixed 1 (2.44)
sadness 7 (12.73) sad 4 (9.76)

Cluster: 10 39 Cluster: 11 38 Cluster: 12 22
aff 15 (38.46) aff 20 (52.63) aff 9 (40.91)
anger 2 (5.13) anger 1 (2.63) anger 2 (9.09)
disgust 5 (12.82) disgust 2 (5.26) disgust 3 (13.64)
fear 3 (7.69) fear 7 (18.42) fear 3 (13.64)
happiness 3 (7.69) happiness 2 (5.26) mixed 2 (9.09)
mixed 4 (10.26) sad 6 (15.79) sad 3 (13.64)
sadness 7 (17.95)

Cluster: 13 18 Cluster: 14 14
aff 5 (27.78) aff 6 (42.86)
anger 2 (11.11) disgust 3 (21.43)
disgust 2 (11.11) happiness 1 (7.14)
fear 5 (27.78) mixed 2 (14.29)
happiness 1 (5.56) sad 2 (14.29)
mixed 1 (5.56)
sadness 2 (11.11)
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Table 8: Breakdown of emotions and their frequencies by individual foci cluster for ROI∗.
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)
Cluster: 1 489 Cluster: 2 63 Cluster: 3 54
aff 217 (44.38) aff 29 (46.03) aff 21 (38.89)
anger 20 (4.09) anger 3 (4.76) anger 3 (5.56)
disgust 68 (13.91) disgust 8 (12.7) disgust 4 (7.41)
fear 63 (12.88) fear 13 (20.63) fear 8 (14.81)
happiness 28 (5.73) happiness 2 (3.17) happiness 6 (11.11)
mixed 22 (4.5) mixed 4 (6.35) mixed 5 (9.26)
sadness 71 (14.52) sadness 4 (6.35) sadness 7 (12.96)
Cluster: 4 34 Cluster: 5 25 Cluster: 6 20
aff 15 (44.12) aff 13 (52) aff 8 (40)
anger 1 (2.94) anger 1 (4) disgust 1 (5)
disgust 4 (11.76) disgust 4 (16) fear 4 (20)
fear 3 (8.82) fear 1 (4) happiness 1 (5)
happiness 1 (2.94) happiness 2 (8) mixed 1 (5)
mixed 1 (2.94) mixed 2 (8) sadness 5 (25)
sadness 9 (26.47) sadness 2 (8)
Cluster: 7 19 Cluster: 8 17 Cluster: 9 16
aff 6 (31.58) aff 6 (35.29) aff 9 (56.25)
anger 1 (5.26) anger 2 (11.76) fear 3 (18.75)
disgust 4 (21.05) disgust 3 (17.65) happiness 2 (12.5)
mixed 2 (10.53) happiness 1 (5.88) sadness 2 (12.5)
sadness 6 (31.58) mixed 1 (5.88)

sadness 4 (23.53)
Cluster: 10 15 Cluster: 11 9 Cluster: 12 7
aff 6 (40) aff 3 (33.33) aff 3 (42.86)
anger 1 (6.67) anger 1 (11.11) anger 1 (14.29)
disgust 2 (13.33) disgust 2 (22.22) disgust 1 (14.29)
fear 2 (13.33) fear 1 (11.11) fear 2 (28.57)
happiness 1 (6.67) sadness 2 (22.22)
mixed 2 (13.33)
sadness 1 (6.67)
Cluster: 13 6 Cluster: 14 5
aff 3 (50) aff 3 (60)
disgust 1 (16.67) happiness 1 (20)
sadness 2 (33.33) sadness 1 (20)
∗ROI: region of interest; aff: affective.
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