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We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear
models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-
likelihood estimation method is introduced. Based on the Laplace approximation and a penalized quasi-likelihood displacement,
local influence of minor perturbations on the data set is investigated for the proposed model. Four concrete perturbation schemes
are considered in the local influence analysis. The effectiveness of the proposed methodology is illustrated by some numerical
examinations on a pharmacokinetics dataset.

1. Introduction

In this paper, we propose a quasi-likelihood nonlinear model
with random effects (QLNMWRE) and investigate local
influence of the model. The QLNMWRE is a hybrid gener-
alization of quasi-likelihood nonlinear models [1, 2] and gen-
eralized linear mixed models, and it combines the advantages
of both models. Generalized linear mixed models (GLMMs)
are extensions of the well-known generalized linear models
[3] by adding random effects to the linear predictor. GLMMs
are effective and flexible for modeling nonnormal responses,
repeated measurements, and other forms of clustered data.
Efficient inference for theGLMMsdepends on the underlying
distribution of the data. Nevertheless, the exact distribution
is rarely known in practice. In contrast, the quasi-likelihood
method [4] requires only the first and second moments
assumptions about the distribution and has been widely
applied in the theory and practice of statistics (see, e.g., [5–
8]).

Detecting influential observations is important in data
analysis. The local influence analysis has become a general
tool for detecting a group of points with great influence
on the fitted model through perturbation schemes [9]. This
approach has been successfully applied in many models,

such as mixed models [10, 11], generalized linear models
[12], generalized linearmixedmodels [13], exponential family
nonlinear models [14], nonlinear reproductive dispersion
mixed model [15], nonlinear mixed-effect models [16, 17],
and multivariate threshold time series models [1]. However,
in these references the local influence method severely
depends on the likelihood displacement, which is rarely
known in practice. Instead, quasi-likelihood methods do
not require the exact likelihood function except the first
two moments of the response variables. Hence, we con-
duct influence analysis of the QLNMWRE using a novel
penalized quasi-likelihood estimation method.The proposed
methodology is illustrated by analyzing the pharmacokinetics
dataset.

The remainder of this paper is organized as follows.
In Section 2, we introduce the QLNMWRE and the cor-
responding estimation method. A Fisher-scoring iteration
algorithm is advanced to calculate the estimators. In Sec-
tion 3, a penalized quasi-likelihood displacement (PQLD)
is proposed, and assessment of local influence under four
different perturbation schemes is investigated. In Section 4,
the pharmacokinetics dataset is employed to illustrate the
effectiveness of the proposed methodology. Finally, we make
discussion in Section 5.
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2. Models and Estimation Method

Let𝑌 be a response vector of length 𝑛, and let𝑋 and𝑍 be 𝑛×𝑘
and 𝑛 × 𝑞 matrices of explanatory variables associated with
fixed and random effects, respectively. Conditional on the𝑞−dimensional vector of random effects, b, the observations,{𝑦𝑖, 𝑖 = 1, . . . , 𝑛}, are independent and satisfy that

𝐸 (𝑦𝑖 | b) = ℎ (x𝑖,𝛽) + z𝑇𝑖 b ≜ 𝜇𝑖
var (𝑦𝑖 | b) = 𝜎2V (𝜇𝑖) , (1)

where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)𝑇 (𝑝 < 𝑛) is an unknown param-
eter vector defined in a compact subsetB ⊂ 𝑅𝑝, x𝑖 and z𝑖 are
defined in a subsetX of𝑅𝑘 and a subsetZ of𝑅𝑞, respectively,
V(⋅) is a knownvariance function,𝜎2 is a dispersion parameter
that is known or can be estimated separately, ℎ(⋅, ⋅) is a
continuously differentiable function such that the derivative
matrix 𝐷 = 𝐷𝛽(𝛽) = 𝜕ℎ(𝛽)/𝜕𝛽𝑇 has rank 𝑝 for all 𝛽, with
ℎ(𝛽) = (ℎ(x1,𝛽), . . . , ℎ(x𝑛,𝛽))𝑇, and the random effects b are
assumed to be multivariate normally distributed:

b ∼ 𝑁(0, 𝜎2Σ) , (2)

with Σ being a known nonnegative definite matrix. Following
[2, 3, 18, 19], the conditional log quasi-likelihood on b is
defined as

𝑄1 (𝛽; y) = 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡, (3)

where 𝜇𝑖 = ℎ(x𝑖,𝛽) + z𝑇𝑖 b ≜ 𝜇𝑖(𝛽). Themodel defined by (1)-
(3) is the so-called QLNMWRE.

Clearly, this QLNMWRE encompasses some important
special cases. If Σ = 0, then the above model is just the
quasi-likelihood nonlinear model discussed by [2]; if 𝜇𝑖(𝛽) =ℎ(x𝑇𝑖 𝛽) + z𝑇𝑖 b, and 𝑦𝑖 are independently drawn from a one-
parameter exponential family of distributions with density

exp {𝜃𝑇𝑖 𝑦𝑖 − 𝑘 (𝜃𝑖)} 𝑑𝛾 (𝑦𝑖) , 𝑖 = 1, . . . , 𝑛, (4)

where 𝛾(⋅) is a measure, then it reduces to generalized
linear models with random effects (see [20, 21]). Hence, the
QLNMWRE is a hybrid extension of the quasi-likelihood
nonlinear models and the generalized linear models with
random effects.

Let 𝑝(b|𝜎2) be a probability density function of random
effect b. Then the joint log quasi-likelihood function of y =(𝑦1, . . . , 𝑦𝑛)𝑇 and b is

𝑄(𝛽, 𝜎2; y, b) = 𝑄1 (𝛽; y) + log𝑝 (b | 𝜎2)
= 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 𝑞2 log (2𝜋𝜎2)
− 12 log |Σ| − 12𝜎2 b𝑇Σ−1b.

(5)

Similar to the relationship between the joint log-likelihood
function and the marginal log -likelihood function, we have

𝑄(𝛽, 𝜎2; y, b) = 𝑄 (𝛽, 𝜎2; y) + 𝑄 (𝛽, 𝜎2; b | y) , (6)

where 𝑄(𝛽, 𝜎2; y) is the marginal log quasi-likelihood func-
tion of y and 𝑄(𝛽, 𝜎2; b | y) is the log quasi-likelihood
function of b given y, i.e.,

𝑄(𝛽, 𝜎2; y) = log∫ exp {𝑄 (𝛽, 𝜎2; y, b)} 𝑑b,
𝑄 (𝛽, 𝜎2; b | y) = log{ exp {𝑄 (𝛽, 𝜎2; y, b)}

∫ exp {𝑄 (𝛽, 𝜎2; y, b)} 𝑑b} .
(7)

Following the arguments in [20], the integrated log quasi-
likelihood function used to estimate 𝛽 is defined by

exp {𝑄 (𝛽, 𝜎2; y)} ∝ |Σ|−1/2
⋅ ∫ exp{− 12𝜎2

𝑛∑
𝑖=1

𝑑𝑖 (𝑦𝑖, 𝜇𝑖) − 12𝜎2 b𝑇Σ−1b}𝑑b, (8)

where 𝑑𝑖(𝑦; 𝜇) = −2∫𝑦
𝜇
((𝑦 − 𝑡)/V(𝑡))𝑑𝑡 denotes the deviance

measure of fit. If, conditional on b, 𝑦𝑖 is a member of the
exponential family, then −𝑑𝑖(𝑦𝑖; 𝜇𝑖)/(2𝜎2) is the conditional
log-likelihood of 𝑦𝑖 given b, and 𝐸b[∑𝑛𝑖=1 𝑑𝑖(𝑦𝑖; 𝜇𝑖)/(2𝜎2)] is
the log-likelihood function.

In general, no analytical expressions are available for the
integral in (8) and approximate techniques are needed. The
simplest approach is the Laplace approximation [22, 23].
Obviously, the right-hand side of (8) is

𝑐 |Σ|−1/2 ∫𝑒−𝑚(b)𝑑b, (9)

where𝑚(b) = (1/2𝜎2) ∑𝑛𝑖=1 𝑑𝑖(𝑦𝑖, 𝜇𝑖)+ (1/2𝜎2)b𝑇Σ−1b. When
the Laplace method is applied to approximate the integrated
quasi-likelihood function (8), estimates of 𝛽 for fixed 𝜎2
are obtained by maximizing the penalized quasi-likelihood
(PQL) (8):

𝑄𝑝 (𝛽) = − 12𝜎2
𝑛∑
𝑖=1

𝑑𝑖 (𝑦𝑖, 𝜇𝑖) − 12𝜎2 b̃𝑇Σ−1b̃

= 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃
= 𝑄1 (𝛽; 𝑌)󵄨󵄨󵄨󵄨𝜇𝑖=𝜇𝑖 − 12𝜎2 b̃𝑇Σ−1b̃,

(10)

where 𝜇𝑖 = 𝑓(x𝑖,𝛽) + z𝑇𝑖 b̃, and b̃ ≜ b̃(𝛽) is the root of𝜕𝑚(b)/𝜕b = 0 for fixed 𝛽. We will use the penalized quasi-
likelihood𝑄𝑝(𝛽) to estimate 𝛽 and to conduct local influence
analysis. To this end, we need the following assumptions.

Assumption A.

(i) 𝐸(V(𝜇𝑖))−1(𝑦𝑖 − 𝜇𝑖)|𝜇𝑖=𝜇𝑖 = 0, ∀𝑖 = 1, . . . , 𝑛;
(ii) there exists some constant 𝑀 > 0 and some compact

subsetB1 ⊂ B such that
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sup
𝑖≥1,𝛽⊆B1

𝐸 ((V (𝜇𝑖))−1 (𝑦𝑖 − 𝜇𝑖)󵄨󵄨󵄨󵄨𝜇𝑖=𝜇𝑖)2 ≤ 𝑀. (11)

It is easily seen that Assumption A holds in generalized
linear mixed models and exponential family nonlinear ran-
dom effects models. Assumption A guarantees existence of
the variance-covariance matrix of ẽ, where ẽ = (𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑛)𝑇
with 𝑒𝑖 = V(𝜇𝑖)−1(𝑦𝑖 − 𝜇𝑖)|𝜇𝑖=𝜇𝑖 . Let 𝑍 = (z1, . . . , z𝑛)𝑇 and𝐾 = 𝜕ẽ/𝜕𝜇𝑇 = diag(𝑘1, . . . , 𝑘𝑛), where

𝑘𝑖 = 𝜕𝜕𝜇𝑖 (
𝑦𝑖 − 𝜇𝑖
V (𝜇𝑖) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇𝑖=𝜇𝑖 . (12)

PutΩ1 = 𝐾−1−𝑍Σ𝑍𝑇,𝑊 = 𝜕2ℎ(𝛽)/𝜕𝛽𝜕𝛽𝑇,Ω = 𝐾−10 −𝑍Σ𝑍𝑇,
and𝐾0 = 𝐸𝑦(𝐾). Under AssumptionA, we have the following
result.

Theorem 1. For the model defined by (1)-(3), conditional on
b̃, the quasi-score function, the quasi-observed information
matrix, and the quasi-Fisher information matrix for 𝛽 admit
the following representations:

𝑆𝑛 (𝛽) ≜ 𝑄̇𝑝 (𝛽) = 𝜎−2 (𝜕ℎ (𝛽)
𝜕𝛽𝑇 )𝑇 ẽ = 𝜎−2𝐷𝑇ẽ, (13)

𝐻𝑛 (𝛽) ≜ −𝑄̈𝑝 (𝛽) = −𝜕2𝑄𝑝 (𝛽)
𝜕𝛽𝜕𝛽𝑇

= −𝜎−2 ([ẽ𝑇] [𝑊] + 𝐷𝑇Ω1𝐷) ,
(14)

𝐹𝑛 (𝛽) ≜ 𝐸𝑦 (−𝑄̈𝑝 (𝛽)) = −𝜎−2𝐷𝑇Ω−1𝐷, (15)

where [⋅][⋅] indicates the array multiplication.

Let 𝛽̂𝑛 denote the maximum quasi-likelihood estimator
(MQLE) of 𝛽, which is the solution of equation 𝑄̇𝑝(𝛽) = 0.
Then the Fisher-scoring iteration method can be used for
computing 𝛽̂𝑛 by iteratively solving the following equation
(see [14, 24]):

𝛽
𝑖+1 = 𝛽𝑖 + 𝐹−1𝑛 (𝛽𝑖) 𝑆𝑛 (𝛽𝑖)

= 𝛽𝑖 − (𝐷𝑇Ω−1𝐷)−1𝐷𝑇ẽ (𝑖 = 0, 1, 2, ⋅ ⋅ ⋅ ) (16)

where 𝐷,Ω, and ẽ are all evaluated at 𝛽𝑖 and b𝑖.
On the other hand, it follows from (5) that the quasi-score

function and the quasi-Fisher information matrix for b can
be, respectively, expressed as

𝑆 (b) ≜ 𝜕𝑄 (𝛽, 𝜎2; y, b)
𝜕b = 𝜎−2 (𝑍𝑇e − Σ−1b) ,

𝐹 (b) ≜ 𝐸𝑦(−𝜕2𝑄(𝛽, 𝜎2; y, b)
𝜕b𝜕b𝑇 )

= 𝜎−2 (𝑍𝑇𝑉−1𝑍 + Σ−1) ,

(17)

where e = e(𝛽) = (𝑒1, . . . , 𝑒𝑛)𝑇 with 𝑒𝑖 = (𝑦𝑖 − 𝜇𝑖)/V(𝜇𝑖), and
𝑉−1 = diag (V−1 (𝜇1) , . . . , V−1 (𝜇𝑛)) . (18)

Hence, the Fisher-scoring iteration algorithm for computing
the predictor of b𝑗 under known 𝛽𝑗 is given by

b(𝑗𝑖+1) = b(𝑗𝑖) + (𝑍𝑇𝑉−1𝑍 + Σ−1)−1 (𝑍𝑇e − Σ−1b(𝑗𝑖)) ,
𝑗𝑖 = 0, 1, 2, . . . , (19)

where𝑉 and 𝑒 are all evaluated at b(𝑗𝑖) and 𝛽𝑗. As the iteration
scheme (19) converges, b𝑗𝑖 converges to b𝑗.

In general, the choice of initial value 𝛽0 is important for
the Fisher-scoring iteration algorithm. We use the algorithm
in [2] for quasi-likelihood nonlinear models to find the
starting values of parameter𝛽 forQLNMWREwith 𝑏0 = ⋅ ⋅ ⋅ =𝑏𝑞 = 0. Hence, the MQLE 𝛽̂ of 𝛽 can be obtained by solving
(16) and (19) until convergence.

In order to investigate the statistical diagnostic measures
for QLNMWRE, we rewrite (16)

𝛽𝑖+1 = (𝐷𝑇Ω−1𝐷)−1𝐷𝑇Ω−1𝐺󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝑖 , (20)

where 𝐺 = 𝐷𝛽𝑖 − Ωẽ. When 𝛽𝑖 converges to 𝛽̂, 𝛽̂ can be
expressed as

𝛽̂ = (𝐷𝑇Ω−1𝐷)−1𝐷−1Ω−1𝐺󵄨󵄨󵄨󵄨󵄨󵄨𝛽̂ , (21)

where 𝐺 = 𝐷𝛽̂ − Ωê, 𝐷,Ω and ê are all evaluated at 𝛽̂.

3. Local Influence

The aim of local influence analysis is to investigate the behav-
ior of some influencemeasure𝑇(𝜔)when small perturbations
are made in the model/data, where 𝜔 is an m-dimensional
vector of perturbations restricted to some open subset Θ ∈𝑅𝑚. For simple statistical models, Cook constructed in [9]
the likelihood displacement 𝐿𝐷(𝜔) and used it to assess
the local influence of a minor perturbation. Although this
approach is very useful, serious difficulties are encountered
when applying it to complicated models, because of the
intractable likelihood function. For the sake of coping with
those difficulties, some authors have considered alternatives
to replace LD(𝜔). For instance, Zhu et al. proposed in [25]
the Q-likelihood displacement and established an approach
to assess local influence of statistical models with incom-
plete data, and Jung presented in [26] a quasi-likelihood
displacement to obtain local influence analysis in generalized
estimating equations. Inspired by [25, 26], we define in this
work a new penalized quasi-likelihood displacement and
then adapt the local influence approach introduced by [9] to
the QLNMWRE.

Let𝑄𝑝(𝛽) and𝑄𝑝(𝛽|𝜔) be the penalized quasi-likelihood
for the unperturbed and perturbed models, respectively. We
assume that there is an 𝜔0 such as 𝑄𝑝(𝛽|𝜔0) = 𝑄𝑝(𝛽).
Let 𝛽̂ and 𝛽̂(𝜔) be the MQLE of 𝛽 under the unperturbed
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and perturbed models, respectively. Similar to the likelihood
displacement [9], we define the penalized quasi-likelihood
displacement (PQLD) as

𝑃𝑄𝐿𝐷 (𝜔) = 2 {𝑄𝑝 (𝛽̂) − 𝑄𝑝 (𝛽̂ (𝜔))} . (22)

The influence graph is defined as 𝛼(𝜔) = (𝜔𝑇, 𝑃𝑄𝐿𝐷(𝜔))𝑇.
Following the approach developed in [9, 25, 26], the normal
curvature𝐶l of 𝛼(𝜔) at𝜔0 in the direction of some unit vector
l can be used to summarize the local behavior of the penalized
quasi-likelihood displacement. As shown in [9], the normal
curvature 𝐶l in the unit direction l(‖l‖ = 1) at 𝜔0 is given by

𝐶𝑙 = 2 󵄨󵄨󵄨󵄨󵄨l𝑇𝐹̈l󵄨󵄨󵄨󵄨󵄨 , (23)

where 𝐹̈ = −(𝜕2𝑄𝑝(𝛽 | 𝜔)/𝜕𝜔𝜕𝜔𝑇)|𝜔=𝜔0 = −△𝑇𝑄̈−1𝑝 △, in
which △ = 𝜕2𝑄𝑝(𝛽|𝜔)/𝜕𝛽𝜕𝜔𝑇 is a 𝑝 × 𝑚 matrix evaluated
at 𝛽 = 𝛽̂ and 𝜔 = 𝜔0, 𝑄̈𝑝 = 𝜕2𝑄𝑝(𝛽)/𝜕𝛽𝜕𝛽𝑇 is a 𝑝 × 𝑝
Hessian matrix evaluated at 𝛽 = 𝛽̂. The maximum curvature𝐶𝑚𝑎𝑥, which is the largest absolute eigenvalue of 2𝐹̈, and
the corresponding direction vector l𝑚𝑎𝑥 are usually used for
identifying locally influential observations. A large value of𝐶𝑚𝑎𝑥 is an indication of a serious local problem, and if the 𝑖-th
element in l𝑚𝑎𝑥 is relatively large special attention should be
paid to the element being perturbed by 𝜔𝑖. To apply the local
influence method in [9] to the QLNMWRE, we consider the
following four perturbation schemes.

3.1. Case-Weights Perturbation. Let𝜔 be an 𝑛×1 perturbation
vector such that 𝜔0 = (1, ⋅ ⋅ ⋅ , 1)𝑇. The joint log quasi-
likelihood function for the perturbed model is given by

𝑄(𝛽, 𝜎2; y,b,𝜔) = 𝐶 + 𝑛∑
𝑖=1

𝜔𝑖 ∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡
− 12𝜎2 b𝑇Σ−1b,

(24)

where 𝐶 = −(𝑞/2) log(2𝜋𝜎2) − (1/2)|Σ|. Then the penalized
quasi-likelihood function can be expressed as

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑖=1

𝜔𝑖 ∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃, (25)

where 𝜇𝑖 = ℎ(x𝑖,𝛽) + z𝑇𝑖 b̃,𝑍 = (z1, z2, . . . , z𝑛)𝑇, and b̃ satisfies
𝑛∑
𝑖=1

𝑤𝑖 𝑦𝑖 − 𝜇𝑖
V (𝜇𝑖) z𝑖 − Σ−1b̃ = 0. (26)

Hence, b̃ = Σ𝑍𝑇𝑊ẽ, where 𝑊 = diag(𝜔1, . . . , 𝜔𝑛). Then

𝜕2𝑄𝑝 (𝛽 | 𝑤)
𝜕𝛽𝜕𝑤𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂ = 𝜎−2𝐷𝑇𝛿𝑖𝑒𝑖 + 𝜎−2𝐷𝑇𝐾
⋅ 𝐾−1 (Ω−1𝐾−1 − 𝐼) 𝛿𝑖𝑒𝑖

= 𝜎−2𝐷𝑇Ω−11 𝐾−1𝛿𝑖𝑒𝑖,
(27)

and thus

△ = 𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0 ,𝛽̂ = 𝜎−2𝐷𝑇Ω−11 𝐾−1𝐸, (28)

where 𝐸 = diag(𝑒1, . . . , 𝑒𝑛).
3.2. Response Variable Perturbation. A perturbation of the
response variables (𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛)𝑇 is introduced by replacing𝑦𝑖 by 𝑦𝑖𝜔 = 𝑦𝑖 + 𝜔𝑖, where 𝜔 = (𝜔1, ⋅ ⋅ ⋅ , 𝜔𝑛)𝑇, and 𝜔0 =(0, . . . , 0)𝑇 represents the situation with no perturbation.
In this case, the joint log quasi-likelihood function for the
perturbed model is given by

𝑄(𝛽, 𝜎2; y, b,𝜔) = 𝐶 + 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖+𝜔𝑖

𝑦𝑖 + 𝜔𝑖 − 𝑡𝜎2V (𝑡) 𝑑𝑡
− 12𝜎2 b𝑇Σ−1b,

(29)

where C is a constant. It follows from Section 2 that the
penalized quasi-likelihood function is

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖+𝜔𝑖

𝑦𝑖 + 𝜔𝑖 − 𝑡𝜎2V (𝑡) 𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃, (30)

where 𝜇𝑖 = ℎ(x𝑖,𝛽) + z𝑇𝑖 b̃, and b̃ satisfies

𝑛∑
𝑖=1

𝑦𝑖 + 𝑤𝑖 − 𝜇𝑖
V (𝜇𝑖) z𝑖 − Σ−1b̃ = 0. (31)

It follows that b̃ = Σ𝑍𝑇(ẽ + 𝑊V), where 𝑊V = (𝑤V1, . . . , 𝑤V𝑛)𝑇
with 𝑤V𝑖 = (𝑤𝑖/V(𝜇𝑖))|𝜇𝑖=𝜇𝑖 . Then

𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0 ,𝛽̂ = 𝜎−2𝐷𝑇 ( 𝜕ẽ𝜕𝜔𝑖 +
𝜕𝑊V𝜕𝜔𝑖 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂
= 𝜎−2𝐷𝑇(( 𝜕ẽ

𝜕𝜇̃𝑇)
𝑇 𝜕𝜇̃𝜕𝜔𝑖 + 𝛿𝑇𝑖 1

V (𝜇𝑖))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂

= 𝜎−2𝐷𝑇 [Ω−11 (𝐾−1 − Ω1) 𝛿𝑇𝑖 1
V (𝜇𝑖) + 𝛿𝑇𝑖 1

V (𝜇𝑖)]
= 𝜎−2𝐷𝑇Ω−11 𝐾−1𝛿𝑇𝑖 1

V (𝜇𝑖) ,

(32)

and

△ = 𝜕2𝑄𝑝 (𝛽 | 𝑤)
𝜕𝛽𝜕𝜔𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂ = 𝜎−2𝐷𝑇Ω−11 𝐾−1𝐸∗, (33)

where 𝐸∗ = diag(𝑒∗1 , . . . , 𝑒∗𝑛 ) with 𝑒∗𝑖 = 1/V(𝜇𝑖) and 𝜇𝑖 =ℎ(x𝑖, 𝛽̂) + z𝑇𝑖 b̂.

3.3. ExplanatoryVariables Perturbation. In this case, we focus
on the perturbation of a specific explanatory variable. Under
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this condition we have the perturbed explanatory matrix𝑋𝜔 = (x1, ⋅ ⋅ ⋅ , x𝑡𝜔, ⋅ ⋅ ⋅ , x𝑛)𝑇 with x𝑡𝜔 = x𝑡 + 𝜔, where x𝑡 is
a single explanatory variable of matrix 𝑋𝜔 corresponding to𝑦𝑡 and 𝜔0 = (0, . . . , 0)𝑇 denotes no perturbation. Then the
joint log quasi-likelihood function for the perturbed model
is

𝑄(𝛽, 𝜎2; y, b,𝜔) = 𝐶 + 𝑛∑
𝑗=1

∫𝜇𝑗𝑤
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡
− 12𝜎2 bΣ−1b,

(34)

where C is a constant, 𝜇𝑗𝜔 = ℎ(x𝑗,𝛽) + z𝑇𝑗 b (𝑗 ̸= 𝑖), and 𝜇𝑡𝜔 =
ℎ(x𝑡𝜔𝛽) + z𝑇𝑡 b. It follows from Section 2 that

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑗=1

∫𝜇𝑗𝑤
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃Σ−1b̃, (35)

where 𝜇𝑗𝜔 = ℎ(x𝑗,𝛽) + z𝑇𝑗 b̃ (𝑗 ̸= 𝑡), 𝜇𝑡𝜔 = ℎ(x𝑡𝜔,𝛽) + z𝑇𝑡 b̃, and
b̃ satisfies

𝑛∑
𝑗=1

𝑦𝑖 − 𝜇𝑗𝑤
V (𝜇𝑗𝑤) z𝑖 − Σ−1b̃ = 0. (36)

Therefore, b̃ = Σ𝑍𝑇ẽ𝑤 and ẽ𝑤 = ((𝑦1 − 𝜇1)/V(𝜇1), ⋅ ⋅ ⋅ , (𝑦𝑛 −𝜇𝑛)/V(𝜇𝑛))𝑇. Let ℎ𝑇𝑡 = 𝜕ℎ(x𝑡, 𝛽)/𝜕x𝑇𝑡 |𝛽=𝛽̂ and 𝐻𝑏𝑡 =
𝜕2ℎ(𝛽)/𝜕𝛽𝜕x𝑇𝑡 |𝛽=𝛽̂. Then

△ = 𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂
= 𝜎−2 [ê𝑇𝜔] [ 𝜕𝜕𝜔𝑇 (𝜕ℎ (𝛽)𝜕𝛽 )]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0 ,𝛽̂

+ 𝜎−2𝐷𝑇𝜕ẽ𝑤𝜕𝜇̃ 𝜕𝜇̃𝜕𝜔𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂

= 𝜎−2 [ê𝑇] [𝐻𝑏𝑡] + 𝜎−2𝐷𝑇Ω−11 𝛿𝑡ℎ𝑇𝑡 ,

(37)

where [⋅][⋅] indicates the array multiplication.

3.4. Perturbation of Covariates in Random Effects. Consider
perturbing the data for the 𝑘th explanatory variable of 𝑍, by
modifying the data matrix Z as 𝑍𝑤 = 𝑍 + 𝜔d𝑇𝑘 , where d𝑘 is
a 𝑞−vector with 1 at 𝑘th position and zeros elsewhere. Under
this situation, the perturbed joint log quasi-likelihood can be
expressed as

𝑄(𝛽, 𝜎2; y,b | 𝜔) = 𝐶 + 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡
− 12𝜎2 b𝑇Σ−1b,

(38)

where 𝐶 is a quantity that does not depend on 𝛽 and 𝜔, and
𝜇 = ℎ(𝛽) + 𝑍𝑤b. When 𝜔0 = 0, it indicates no perturbation.
It follows from Section 2 that

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃, (39)

where 𝜇̃ = ℎ(𝛽) + 𝑍𝑤b̃, and b̃ satisfies

𝑍𝑇𝑤ẽ𝑤 − Σ−1b̃ = 0, (40)

and therefore, b̃ = Σ𝑍𝑇𝑤ẽ𝑤 with ẽ𝑤 = ((𝑦1 −𝜇1)/V(𝜇1), ⋅ ⋅ ⋅ , (𝑦𝑛 − 𝜇𝑛)/V(𝜇𝑛))𝑇. Then

𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝑤𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0 ,𝛽̂ = 𝜎−2𝐷𝑇(𝜕ẽ𝑤𝜕𝜇̃𝑇)
𝑇 𝜕𝜇̃𝜕𝑤𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0,𝛽̂
= 𝜎−2𝐷𝑇𝐾 (𝐼 − 𝑍Σ𝑍𝑇𝐾)−1 [𝛿𝑖𝑏̂𝑘 + 𝑍Σ𝑑𝑘𝑒𝑖]
= 𝜎−2𝐷𝑇Ω−11 (𝛿𝑖𝑏̂𝑘 + 𝑍Σ𝑑𝑘𝑒𝑖)

(41)

Hence,

△ = 𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔0 ,𝛽̂
= 𝜎−2𝐷𝑇Ω−11 {[𝛿1𝑏̂𝑘 𝛿2𝑏̂𝑘 ⋅ ⋅ ⋅ 𝛿𝑛𝑏̂𝑘]
+ 𝑍Σ [𝑑𝑘𝑒1 𝑑𝑘𝑒2 ⋅ ⋅ ⋅ 𝑑𝑘𝑒𝑛]} = 𝜎−2𝐷𝑇Ω−11 [𝐼𝑛𝑏̂𝑘
+ 𝑍Σ𝑑𝑘ê𝑇] .

(42)

4. Numerical Results

To illustrate how to use the proposed methodology, we
consider the data set reported by [27]. The data came from
a study of the pharmacokinetics of indomethacin following
bolus intravenous injection of the same dose in six human
volunteers. For each subject, the plasma concentrations of
indomethacin were measured at 11 time points from 15min to
8 hours postinjection. Davidian et al. used nonlinear repeated
model to analyze the dataset in [28]; we model it using the
following QLNMWRE:

𝜇𝑖𝑗 = 𝑓 (𝑥𝑖𝑗,𝛽) + 𝑏𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 6; 𝑗 = 1, ⋅ ⋅ ⋅ , 11) , (43)

where response variables 𝑦𝑖𝑗|𝑏𝑖 belong to the Gumbel distri-
bution (cf. [29]) with the density function

𝑝 (𝑦𝑖𝑗 | 𝑏𝑖) = exp {𝑦𝑖𝑗 − 𝜃 − exp (𝑦𝑖𝑗 − 𝜃)} ,
−∞ < 𝑦𝑖𝑗 < ∞, −∞ < 𝜃 < ∞, (44)

𝑏𝑖 ∼ 𝑁(0, 𝑎), and 𝑓(𝑥,𝛽) = 𝑒𝛽1 exp(−𝑒𝛽2𝑥) + 𝑒𝛽3 exp(−𝑒𝛽4𝑥).
By [29], we have 𝐸(𝑦) = 𝜃 − 𝛾 and Var(𝑦) = 𝜋2/6 =𝜎2V(𝜇), where 𝛾 = 0.5772 is called the Euler constant,𝜎2 = 𝜋2/6 and V(⋅) = 1. It is easily shown that Assumption
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Figure 1: Index plots of -𝐹𝑖𝑖 and |𝑙𝑚𝑎𝑥| for case-weights perturbation.
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Figure 2: Index plots of perturbation of explanatory variables.

A holds for our proposed model. Therefore, we can apply
our proposed methodology to estimate the parameters in
model (43). Using the algorithm in Section 2, we obtain the
MQLE of 𝛽, the predictive values of 𝑏1, ⋅ ⋅ ⋅ , 𝑏6 as follows:
𝛽̂ = (0.8317, 0.0446, −13.2203, −1.2535)𝑇 and

b̂ = (−0.1133, 0.0825, 0.1600, 0.0500,
− 0.0625, 0.1133)𝑇 . (45)

Now we present local influence analysis for the above
fitting results. Under case-weight perturbation, cases 23, 45,

and 56 aremost influential, as depicted as in Figure 1(a). Cases
1, 12, 23, 45, and 56 are identified as influential points, and
case 23 is the most influential, as shown in Figure 1(b). The
index plots of −𝐹̈ and |l𝑚𝑎𝑥| for perturbation on explanatory
variables are given in Figures 2(a) and 2(b), respectively.
From Figure 2(a) we can see that cases 12, 23, 45, and 56
are identified as influential points. Figure 2(b) shows that
cases 1, 12, 23, 34, 45, and 56 are influential. Figure 3 displays
the index plots of |l𝑚𝑎𝑥| for the perturbation of random
effects. For these types of perturbation, case 23 is identified
as being the most influential. Note that case 23 exerts great
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Figure 3: Index plots of |𝑙𝑚𝑎𝑥| for perturbation of random effects design matrix.

influence in each perturbation scheme, which indicates that
the results obtained through different perturbation schemes
are quite consistent. Special attention should be paid to those
influential cases, which may be worthwhile to consider a
more formal test to check whether they are outliers.

5. Conclusion

In this work, we have assessed the local influence of minor
perturbations of our proposed models. The key idea of the
previous approach is to study the behavior of the likeli-
hood displacement obtained from a relevant perturbation.
However, it is difficult to apply it directly to the proposed
model due to the fact that the marginal quasi-likelihood
function of the QLNMWRE involves the intractable integral.
To solve this problem, we have employed Laplace’s method
to approximate the marginal quasi-likelihood function of the
QLNMWRE, which results in the penalized quasi-likelihood
(PQL). Based on the PQL and the penalized quasi-likelihood
displacement, the estimates of unknown parameters have
been proposed, and local influence analysis has been inves-
tigated. Our numerical example has demonstrated that our
proposed local influence technique is rather useful in the
detection of influential points. Although the focus of this
article is on the assessment of influential points in the

QLNMWRE, the local influence approach can be extended
to other complicated models.

Appendix

Proof of Theorem 1. Differentiating (10) with respect to 𝛽
yields that

𝑄̇𝑝 (𝛽) = 𝜕𝑄1 (y;𝜇)𝜕𝛽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇𝑖=𝜇𝑖 − 𝜎−2 ( 𝜕b̃

𝜕𝛽𝑇)
𝑇 Σ−1b̃

= ( 𝜕𝜇
𝜕𝛽𝑇)

𝑇 𝜕𝑄1 (y;𝜇)𝜕𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇=𝜇̃

− 𝜎−2 ( 𝜕b̃
𝜕𝛽𝑇)

𝑇 Σ−1b̃

= (𝐷 + 𝑍 𝜕b̃
𝜕𝛽𝑇)

𝑇 𝜕𝑄1 (y;𝜇)𝜕𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇=𝜇̃

− 𝜎−2 ( 𝜕b̃
𝜕𝛽𝑇)

𝑇 Σ−1b̃.

(A.1)
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It follows from the definition of b̃ and (10) that
𝑛∑
𝑖=1

𝜕𝜕𝜇𝑖 (∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇𝑖=𝜇𝑖
𝜕𝜇𝑖𝜕b

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨b=b̃ − 𝜎−2Σ−1b̃

= 𝜎−2 𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖) (V (𝜇𝑖))−1 z𝑖󵄨󵄨󵄨󵄨𝜇𝑖=𝜇𝑖 − 𝜎−2Σ−1b̃
= 𝜎−2𝑍𝑇ẽ − 𝜎−2Σ−1b̃ = 0,

(A.2)

which implies

b̃ = Σ𝑍𝑇ẽ. (A.3)

Substituting (A.3) into (A.1) yields (13). Differentiating (13)
with respect to 𝛽 leads to

𝑄̈𝑝 (𝛽) = 𝜕
𝜕𝛽𝑇

{{{
(𝜕ℎ (𝛽)

𝜕𝛽𝑇 )𝑇 𝜕𝑄1 (y;𝜇)𝜕𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇=𝜇̃

}}}
= [

[
( 𝜕𝑄1 (y;𝜇)𝜕𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇=𝜇̃)
𝑇]
]

[𝜕2ℎ (𝛽)
𝜕𝛽𝜕𝛽𝑇 ]

+ 𝐷𝑇𝜕2𝑄1 (y;𝜇)𝜕𝜇𝜕𝜇𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇=𝜇̃

𝜕𝜇̃
𝜕𝛽𝑇

= 𝜎−2 [𝑒𝑇] [𝑊] + 𝜎−2𝐷𝑇𝐾 𝜕𝜇̃
𝜕𝛽𝑇 .

(A.4)

Differentiating (A.3) with respect to 𝛽 yields

𝜕b̃𝜕𝛽 = Σ𝑍𝑇𝐾 𝜕𝜇̃
𝜕𝛽𝑇 . (A.5)

Note that 𝜇̃ = ℎ(𝑋,𝛽) + 𝑍b̃; it follows that
𝜕𝜇̃
𝜕𝛽𝑇 = 𝜕ℎ (𝛽)

𝜕𝛽𝑇 + 𝑍 𝜕b̃
𝜕𝛽𝑇 . (A.6)

Combining (A.5) and (A.6) leads to

𝜕𝜇̃
𝜕𝛽𝑇 = 𝐷 + 𝑍 𝜕b̃

𝜕𝛽𝑇 = 𝐷 + 𝑍Σ𝑍𝑇𝐾 𝜕𝜇̃
𝜕𝛽𝑇 , (A.7)

which implies
𝜕𝜇̃
𝜕𝛽𝑇= (𝐼 − 𝑍Σ𝑍𝑇𝐾)−1𝐷

= 𝐾−1 (𝐾−1 − 𝑍Σ𝑍𝑇)−1𝐷 = 𝐾−1Ω−11 𝐷.
(A.8)

Substituting (A.8) into (A.4) yields (14). It follows from
Assumption A and 𝐾0 = 𝐸𝑦(𝐾) that (15) holds. Thus, the
proof is completed.
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