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This paper deals with a batch arrival infinite-buffer single server queue. The interbatch arrival times are generally distributed
and arrivals are occurring in batches of random size. The service process is correlated and its structure is presented through a
continuous-timeMarkovian service process (𝐶-𝑀𝑆𝑃).We obtain the probability density function (p.d.f.) of actual waiting time for
the first and an arbitrary customer of an arrival batch. The proposed analysis is based on the roots of the characteristic equations
involved in the Laplace-Stieltjes transform (LST) of waiting times in the system for the first, an arbitrary, and the last customer of
an arrival batch. The corresponding mean sojourn times in the system may be obtained using these probability density functions
or the above LSTs. Numerical results for some variants of the interbatch arrival distribution (Pareto and phase-type) have been
presented to show the influence of model parameters on the waiting-time distribution. Finally, a simple computational procedure
(through solving a set of simultaneous linear equations) is proposed to obtain the “R” matrix of the corresponding 𝐺𝐼/𝑀/1-type
Markov chain embedded at a prearrival epoch of a batch.

1. Introduction

In recent years, analysis of queueing processes with nonre-
newal arrival and service processes has been carried out to
model data transmission of complex computer and commu-
nication networks. The traditional queueing analysis using
Poisson processes is not powerful enough to capture the
dependence involved in the arrival (service) process. The
performance analysis of such bursty and correlated type of
the arrival (service) processes may be done through some
analytically tractable processes, namely, Markovian arrival
process (𝐶-𝑀𝐴𝑃) and Markovian service process (𝐶-𝑀𝑆𝑃);
see Lucantoni et al. [1], Gupta and Banik [2], and references
therein. The two processes 𝐶-𝑀𝐴𝑃 and 𝐶-𝑀𝑆𝑃 are conve-
nient representations of a versatile Markovian point process
or N-process; see Neuts [3] and Ramaswami [4]. Chaudhry
et al. [5] obtain stationary system-length distributions for the
infinite-buffer batch arrival 𝐺𝐼/𝐶-𝑀𝑆𝑃/1 queues at various

epochs using roots. Further, Singh et al. [6] have shown
that it is beneficial to use roots rather than the matrix-
geometric/matrix-analytic methods in terms of computation
time. For further details on the roots method, the readers are
referred to the related references in Chaudhry et al. [7].

One may note that Grassmann [8] shows the relation
between the characteristics roots and the corresponding
eigenvalues of the possible quasi birth-death (QBD) process
in connection with the computation of the waiting-time dis-
tribution in a 𝐸𝑛/𝐸𝑚/1 queueing model. For further details
on the relationships between the characteristics roots of a
Markov chain and the corresponding “G” matrix of𝑀/𝐺/1-
type Markov chain or “R” matrix of 𝐺𝐼/𝑀/1-type Markov
chain one may see Gail et al. [9].

In this paper we obtain the explicit closed-form expres-
sions for the Laplace-Stieltjes transform (LST) of waiting-
time distribution. For analytic purpose, we start our work
with associated prearrival epoch probability distribution;
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see Chaudhry et al. [5] for details. After that we consider
characteristic equations involved in the Laplace-Stieltjes
transform’s (LST’s) waiting-time distribution for the first and
an arbitrary customer of an arrival batch. Once the roots
of these characteristic equations are found, it becomes easy
to obtain the stationary waiting-time distribution for the
first and an arbitrary customer of an arrival batch. Also, a
simple computational procedure based on the solution of a
set of linear simultaneous equations has been proposed to
compute the R matrix of the corresponding 𝐺𝐼/𝑀/1-type
Markov chain embedded at a prearrival epoch of a batch.
It is well-known that the determination of the “R” matrix
can be done through the minimal nonnegative solution
of a nonlinear matrix equation; see Neuts [10] for details.
Finally, it may be remarked here that the same queueing
model has been dealt with in [5]. But in both the queueing
models, corresponding probability density functions of actual
waiting time for the first/an arbitrary customer have not been
derived. It is needless tomention here that probability density
functions of the waiting times are important for obtaining
statistical measures of Quality of Service (QoS) requirement
of a queueing system. Thus, the present work is a nontrivial
extension of [5].

2. Description of the Model: 𝐺𝐼[𝑋]/𝐶-𝑀𝑆𝑃/1/∞
Queue and the Analysis of the
Stationary Distribution of Waiting Time

We assume a renewal input single server queueing system
where the customers arrive in batches of random size 𝑋
whose probability mass function is given by 𝑃(𝑋 = 𝑖) = 𝑔𝑖,𝑖 = 1, 2, . . ., and mean batch size 𝐸(𝑋) = ∑∞𝑖=1 𝑖𝑔𝑖 = 𝑔. Let𝐺(𝑧) = ∑∞𝑖=1 𝑔𝑖𝑧𝑖 be the probability generating function of𝑔𝑖. The interbatch arrival times are independent identically
distributed (i.i.d.) random variables with distribution func-
tion (DF) 𝐴(𝑥), probability density function 𝑎(𝑥) with 𝑥 > 0,
and Laplace-Stieltjes transform (LST)𝐴∗(𝑠), whereR(𝑠) ≥ 0.
Then, 1/𝜆 = −𝐴∗(1)(0); i.e., 1/𝜆 is the mean interbatch arrival
time, where 𝐴∗(𝑗)(𝜃) is the 𝑗-th (𝑗 ≥ 1) derivative of 𝐴∗(𝑠) at𝑠 = 𝜃.

A single server is serving the customers according to a
continuous-time Markovian service process (C-𝑀𝑆𝑃) with
matrix representation (L0,L1). For a detailed discussion on𝐶-𝑀𝑆𝑃, the readers are referred to Chaudhry et al. [5]. Let
us denote L(𝑧) = L0 + L1𝑧 with L ≡ L(1) = L0 + L1
being an irreducible infinitesimal generator of the underlying
Markov chain {𝐽(𝑡)}. The mean stationary service rate 𝜇⋆ of
the𝐶-𝑀𝑆𝑃 is given by 𝜇⋆ = 𝜋L1e, where𝜋 = [𝜋1, 𝜋2, . . . , 𝜋𝑚]
is the probability row vector which can be computed from
𝜋L = 0 with 𝜋e = 1, where e is a column vector of ones with
an appropriate dimension. The customers are served singly
according to a𝐶-𝑀𝑆𝑃with an average stationary service rate𝜇∗. The offered load 𝜌 is given by 𝜌 = 𝜆𝑔/𝜇∗.

In the following section, we obtain the actual waiting-
time distribution for the first customer and an arbitrary
customer of an arrival batch. In order to get the actual
waiting-time distributions, we first obtain the prearrival
epoch probability distribution of system-length at a prearrival

epoch. For this, we proceed exactly in the same way as that
discussed by Chaudhry et al. [5]. Let 𝜋−𝑗 (𝑛) represent the
prearrival epoch probability distribution of an arrival batch
when there are 𝑛 (≥ 1) customers in the system and the server
is busy in phase 𝑗. Also, let 𝜋−𝑗 (0) denote the prearrival epoch
probability that the system is empty while the server is idle
in phase 𝑗. Let 𝜋−(𝑛) (𝑛 ≥ 1) be the row vector whose 𝑗-
th (1 ≤ 𝑗 ≤ 𝑚) component is 𝜋−𝑗 (𝑛). Also, let us assume
𝜋−∗(𝑧) = ∑∞𝑛=0 𝜋−(𝑛)𝑧𝑛 with 𝜋−∗𝑗 (𝑧) being the 𝑗-th 1 ≤ 𝑗 ≤𝑚 component of 𝜋−∗(𝑧). As presented in [5], 𝜋−∗𝑗 (𝑧) is an
analytic function of 𝑧 for |𝑧| ≤ 1. Thus, we have

𝜋−∗𝑗 (𝑧) = 𝑚𝑟∑
𝑖=1

𝑘𝑖𝑗1 − 𝛾𝑖𝑧 , 1 ≤ 𝑗 ≤ 𝑚, (1)

where 𝑘𝑖𝑗 are constants to be determined. Here, 𝛾𝑖 (1 ≤ 𝑖 ≤𝑚𝑟) are the 𝑚𝑟 roots inside the unit circle of the equation
det[I𝑚−𝐺(𝑧−1)S(𝑧)] = 0with 𝑟 being themaximum size of an
arrival batch, where S(𝑧) = ∑∞𝑛=0 S𝑛𝑧𝑛 = 𝐴∗(−L(𝑧))with |𝑧| ≤1.Theprocedure of obtaining S𝑛 is available in literature; e.g.,
see Appendix 2 of [5]. One may note that the computation
of S(𝑧) using above relation may be cumbersome. However,
the following numerical schememay be efficient and is given
by S(𝑧) = lim𝑁󳨀→∞∑𝑁𝑛=0 S𝑛𝑧𝑛, where S𝑛 may be obtained as
proposed in [5]. The equation det[I𝑚𝑧𝑟 − (𝑔1𝑧𝑟−1 + 𝑔2𝑧𝑟−2 +𝑔3𝑧𝑟−3+⋅ ⋅ ⋅+𝑔𝑟)S(𝑧)] = 0has𝑚𝑟 roots 𝛾𝑖 inside the unit circle.
That is, the equation det[I𝑚 − 𝐺(𝑧)S(𝑧−1)] = 0 has 𝑚𝑟 roots1/𝛾𝑖 outside the unit circle. Now, comparing the coefficient of𝑧𝑛 from both sides of (1), one may have the explicit values of𝜋−𝑗 (𝑛) (1 ≤ 𝑗 ≤ 𝑚, 𝑛 ≥ 0) in terms of 𝛾𝑖 (1 ≤ 𝑖 ≤ 𝑚𝑟) and𝑘𝑟𝑗 (1 ≤ 𝑖 ≤ 𝑚𝑟, 1 ≤ 𝑗 ≤ 𝑚); see Chaudhry et al. [5] for a
detailed procedure.

3. Waiting-Time Analysis

In the following we obtain the probability density function
(p.d.f.) of actual waiting time for the first and an arbitrary
customer of an arrival batch. Let the (𝑖, 𝑗)-th entry of 𝜙𝑘(𝑠) be
the LSTof the service times of a total of 𝑘 (≥ 1) customers and
the corresponding phase change of the underlying Markov
chain is from 𝑖 to 𝑗. The probability that the service of a
customer is completed in the interval (𝑥, 𝑥 + 𝑑𝑥] along with
phase changes is given by the matrix 𝑒L0𝑥L1𝑑𝑥+𝑜(𝑑𝑥), where𝑜(𝑥) represents a function of 𝑥 such that 𝑜(𝑥)/𝑥 󳨀→ 0 as𝑥 󳨀→ 0. Since the LST of total service time of 𝑘 customers
𝜙𝑘(𝑠) is the product of their individual LST of each service
times 𝜙1(𝑠) of those 𝑘 customers, therefore,

𝜙1 (𝑠) = ∫∞
0
𝑒−𝑠𝑥𝑒L0𝑥L1𝑑𝑥 = (𝑠I𝑚 − L0)−1 L1

and 𝜙𝑘 (𝑠) = 𝜙𝑘1 (𝑠) , 𝑘 ≥ 2,
(2)

where R(𝑠) ≥ 0. Let W𝐹(𝑥) = [𝑊𝐹1(𝑥),𝑊𝐹2(𝑥), . . .,𝑊𝐹𝑚(𝑥)], 𝑥 ≥ 0, denote the row vector of order 𝑚, where𝑊𝐹𝑟(𝑥) (1 ≤ 𝑟 ≤ 𝑚) represents the stationary joint proba-
bility that the first customer of an arrival batch has to wait
up to a maximum of 𝑥 units of time before getting served
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with the service process being in phase 𝑟. The first customer
in an arrival batch waits in the system at most 𝑥 time units
if and only if he sees upon arrival 𝑛 (≥ 0) customers ahead
of him and so he has to wait for (𝑛 + 1) service completions
including itself in the interval (0, 𝑥]. Similarly, we denote
W𝐴(𝑥) = [𝑊𝐴1(𝑥),𝑊𝐴2(𝑥), . . . ,𝑊𝐴𝑚(𝑥)], 𝑥 ≥ 0, and
W𝐿(𝑥) = [𝑊𝐿1(𝑥),𝑊𝐿2(𝑥), . . . ,𝑊𝐿𝑚(𝑥)], 𝑥 ≥ 0, as probability
vectors whose 𝑟-th component𝑊𝐴𝑟(𝑥) (1 ≤ 𝑟 ≤ 𝑚) ofW𝐴(𝑥)
denotes the stationary joint probability that an arbitrary cus-
tomer in an arrival batch has towait in the system amaximum
of 𝑥 units of time before departing the systemwith the service
process being in phase 𝑟. The 𝑟th component 𝑊𝐿𝑟(𝑥) (1 ≤𝑟 ≤ 𝑚) ofW𝐿(𝑥) denotes the stationary joint probability that
the last customer in an arrival batch has to wait in the system
at most 𝑥 units of time before getting served and departing
the system with the phase of the service process being 𝑗.
Let W∗𝐹(𝑠) = [𝑊∗𝐹1(𝑠),𝑊∗𝐹2(𝑠), . . . ,𝑊∗𝐹𝑚(𝑠)] be the LST of
W𝐹(𝑥). Similarly, let W∗𝐴(𝑠) = [𝑊∗𝐴1(𝑠),𝑊∗𝐴2(𝑠), . . . ,𝑊∗𝐴𝑚(𝑠)]
and W∗𝐿(𝑠) = [𝑊∗𝐿1(𝑠),𝑊∗𝐿2(𝑠), . . . ,𝑊∗𝐿𝑚(𝑠)] be the LSTs of
W𝐴(𝑥) andW𝐿(𝑥), respectively. Hereafter, we need to define
a random variable 𝐽 which denotes the number of customers
before an arbitrary customer in a batch. Following Chaudhry
and Templeton [7], one may write 𝑔−𝑟 = 𝑃[𝐽 = 𝑟] =(1/𝑔)∑∞𝑖=𝑟+1 𝑔𝑖, 𝑟 ≥ 0. Therefore, the LST of the waiting-
time distribution after a little algebraic manipulation (see
Chaudhry et al. [5]) may be derived as

W∗𝐹 (𝑠) = [∞∑
𝑛=0

𝜋
− (𝑛)𝜙𝑛+11 (𝑠)] = 𝜋−∗ (𝜙1 (𝑠))𝜙1 (𝑠) , (3)

W∗𝐴 (𝑠) = [[
∞∑
𝑛=0

𝜋
− (𝑛) ∞∑
𝑗=0

𝑔−𝑗 𝜙𝑛+𝑗+11 (𝑠)]
]
= 1𝑔

⋅ 𝜋−∗ (𝜙1 (𝑠)) (I𝑚 − 𝐺 (𝜙1 (𝑠))) (I𝑚 − 𝜙1 (𝑠))−1 𝜙1 (𝑠) ,
(4)

W∗𝐿 (𝑠) = [[
∞∑
𝑛=0

𝜋
− (𝑛) ∞∑
𝑗=1

𝑔𝑗𝜙𝑛+𝑗1 (𝑠)]]
= 𝜋−∗ (𝜙1 (𝑠))

⋅ 𝐺 (𝜙1 (𝑠)) ,
(5)

with R(𝑠) ≥ 0. One can find component-wise mean waiting
times in the system of the above three types(W𝐹 = [𝑊𝐹1,𝑊𝐹2, . . . ,𝑊𝐹𝑚], W𝐴 = [𝑊𝐴1,𝑊𝐴2, . . .,𝑊𝐴𝑚], and W𝐿 = [𝑊𝐿1,𝑊𝐿2, . . . ,𝑊𝐿𝑚], respectively) by
differentiating the above formulae and putting 𝑠 = 0.They are
obtained after a little algebraicmanipulation; see Chaudhry et
al. [5] for explicit formulae ofW𝐹,W𝐴, andW𝐿. Using Little’s
law, we can obtain mean sojourn time as𝑊𝐴(𝐿𝐿) = 𝐿 𝑠/𝜆𝑔,
where 𝐿 𝑠 is the mean stationary system-length obtained in
[5] and one may note that𝑊𝐴(𝐿𝐿) = W𝐴e while performing
numerical computation. Also, one may simplify (3) as stated
below. First combine the roots 𝛾𝑛𝑖 (1 ≤ 𝑖 ≤ 𝑚𝑟) and [𝜙1(𝑠)]𝑛,
yielding a geometric series, which are then summed over𝑛. As a consequence of the formula regarding geometric
series, this sum is [I𝑚 − 𝛾𝑖𝜙1(𝑠)]−1, and this expression is
expanded, using the adjoint matrix and determinants (see

also [9], (35), and Section A.1 for a proof of formula (6) given
below).

W∗𝐹 (𝑠) = ∞∑
𝑛=0

𝜋
− (𝑛) [𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)

= ∞∑
𝑛=0

[𝑚𝑟∑
𝑖=1

𝑘𝑖1𝛾𝑛𝑖 , 𝑚𝑟∑
𝑖=1

𝑘𝑖2𝛾𝑛𝑖 , . . . , 𝑚𝑟∑
𝑖=1

𝑘𝑖𝑚𝛾𝑛𝑖 ] [𝜙1 (𝑠)]𝑛

⋅ 𝜙1 (𝑠) = [𝑘11, 𝑘12, . . . , 𝑘1𝑚] adj [I𝑚 − 𝛾1𝜙1 (𝑠)]det [I𝑚 − 𝛾1𝜙1 (𝑠)]
⋅ 𝜙1 (𝑠) + [𝑘21, 𝑘22, . . . , 𝑘2𝑚] adj [I𝑚 − 𝛾2𝜙1 (𝑠)]det [I𝑚 − 𝛾2𝜙1 (𝑠)]
⋅ 𝜙1 (𝑠) + ⋅ ⋅ ⋅
+ [𝑘𝑚𝑟1, 𝑘𝑚𝑟2, . . . , 𝑘𝑚𝑟𝑚] adj [I𝑚 − 𝛾𝑚𝑟𝜙1 (𝑠)]

det [I𝑚 − 𝛾𝑚𝑟𝜙1 (𝑠)] 𝜙1 (𝑠) ,

(6)

with R(𝑠) ≥ 0. In the following, we develop a numerical
scheme for inverting the above LSTs component-wise. Let us
first look at the 𝑟-th component of the LST given by formula
(3) which is further simplified as (6). The right-hand side
of (3) involves 𝜋−∗(𝜙1(𝑠))𝜙1(𝑠) which is further simplified as
the right-hand side of (6). Both LSTs (3) and (6) are analytic
in the region R(𝑠) ≥ 0. Therefore (as 𝜙1(𝑠) is the LST of
the transition probability matrix of the underlying Markov
chain of 𝐶-𝑀𝑆𝑃), the 𝑟-th (1 ≤ 𝑟 ≤ 𝑚) component of
𝜋−∗(𝜙1(𝑠))𝜙1(𝑠) may be written as a rational function in 𝑠,
which is evident from the right-hand side of (6). Now, taking
into account the zeros of the denominator of each 𝑚𝑟 terms
in the right-hand side of (6), we obtain 𝑚𝑟 characteristic
equations; namely,

det [I𝑚 − 𝛾𝑗𝜙1 (𝑠)] = 0, 1 ≤ 𝑗 ≤ 𝑚𝑟. (7)

Also, each element of the matrix 𝜙1(𝑠) = (𝑠I𝑚 − L0)−1L1 =
adj[𝑠I𝑚 − L0]L1/det[𝑠I𝑚 − L0] has denominator det[𝑠I𝑚 − L0]
which has 𝑚 zeros in the region R(𝑠) < 0 (see similar proof
of Theorem 7.3 of [5]). As a result, det[I𝑚 − 𝛾𝑗𝜙1(𝑠)] (1 ≤ 𝑗 ≤𝑚𝑟) has denominator {det[𝑠I𝑚 − L0]}𝑚 which has 𝑚2 zeros
in the region R(𝑠) < 0 with each zero having multiplicity 𝑚.
Similarly, the numerator of det[I𝑚 − 𝛾𝑗𝜙1(𝑠)] (1 ≤ 𝑗 ≤ 𝑚𝑟)
also has 𝑚2 zeros in the region R(𝑠) < 0 for each 𝑗 (1 ≤ 𝑗 ≤𝑚𝑟). After canceling the common zeros of the numerator and
the denominator of det[I𝑚 − 𝛾𝑗𝜙1(𝑠)] × det[𝑠I𝑚 − L0] (1 ≤𝑗 ≤ 𝑚𝑟), one is left with𝑚 zeros of the numerator of det[I𝑚 −𝛾𝑗𝜙1(𝑠)] × det[𝑠I𝑚 − L0] (1 ≤ 𝑗 ≤ 𝑚𝑟) in the regionR(𝑠) < 0.
Let us define 𝑠𝑖,𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚𝑟) as the zeros
of the denominator of each component of 𝜋−∗(𝜙1(𝑠))𝜙1(𝑠) in
the region R(𝑠) < 0. Also, it may be noted here that none
of these zeros 𝑠𝑖,𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚𝑟) is equal to a
zero of det[𝑠I𝑚 − L0]. Therefore, one may finally note that the
denominator of the 𝑟th component of the LSTW∗𝐹(𝑠) given by
formula (3) which has𝑚2𝑟 zeros: 𝑠𝑖,𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚𝑟)
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with R(𝑠) < 0. One may finally obtain the 𝑟th (1 ≤ 𝑟 ≤ 𝑚)
component ofW∗𝐹(𝑠) using partial fractions as follows:

𝑊∗𝐹𝑟 (𝑠) = 𝑚∑
𝑖=1

𝑚𝑟∑
𝑗=1

𝐶𝑟𝑖𝑗
(𝑠 − 𝑠𝑖𝑗) , (8)

where 𝐶𝑟𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚𝑟, 1 ≤ 𝑟 ≤ 𝑚)
are constants to be evaluated and R(𝑠) ≥ 0. It may be
remarked here that while making partial fractions, we have
assumed that the roots 𝑠𝑖𝑗 are distinct. To get the unknown
constants, we use the required number of linear equations
after substituting any positive values of 𝑠 (R(𝑠) > 0) in
(8). Finally, we equate the component-wise W∗𝐹(𝑠) from (3)
with (8) under the same positive values of 𝑠. One may note
that, as normalizing conditions, the component-wise values
of W∗𝐹(0) and the components of W𝐹 must be included
in the set of linear equations to get the above constants.
These components may be obtained by putting 𝑠 = 0 in
(8) and we may use 𝑊𝐹𝑟 = −𝑊∗(1)𝐹𝑟 (𝑠)|{𝑠=0}, where 𝑊∗(1)𝐹𝑟 (𝑠)
is the first differentiation of 𝑊∗𝐹𝑟(𝑠) with respect to 𝑠. After
that, taking inverse Laplace transform of (8), component-
wise explicit closed-form expression of probability density
function (p.d.f.)𝑤𝐹𝑟(𝑥) is given by

𝑤𝐹𝑟 (𝑥) = 𝑚∑
𝑖=1

𝑚𝑟∑
𝑗=1

𝐶𝑟𝑖𝑗𝑒𝑠𝑖𝑗𝑥,
1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚𝑟, 1 ≤ 𝑟 ≤ 𝑚,

(9)

with 𝑥 > 0. Finally, the p.d.f. of waiting time of the first
customer may be obtained from 𝑤𝐹(𝑥) = ∑𝑚𝑟=1𝑤𝐹𝑟(𝑥). From
this, we can get 𝑊𝐹𝑟(𝑢) = ∫𝑢0 𝑤𝐹𝑟(𝑥)𝑑𝑥, (1 ≤ 𝑟 ≤ 𝑚), and𝑊𝐹(𝑢) = ∫𝑢0 𝑤𝐹(𝑥)𝑑𝑥.

Similar to the procedure followed earlier, we consider
the zeros of the denominator of each element of the matrix(I𝑚 − 𝐺(𝜙1(𝑠))) in (4). As discussed earlier, the denominator
of each element of 𝜙1(𝑠) has 𝑚 zeros in the region R(𝑠) < 0
which may be obtained by solving det[𝑠I𝑚 − L0] = 0. This
implies that, given maximum arrival batch size 𝑟, 𝑚 zeros of
the denominator of each element of thematrix (I𝑚−𝐺(𝜙1(𝑠)))
are repeated up to 𝑟 times. Let the𝑚 roots of det[𝑠I𝑚−L0] = 0
be denoted by 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑚).Therefore, the denominator
of each element of the matrix (I𝑚 − 𝐺(𝜙1(𝑠))) has repeated
roots 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑚) with multiplicity 𝑟. Also, we have to
investigate the zeros of the denominator of each element of
the matrix (I𝑚 − 𝜙1(𝑠))−1. These zeros may be obtained by
using det[I𝑚 − 𝜙1(𝑠)]. It can also be shown that there will be𝑚2 zeros of the numerator of det[I𝑚 − 𝜙1(𝑠)] in the region
R(𝑠) ≤ 0 (since 𝑠 = 0 is root of the equation det[I𝑚 −
𝜙1(𝑠)] = 0). Also, there are 𝑚2 zeros of the denominator
(which is equal to {det[𝑠I𝑚 − L0]}𝑚) of det[I𝑚 − 𝜙1(𝑠)] in
the region R(s) < 0 and they are 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑚) with
multiplicity𝑚 each. After canceling the common zeros of the
numerator and the denominator of det[I𝑚 −𝜙1(𝑠)], one is left
with (𝑚 − 1) zeros of the numerator of det[I𝑚 − 𝜙1(𝑠)] in the
regionR(𝑠) < 0. Let these (𝑚 − 1) roots of the numerator of
det[I𝑚 − 𝜙1(𝑠)] be denoted by ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑚 − 1), where

R(ℎ𝑖) < 0. Lastly, the roots of the denominator of each
element of the matrix 𝜙1(𝑠) in the right-hand side of (4) are
also 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑚). Finally, if we consider all the roots (with
R(𝑠) < 0) of denominators involved in each element of the
vector and matrices occurring in the right-hand side of (4),
we reach the following conclusion: 𝑟𝑖’s (1 ≤ 𝑖 ≤ 𝑚) roots
repeated in the region R(𝑠) < 0 with multiplicity (𝑟 − 1)
occur in the denominator of each component of W∗𝐴(𝑠) in
(4). On the other hand 𝑠𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚𝑟) andℎ𝑖 (1 ≤ 𝑖 ≤ 𝑚 − 1) are the roots in the region R(𝑠) < 0
that occur in the denominator of each component of W∗𝐴(𝑠)
in (4). Following this conclusion, after using partial fractions,
we may write the 𝑟-th (1 ≤ 𝑟 ≤ 𝑚) component of W∗𝐴(𝑠) (in
(4) which also has factor 𝜋−∗(𝜙1(𝑠))) as follows:

𝑊∗𝐴𝑟 (𝑠) = 𝑟−1∑
𝑛=1

𝑚∑
𝑖=1

𝐶𝑛𝑟𝑖(𝑠 − 𝑟𝑖)𝑛 +
𝑚∑
𝑖=1

𝑚𝑟∑
𝑗=1

𝐷𝑟𝑖𝑗
(𝑠 − 𝑠𝑖𝑗)

+ 𝑚−1∑
𝑖=1

𝐻𝑟𝑖(𝑠 − ℎ𝑖) , 1 ≤ 𝑟 ≤ 𝑚,
(10)

where 𝐶𝑛𝑟𝑖 (1 ≤ 𝑖, 𝑟 ≤ 𝑚, 1 ≤ 𝑛 ≤ 𝑟 − 1), 𝐷𝑟𝑖,𝑗 (1 ≤ 𝑖, 𝑟 ≤𝑚, 1 ≤ 𝑖 ≤ 𝑚𝑟), and 𝐻𝑟𝑖 (1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑚 − 1) are
constants to be evaluated and R(𝑠) ≥ 0. It may be remarked
here that while making partial fractions, we have assumed
that the roots ℎ𝑖 and 𝑠𝑖𝑗 are distinct. If they are repeated, a
slight modification in partial fraction will be needed. Also,
throughout the above discussions of roots, we discard any
roots of the denominator of the above LSTs (3)-(5) in the
region R(𝑠) ≥ 0. The roots of the denominator with R(𝑠) ≥0 must be canceled with numerator as the LSTs (3)-(5) are
analytic in the region R(𝑠) ≥ 0.

Now to obtain the unknown constants, we use the
required number of linear equations after substituting any
positive values of 𝑠 in (10). Finally, we equate the components
of W∗𝐴(𝑠) from (4) with the corresponding component of
(10) under the same positive values of 𝑠. One may note
that, as normalizing conditions, the component-wise values
of W∗𝐴(0) and the components of W𝐴 must be included in
the set of linear equations to get the above constants. These
components may be obtained by putting 𝑠 = 0 in (10)
and we may use 𝑊𝐴𝑟 = −𝑊∗(1)𝐴𝑟 (𝑠)|{𝑠=0}, where 𝑊∗(1)𝐴𝑟 (𝑠) is
the first differentiation of 𝑊∗𝐴𝑟(𝑠) with respect to 𝑠. After
that, taking inverse Laplace transform of (10), component-
wise explicit closed-form expression of probability density
function (p.d.f.)𝑤𝐴𝑟(𝑥) is given by

𝑤𝐴𝑟 (𝑥) = 𝑟−1∑
𝑛=1

𝑚∑
𝑖=1

𝐶𝑛𝑟𝑖𝑥𝑛−1(𝑛 − 1)! 𝑒𝑟𝑖𝑥 +
𝑚∑
𝑖=1

𝑚𝑟∑
𝑗=1

𝐷𝑟𝑖𝑗𝑒𝑠𝑖𝑗𝑥

+ 𝑚−1∑
𝑖=1

𝐻𝑟𝑖 𝑒ℎ𝑖𝑥, 1 ≤ 𝑟 ≤ 𝑚,
(11)

with 𝑥 > 0. Finally, the p.d.f. of waiting time of an arbitrary
customer may be obtained by 𝑤𝐴(𝑥) = ∑𝑚𝑟=1𝑤𝐴𝑟(𝑥). Further,
let us denote the component-wise and total distribution
function of the waiting-time distribution of an arbitrary
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Figure 1: 𝑥 versus p.d.f.

customer of an arrival batch by𝑊𝐴𝑟(𝑢) = ∫𝑢0 𝑤𝐴𝑟(𝑥)𝑑𝑥, (1 ≤𝑟 ≤ 𝑚), and 𝑊𝐴(𝑢) = ∫𝑢0 𝑤𝐴(𝑥)𝑑𝑥. It may be finally noted
that lim𝑢󳨀→∞𝑊𝐴𝑟(𝑢) must be equal to the 𝑟-th component
of W∗𝐴(𝑠)|𝑠=0. Exactly similar analysis may be carried out to
obtain the component-wise p.d.f. of the waiting time of the
last customer in an arrival batch using the LST given by
(5).

4. Numerical Results

Using the results formulated in the previous section, some
numerical results are presented in this section. Although
numerical calculations were carried out with high precision,
due to lack of space the results have been reported to 6
decimal places. Since various distributions can be either
represented or approximated by 𝑃𝐻-distribution, we take
interbatch arrival time distribution to be of 𝑃𝐻-type having
the representation (𝛼,T), where 𝛼 and T are of dimension ].
Thenusing the procedure adopted byChaudhry et al. [5], S(𝑧)
can be derived as follows:

S (𝑧) = (I𝑚 ⊗ 𝛼) (L (𝑧) ⊕ T)−1 (I𝑚 ⊗ Te]) , (12)

with L(𝑧) ⊕ T = (L(𝑧) ⊗ I]) + (I𝑚 ⊗ T), where ⊗ and ⊕ are
Kronecker product and sum, respectively. For the derivation
of S(𝑧), see Theorem 7.5 in [5]. For more discussion on the
derivation of S(𝑧), see [5]. Numerical computations were
performed on a PC having Intel(R) Core i5 processor @1.8
GHz with 4 GB DDR3 RAM using MAPLE 2015.

4.1. The Waiting-Time Analysis of a 𝑃𝐻[𝑋]/𝐶-𝑀𝑆𝑃/1/∞
Queueing System. In Figure 1, we have computed and plotted

the component-wise p.d.f. of waiting times in the system of
an arbitrary customer in a𝑃𝐻[𝑋]/𝐶-𝑀𝑆𝑃/1/∞ queueing sys-
tem using the numerical scheme presented in Section 3. The𝑃𝐻-type interbatch arrival time is given by 𝛼 = [0.35 0.65]
and T = [ −1.183 2.4231.367 −2.896 ] with 𝜆 = 0.032317. The batch size
distribution is given by 𝑔1 = 0.0, 𝑔2 = 0.0, 𝑔3 = 0.5, and𝑔4 = 0.5, 𝑔𝑖 = 0.0 (𝑖 ≥ 5) with mean batch size 𝑔 = 3.5.The𝐶-𝑀𝑆𝑃matrices having positive lag-1 correlation coefficient
0.271908 as

L0

= [[[
[

−0.5424095190 0.0037279000 0.0000000000
0.0043492170 −0.0229887200 0.0006213170
0.0000000000 0.0012426330 −2.2696700720

]]]
]
,

L1 = [[[
[

0.0205034530 0.0000000000 0.5181781660
0.0000000000 0.0173968690 0.0006213170
2.2591076880 0.0049705340 0.0043492170

]]]
]

(13)

with stationary mean service rate 𝜇∗ = 0.500000 and
𝜋 = [0.464978 0.428426 0.106596] which gives traffic
intensity (offered load) 𝜌 = 0.226216. The characteristic
roots to obtain the system-length distribution at a prearrival
epoch are calculated through the nonlinear algebraic equa-
tion:

det [I𝑚𝑧𝑟 − (𝑔1𝑧𝑟−1 + 𝑔2𝑧𝑟−2 + 𝑔3𝑧𝑟−3 + 𝑔𝑟) S (𝑧)]
= 0, (14)

where 𝑚 = 3, 𝑟 = 4 and 𝑔𝑖 (𝑖 ≥ 1) are given above and
S(𝑧) may be obtained by (12); see Theorem 7.5 of [5]. The𝑚𝑟 = 12 roots of (14) inside |𝑧| < 1 are evaluated and the cor-
responding 𝑘𝑖𝑗 (1 ≤ 𝑖 ≤ 12, 1 ≤ 𝑗 ≤ 3) values are calculated
using Section 2 where the prearrival epoch probabilities are
derived. Details of the characteristic equations and their roots
used for the evaluation of waiting-time densities are available
with the authors and may be supplied upon specific request
to the authors. After computation of the required roots, we
construct partial fractions for each component of W∗𝐴(𝑠) as
given in (10). Finally, using inverse Laplace-transforms we
obtain component-wise p.d.f. of waiting times in the system.
In Figure 1, we have plotted the above three component-
wise densities along with the total waiting-time density
function 𝑤𝐴(𝑥) against 𝑥. Figure 1 shows that component-
wise density of waiting time behaves significantly different
from that of 𝑤𝐴(𝑥). Also, in Figure 2, we have plotted the
corresponding component-wise distribution function as well
as total distribution function against time. Similar behaviour
may be observed in the case of DFs, which is what is
expected.

4.2. The Waiting-Time Analysis of a 𝑃𝑎𝑟𝑒𝑡𝑜[𝑋]/𝐶-𝑀𝑆𝑃/1/∞
Queueing System. In Figure 3, we have repeated similar ex-
periment as given in above figures; i.e., we plotted compo-
nent-wise p.d.f.’s against time in a 𝑃𝑎𝑟𝑒𝑡𝑜[𝑋]/𝐶-𝑀𝑆𝑃/1/∞
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Figure 2: 𝑢 versus distribution function.
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Figure 3: 𝑥 versus p.d.f.

queue, where 𝑃𝑎𝑟𝑒𝑡𝑜 stands for Pareto distribution whose
probability density function and distribution functions are
given by 𝑎(𝑥) = 𝛼𝑎𝛼/(𝑎 + 𝑥)𝛼+1, 𝛼 = 0.3, 𝑎 = 2.3, 𝑥 ≥ 0,
and 𝐴(𝑥) = 1 − 𝑎𝛼/(𝑥 + 𝑎)𝛼, 𝑥 > 0, respectively, with shape
parameter 𝛼 and scale parameter 𝑎. Batch size distribution is
taken arbitrary with probability generating function 𝐺(𝑧) =0.1𝑧2 +0.1𝑧3 +0.8𝑧4 and mean batch size 𝑔 = 3.7.The service
matrices having positive lag-1 correlation coefficient 0.018690
are taken as

L0 = [[[
[

−2.156750 0.007125 0.00
0.149625 −0.171000 0.007125
0.007125 0.007125 −2.443000

]]]
]
,

L1 = [[[
[

2.007125 0.14250 0.00
0.00 0.007125 0.007125
0.00 0.00 2.42875

]]]
]

(15)

with 𝜇∗ = 1.540543 and 𝜋 =[0.343750 0.328125 0.328125]. One may note that the
moments do not exist for this case of Pareto interbatch
arrival time distribution. From this Pareto distribution
function 𝐴(𝑥) (through equating 𝐴(𝑥) = 0.5), we
calculate median which is equal 20.882547. Here we
assume 𝜆 = 0.047887 so that 𝜌 = 𝜆𝑔/𝜇∗ = 0.115012.
We use geometric transform approximation method (G-
TAM); see Shortle et al. [11]. For this, consider 𝑁 = 100
probabilities 𝑦𝑖 = 1 − 𝑞𝑖 (1 ≤ 𝑖 ≤ 100, 0 < 𝑞 < 1).
Substituting 𝑦𝑖 in the distribution function, i.e.,𝑦𝑖 = 1−𝑞𝑖 = 𝐴(𝑥𝑖) = 1−𝑎𝛼/(𝑥𝑖 +𝑎)𝛼, leads to 𝑥𝑖 = 𝑎𝑞−𝑖/𝛼 −𝑎.
The weights are 𝑝𝑖 = (𝑦𝑖+1 − 𝑦𝑖−1)/2 = (𝑞𝑖−1 − 𝑞𝑖+1)/2,𝑝1 = 𝑦1 = 1 − (𝑞 + 𝑞2)/2, and 𝑝100 = 𝑦100 = (𝑞99 + 𝑞100)/2. A
binary search on 𝑞 to match ∑100𝑖=1 𝑝𝑖𝑥𝑖 = 20.882547 (which is
the median of an interbatch arrival time) gives 𝑞 = 0.991498.
Thus, the approximate Laplace transform of interbatch
arrival time may be taken as

𝐴∗ (𝑠) = 100∑
𝑖=1

𝑝𝑖𝑒−𝑠𝑥𝑖 . (16)

The Padé approximation [4/5] of (16) is given as follows:

𝐴∗ (𝑠) ≃ 1.0 − 0.303449𝑠 + 104.611371𝑠2 + 16.029743𝑠3 + 790.04091𝑠41.0 + 20.503315𝑠 + 189.254931𝑠2 + 998.209224𝑠3 + 3069.401520𝑠4 + 4521.877843𝑠5 . (17)

Now using the above procedure as discussed in previous
section, we have computed the component-wise densities of
waiting time for the𝑃𝑎𝑟𝑒𝑡𝑜[𝑋]/𝐶-𝑀𝑆𝑃/1/∞ using exactly the

same procedure as described in Figure 1. Similar to Figure 1,
in Figure 3, we have plotted the above three component-wise
densities as well as 𝑤𝐴(𝑥) versus 𝑥. Here also we have seen
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Figure 4: 𝑥 versus distribution function.

Table 1: Actual waiting-time (in the system) distribution of a
customer.

Waiting-time distribution function
u 𝑊1(𝑢) 𝑊2(𝑢) 𝑊3(𝑢) 𝑊4(𝑢) 𝑊(𝑢)
0 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 0.497562 0.005344 0.017378 0.002648 0.522932
1.0 0.521051 0.005759 0.035850 0.003488 0.566148
2.5 0.577662 0.006778 0.082479 0.005570 0.672489
3.0 0.593261 0.007059 0.095329 0.006143 0.701792
5.0 0.642893 0.007953 0.136214 0.007968 0.795029
10.5 0.713091 0.009218 0.194041 0.010550 0.926900... ... ... ... ... ...
90.5 0.752004 0.009919 0.226096 0.011981 0.999999

significant difference among the component-wise densities.
Also, we have plotted the corresponding distribution func-
tion in component-wise as well as total distribution function
in Figure 4.

4.3. Comparison of the Numerical Results Obtained through
Roots and Matrix-Geometric Method. In this section we
made a thorough numerical comparison of our results
with that of Samanta [12] and our computed results are
appended in Table 1. For this comparison, we have obtained
component-wise waiting-time distribution function (using
the procedure discussed in Section 3) of an infinite-buffer𝐺𝐼/𝐶-𝑀𝑆𝑃/1 queueingmodelwith parameters given inTable
2 of [12]. For the same queueing model, we have obtained
waiting-time (in system) distribution function (using the
procedure discussed in Section 3) which was presented in
Table 2 of [12] using matrix-geometric method. As expected,

in both the above cases, the results were matched up to six
decimal places against Table 2 of [12]. In Table 1, we have
presented first seven and the last values of the distribution
function. For this experiment, 𝐶-𝑀𝑆𝑃 service matrices with
positive lag-1 correlation coefficient 0.5381025 are taken as

L0

= [[[[[
[

−15.449000 0.116000 0.052000 0.000000
0.092000 −5.069000 0.000000 0.062000
0.000000 0.213000 −4.832000 4.430000
0.059000 5.033000 0.000000 −5.321000

]]]]]
]
,

L1 =
[[[[[
[

15.068000 0.157000 0.000000 0.056000
0.123000 0.047000 4.745000 0.000000
0.084000 0.000000 0.000000 0.105000
0.051000 0.000000 0.077000 0.101000

]]]]]
]

(18)

with stationary mean service rate 𝜇∗ = 5.388016 and 𝜋 =[0.264645 0.253046 0.254961 0.227348]. The interarrival
time is phase-type whose representation was taken as

𝛼 = [0.22 0.33 0.45] ,

T = [[
[
−7.423 0.000 3.812
8.542 −9.942 1.000
5.210 0.000 −8.640

]]
]

(19)

with 𝜆 = 3.198147 which gives 𝜌 = 0.593567. It may be
noted here that for an infinite-buffer 𝐺𝐼/𝐶-𝑀𝑆𝑃/1 queue the
expression for LST of waiting-time distribution of an arriving
customer is the same asW∗𝐹(𝑠) =W∗𝐴(𝑠) which is given in (3)
and for the sake of notational conveniencewemay denote this
asW∗𝐴(𝑠).

In Figures 5 and 6, we have plotted the probability densi-
ties and distribution functions, respectively, against time for
the queueing model discussed in Table 1.

5. Conclusion

In this paper, we analyze the waiting-time distribution of the𝐺𝐼[𝑋]/𝐶-𝑀𝑆𝑃/1/∞ queue and obtain steady-state probabil-
ity distribution of thewaiting time of the first customer and an
arbitrary customer of an arrival batch. The proposed method
is based on the roots of a characteristic equation involved in
finding probability distribution at a prearrival epoch. After
that, we use prearrival epoch probabilities and the roots of
a set of characteristic equations involved in the LSTs of the
waiting time for the first customer and an arbitrary customer
of an arrival batch. Besides the computational advantages in
terms of time, this method has other advantages over the
matrix-geometric method in the sense that it is accurate even
if one does not use all the roots. For example, the values of
the distribution function presented in Table 1 of the previous
section may be obtained (with an accuracy of up to 6 decimal
places) by just using the first 8 roots from the list of 𝑚2 = 16
roots. As a consequence, we may obtain good approximate
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waiting-time distribution using less number of roots. Finally,
we discuss a simple computational procedure (based on the
solution of a set of simultaneous linear equations) which
can compute the “R” matrix of the corresponding 𝐺𝐼/𝑀/1-
type Markov chain with a desired level of accuracy; see
Section A.2. This procedure may serve as an alternative
method for computation of the R matrix which is usually
computed through the nonnegative solution of a nonlinear
matrix equation. Similar proceduremay be used to obtain the

waiting-time distribution of a 𝐺𝐼/𝐶-𝑀𝑆P/1-type queue with
set-up time with or without vacation(s). These problems may
attract researchers’ attention in the future.

Appendix

A. A Proof and Some Additional Numerical
Results Related to the Paper Using Roots

A.1. Proof of Formula (6) of the Paper

W∗𝐹 (𝑠) = ∞∑
𝑛=0

𝜋
− (𝑛) [𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)

= ∞∑
𝑛=0

[𝑚𝑟∑
𝑖=1

𝑘𝑖1𝛾𝑛𝑖 , 𝑚𝑟∑
𝑖=1

𝑘𝑖2𝛾𝑛𝑖 , . . . , 𝑚𝑟∑
𝑖=1

𝑘𝑖𝑚𝛾𝑛𝑖 ] [𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)

= ∞∑
𝑛=0

[𝑘11𝛾𝑛1 , 𝑘12𝛾𝑛1 , . . . , 𝑘1𝑚𝛾𝑛1 ] [𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)

+ ∞∑
𝑛=0

[𝑘21𝛾𝑛2 , 𝑘22𝛾𝑛2 , . . . , 𝑘2𝑚𝛾𝑛2 ] [𝜙1 (𝑠)]𝑛 𝜙1 (𝑠) + ⋅ ⋅ ⋅

+ ∞∑
𝑛=0

[𝑘𝑚𝑟1𝛾𝑛𝑚𝑟, 𝑘𝑚𝑟2𝛾𝑛𝑚𝑟, . . . , 𝑘𝑚𝑟𝑚𝛾𝑛𝑚𝑟] [𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)

= ∞∑
𝑛=0

[𝑘11, 𝑘12, . . . , 𝑘1𝑚] [𝛾1𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)

+ ∞∑
𝑛=0

[𝑘21, 𝑘22, . . . , 𝑘2𝑚] [𝛾2𝜙1 (𝑠)]𝑛 𝜙1 (𝑠) + ⋅ ⋅ ⋅

+ ∞∑
𝑛=0

[𝑘𝑚𝑟1, 𝑘𝑚𝑟2, . . . , 𝑘𝑚𝑟𝑚] [𝛾𝑚𝑟𝜙1 (𝑠)]𝑛 𝜙1 (𝑠)
= [𝑘11, 𝑘12, . . . , 𝑘1𝑚] [I𝑚 − 𝛾1𝜙1 (𝑠)]−1 𝜙1 (𝑠)
+ [𝑘21, 𝑘22, . . . , 𝑘2𝑚] [I𝑚 − 𝛾2𝜙1 (𝑠)]−1 𝜙1 (𝑠) + ⋅ ⋅ ⋅
+ [𝑘𝑚𝑟1, 𝑘𝑚𝑟2, . . . , 𝑘𝑚𝑟𝑚] [I𝑚 − 𝛾𝑚𝑟𝜙1 (𝑠)]−1 𝜙1 (𝑠) ,

(A.1)

which yields the result (6).

A.2. Demonstration of a Simple Computational Procedure for
“R” Matrix (Used in Matrix-Geometric Method) Related to
the Queueing Model 𝐺𝐼[𝑋]/𝐶-𝑀𝑆𝑃/1/∞ of the Paper Using
Roots. Asdiscussed byNeuts [10], the stationary probabilities
at an embedded prearrival epoch in a 𝐺𝐼/𝑀/1-type Markov
chainmay be obtained inmatrix-geometric forms.That is, for
a 𝐺𝐼/𝑀/1-type Markov chain Neuts [10] showed that there
exists a nonnegative matrix “R” with appropriate dimension
such that the stationary probability vectors at an embedded
prearrival epoch are given by 𝜋̂(𝑛) = 𝜋̂(0)R𝑛, 𝑛 ≥ 0, where
the matrix “R” has spectral radius < 1 in case of a positive
recurrentMarkov chain and thematrix “R”may be computed
as a nonnegative solution of a nonlinear matrix equation
(see below). Gail et al. [9] proved that the eigenvalues of
the “R” matrix are related to the characteristic roots of the
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corresponding 𝐺𝐼/𝑀/1-type Markov chain. In the following
a simple computation procedure for obtaining the “R”matrix
as a solution of a set of simultaneous linear equations has
been proposed for𝐺𝐼/𝐶-𝑀𝑆𝑃/1/∞ and𝐺𝐼[𝑋]/𝐶-𝑀𝑆𝑃/1/∞
queueing models.

First, we explain this computational procedure for com-
puting the Rmatrix in the case of 𝐺𝐼/𝐶-𝑀𝑆𝑃/1/∞ queueing
model presented in Table 1. Following [10], the stationary
probability vectors at an embedded Markov prearrival epoch
are given below. Since we have assumed 𝜌 = 𝜆/𝜇∗ < 1 and
the Markov chain 𝜁𝑘 is irreducible, there exists the minimal
nonnegative solution R = [𝑅𝑖𝑗]𝑚×𝑚 (𝑚 = 4) of the matrix
equation R = ∑∞𝑘=0 R𝑘S𝑘, where R is strictly positive and of
spectral radius less than one. The matrix R can be calculated
by an iterative scheme given below:

R (𝑖 + 1) = (S0 + ∞∑
𝑘=2

R𝑘 (𝑖) S𝑘) (I − S1)−1 ,
with R (0) = 0,

(A.2)

where R(𝑖) is the value of R at the 𝑖𝑡ℎ iteration. The invariant
probability vector of the Markov chain 𝜁𝑘 is obtained by

𝜋
− (𝑘) = 𝜋− (0)R𝑘, 𝑘 ≥ 0, (A.3)

where 𝜋−(0) is obtained by solving the left eigenvector of
the matrix B[R] = ∑∞𝑘=1 R𝑘−1S∗𝑘 with the normalizing
condition 𝜋−(0)[I𝑚 − R]−1e = 1. Now we obtain the roots
of the characteristics equation det[I𝑚𝑧 − S(𝑧)] = 0, as𝛾1 = 0.180975, 𝛾2 = 0.944434, 𝛾3 = 0.278271 + 0.075281i,
and 𝛾4 = 0.278271 − 0.075281i. Thereafter, we get the
stationary probability vectors 𝜋−(𝑛), 𝑛 ≥ 0, at an embedded
prearrival epoch using the roots 𝛾1, 𝛾2, 𝛾3, and 𝛾4. One may
note that in this case the R has dimension 4 × 4, i.e., 16
unknown elements, and they may be obtained by solving
the following 16 simultaneous linear equations derived from
(A.3) as follows:

𝜋
− (1) = 𝜋− (0)R, (A.4)

𝜋
− (2) = 𝜋− (1)R, (A.5)

𝜋
− (3) = 𝜋− (2)R, (A.6)

𝜋
− (4) = 𝜋− (3)R. (A.7)

Equating 𝜋−(𝑖), 𝑖 = 1, 2, 3, 4, and (A.4)-(A.7) component-
wise, we obtain the 16 simultaneous equations with 16
elements of the R matrix as variables. After solving these 16
simultaneous linear equations with 16 unknown elements of
the matrix R, we obtain the Rmatrix as follows:

R = [[[[[
[

0.182617 0.005479 0.004615 0.002830
0.061297 0.431499 0.157426 0.090092
0.131600 0.228110 0.590780 0.335155
0.102322 0.318496 0.209492 0.477055

]]]]]
]
. (A.8)

The correctness of the R matrix is checked by computing
the eigenvalues of R given in (A.8) and the eigenvalues
are obtained as 0.180975, 0.944434, 0.278271 + 0.075281i,
and 0.278271 − 0.075281i which are exactly the same as
the characteristic roots. Also, we obtained R matrix using
iterative scheme (A.2) and found that the Rmatrix is exactly
the same as that given in (A.8) after 150 iterations.

Next, we investigate the same computational procedure
for computing theRmatrix in the case of𝐺𝐼[𝑋]/𝐶-𝑀𝑆𝑃/1/∞
queueingmodel presented in Section 4.1. Itmay be noted here
that for the case of 𝐺𝐼[𝑋]/𝐶-𝑀𝑆𝑃/1/∞ queueing model as
discussed by Neuts [10] (Remarks on bottom of pg. 189), the
R = [𝑅𝑖𝑗]𝑚𝑟×𝑚𝑟 (𝑚 = 3, 𝑟 = 4)maybe solved by the following
set of simultaneous linear equations.

[𝜋− (4 × 𝑘) ,𝜋− (4 × 𝑘 + 1) ,𝜋− (4 × 𝑘 + 2) ,
𝜋
− (4 × 𝑘 + 3)] = [𝜋− (4 × (𝑘 − 1)) ,
𝜋
− (4 × (𝑘 − 1) + 1) ,𝜋− (4 × (𝑘 − 1) + 2) ,
𝜋
− (4 × (𝑘 − 1) + 3)]R, 1 ≤ 𝑘 ≤ 12.

(A.9)

Onemay note that for this case the Rmatrix computed by the
above procedure (presented below) has spectral radius less
than

R =
[[[[[[[[[
[

0.081741 0.001970 ⋅ ⋅ ⋅ 0.000968
0.009819 0.309779 ⋅ ⋅ ⋅ 0.002166
0.001323 0.000346 ⋅ ⋅ ⋅ 0.002384
... ... ⋅ ⋅ ⋅ ...

0.026384 0.004028 ⋅ ⋅ ⋅ 0.049990

]]]]]]]]]
]12×12

. (A.10)

Here the eigenvalues of the Rmatrix are not the same as the
characteristics roots in this case. The eigenvalues of R are
given by 0.027661, 0.046758, 0.070065, 0.111779, 0.163563,0.833729, 0.046207 + 0.023748i, 0.046207 − 0.023748i,0.067628 + 0.035876i, 0.067628 − 0.035876i,0.196019 + 0.246307i, and 0.196019 − 0.246307i. Also,
we have checked that this R satisfies any of the following
equations:

[𝜋− (4 × 𝑘) ,𝜋− (4 × 𝑘 + 1) ,𝜋− (4 × 𝑘 + 2) ,
𝜋
− (4 × 𝑘 + 3)] = [𝜋− (0) ,𝜋− (1) ,𝜋− (2) ,𝜋− (3)]
⋅ R𝑘, 𝑘 ≥ 0.

(A.11)

Therefore, by the above simple computational procedure, one
may compute the Rmatrix of the corresponding 𝐺𝐼[𝑋]/𝑀/1-
type using the stationary probabilities (obtained through
characteristic roots) at an embedded prearrival epoch.
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