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A synthetic double sampling (SDS) chart is commonly evaluated based on the assumption that process parameters (namely, mean
and standard deviation) are known. However, the process parameters are usually unknown and must be estimated from an in-
control Phase-I dataset. This will lead to deterioration in the performance of a control chart. The average run length (ARL) has
been implemented as the common performance measure in process monitoring of the SDS chart. Computation of ARL requires
practitioners to determine shift size in advance. However, this requirement is too restricted as practitioners may not have the
experience to specify the shift size in advance.Thus, the expected average run length (EARL) is introduced to assess the performance
of the SDS chart when the shift size is random. In this paper, the SDS chart, with known and estimated process parameters, was
evaluated based on EARL and compared with the performance measure, ARL.

1. Introduction

The quality of products and services is an essential factor in
the world of business [1]. In order to enhance the quality
of products and services, statistical process control (SPC)
is used to monitor and attain the process of manufacturing
and services. Among the SPC techniques, control charts are
one of the most prominent techniques for detecting shifts
in a process. The first control chart was proposed by Dr.
Walter A. Shewhart, and it was named the Shewhart chart.
The Shewhart chart is frequently used to detect large process
mean shifts due to its simplicity [2]. However, the main
limitation of the Shewhart chart is that it is insensitive in
detecting moderate and small process mean shifts.

In recent years, Khoo et al. [3] suggested synthetic double
sampling (SDS) chart, which combines double sampling (DS)
subchart and conforming run length (CRL) subchart. From
the findings, the SDS chart is efficient in detecting moderate
and small process mean shifts compared to the synthetic
chart and double sampling chart. The implementation of
the SDS chart is based on the assumption that the process
parameters are known. Nevertheless, the process parameters
are generally unknown in practice. This requires for an

estimation of the process parameters from the in-control
Phase-I samples.

Saleh andMahmoud [4] claimed that when the estimated
process parameters are used in place of the known process
parameters, the performance of the control chart is affected
due to the existence of variability in the estimation. Woodall
and Montgomery [5] recognised the importance of examin-
ing the effects of parameter estimation on the performance of
a particular control chart. Therefore, the effects of parameter
estimation need to be considered when designing a control
chart. Among others, [6–8] have examined the impacts
of Phase-I parameter estimation on the performance of a
control chart.

The performance of a control chart is crucial in deter-
mining the appropriate control chart to be implemented
in a process. A common performance measure in process
monitoring is average run length (ARL). ARL is the number
of samples (on average) plotted on a control chart before it
signals an out-of-control [9]. By using ARL as a performance
measure, the chart’s user needs to determine the process shift
size.

You et al. [10] investigated the ARL performance of the
SDS chart when process parameters were estimated and this
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has motivated the current research work. In most practical
situations, it is usual that the next shift size is unknown in
advance [11, 12]. To circumvent this problem, the expected
average run length (EARL) is proposed to examine the
performance of the SDS chart when the process shift size is
unknown and random. Hence, the performance of the SDS
chart, with known and estimated process parameters, is inves-
tigated using EARL. In addition, the proposed alternative
performance measure, i.e., EARL of the SDS chart, will be
compared with the corresponding chart using ARL.

The rest of this paper is structured as follows: Section 2
presents the operation and steps to implement the SDS chart.
Moreover, the run length properties of the SDS chart with
known and estimated process parameters are also given in
Section 2. Section 3 illustrates the performance comparison
of the SDS chart, based on EARL and ARL, for known
process parameters and that of the corresponding chart with
estimated process parameters. Finally, concluding remarks
are drawn in the last section.

2. Materials and Methods

Khoo et al. [3] developed the SDS chart, which comprises
the DS subchart and a CRL subchart. The CRL subchart
is an attribute chart, with one lower limit, i.e., 𝐿3. Figure 1
illustrates the operation of the SDS chart with known process
parameters.

Step 1. Set the charting parameters 𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, and 𝐿3.
Step 2. At sampling time 𝑖 = 1, 2, . . ., take the first sample of
size 𝑛1 and the sample mean,𝑌1,𝑖 = ∑𝑛1𝑗=1 𝑌1𝑗/𝑛1, is calculated.
Step 3. Compute the standardised statistic 𝑍1,𝑖 = [(𝑌1,𝑖 −𝜇0)√𝑛1]/𝜎0 corresponding to the first sample.

Step 4. If𝑍1,𝑖 is in 𝐼1, the 𝑖th sampling time is conforming and
the control flow returns to Step 2.

Step 5. If𝑍1,𝑖 is in 𝐼3, the 𝑖th sampling time is nonconforming
and the control flow goes to Step 9.

Step 6. If 𝑍1,𝑖 is in 𝐼2, take a second sample with 𝑛2 and
compute the sample mean, 𝑌2,𝑖 = ∑𝑛2𝑗=1 𝑌2𝑗/𝑛2.
Step 7. Calculate the sample mean of the combined samples𝑌𝑖 = (𝑛1𝑌1,𝑖 + 𝑛2𝑌2,𝑖)/(𝑛1 + 𝑛2) and the standardised statistic𝑍𝑖 = [(𝑌𝑖 − 𝜇0)√𝑛1 + 𝑛2]/𝜎0 corresponding to the combined
samples.

Step 8. If Z𝑖 is in 𝐼4, and the 𝑖th sampling time is conforming,
then return to Step 2. Otherwise, the sampling time is
regarded as nonconforming and the control flow goes to
Step 9.

Step 9. Count the number of inspected sampling times
between the present and last nonconforming sampling times
inclusive of the present nonconforming sampling time, and
denote it as the CRL value.
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Figure 1: DS subchart.

Step 10. If CRL > 𝐿3, the process is in-control and the
control flow returns to Step 2. Otherwise, the process is out-
of-control and immediate actions are required to eliminate
the assignable cause(s). Then, return to Step 2.

Without loss of generality, the in-control mean, 𝜇0, and
in-control standard deviation, 𝜎0, are assumed as known. Let𝑃 = 1 −𝑃𝑎 −𝑃𝑏 be the probability of deciding that a sampling
time is nonconforming in the DS subchart. Note that 𝑃𝑎 and𝑃𝑏 can be expressed as follows [3]:𝑃𝑎 = Pr (𝑍1,𝑖 ∈ 𝐼1) = Φ (𝐿 + 𝛿√𝑛1) − Φ (−𝐿 + 𝛿√𝑛1) ,𝑃𝑏 = Pr (𝑍𝑖 ∈ 𝐼4, 𝑍1,𝑖 ∈ 𝐼2)

= ∫
𝑧∈𝐼∗
2

[Φ(𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1𝑛2)
− Φ(−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1𝑛2)]𝜙 (𝑧) 𝑑𝑧,

(1)

where Φ(⋅) and 𝜙(⋅) are the cumulative distribution function
(cdf) and probability density function (pdf) for a standard
normal random variable, respectively. Here, 𝑟 = √𝑛1 + 𝑛2,𝑐 = 𝑟/√𝑛2, and 𝐼∗2 = [−𝐿1+𝛿√𝑛1, −𝐿+𝛿√𝑛1)∪(𝐿+𝛿√𝑛1, 𝐿1+𝛿√𝑛1].

Finally, for the SDS chart when process parameters are
known, the ARL is equal to

ARL = 1𝑃 × 11 − (1 − 𝑃)𝐿3 (2)

Moreover, when the exact shift size is unknown, it is essen-
tial to consider the EARL for an overall range of shifts(𝛿min, 𝛿max), where𝛿min and𝛿max indicate the lower andupper
bounds of the mean shift, respectively. The EARL of the SDS
chart with known process parameters is

EARL = ∫𝛿max

𝛿min

𝑓𝛿 (𝛿)ARLd𝛿, (3)

where ARL can be obtained from (2) and 𝑓𝛿(𝛿) is the pdf
of the shift size 𝛿. Since the actual shape of 𝑓𝛿(𝛿) is usually
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unknown, it is assumed that the shifts in process mean
happen with equal probability; i.e., 𝛿 is uniformly distributed
with 𝑈(𝛿min, 𝛿max). Therefore, (3) reduces to

EARL = 1𝛿max − 𝛿min
∫𝛿max

𝛿min

ARL 𝑑𝛿. (4)

In reality, 𝜇0 and 𝜎0 are unknown and need to be esti-
mated from m Phase-I samples, each of size n, i.e.,{𝑋𝑖,1, 𝑋𝑖,2, ..., 𝑋𝑖,𝑛}, for i = 1, 2, . . .,m. The estimators of 𝜇0 and𝜎0 are [10]

𝜇0 = 1𝑚𝑛 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑖,𝑗, (5)

𝜎̂0 = √ 1𝑚 (𝑛 − 1) 𝑚∑𝑖=1
𝑛∑
𝑗=1

(𝑋𝑖,𝑗 − 𝑋𝑖)2, (6)

respectively. As the values of 𝜇0 and 𝜎0 are both unknown
and need to be estimated using 𝜇0 and 𝜎̂0, the standardised
statistic for the first sample and combined samples at the
sampling time 𝑖 of the DS subchart with estimated process
parameters becomes

𝑍1,𝑖 = 𝑋1,𝑖 − 𝜇0𝜎̂0/√𝑛󸀠1 , (7)

𝑍𝑖 = 𝑋𝑖 − 𝜇0𝜎̂0/√𝑛󸀠1 + 𝑛󸀠2 , (8)

respectively.
Here, 𝑛󸀠1 and 𝑛󸀠2 represent the sample sizes of the SDS chart

with the estimated process parameters. Similarly, 𝐿󸀠, 𝐿󸀠1, 𝐿󸀠2,
and 𝐿󸀠3 correspond to the limits of the SDS chart when the
process parameters are estimated.

Then, the probability for the DS subchart with the
estimated process parameters to identify a nonconform-
ing sampling time is given as 𝑃̂ = 1 − 𝑃̂𝑎 − 𝑃̂𝑏; i.e.,
[10],

𝑃̂ = 1 − [[Φ(𝑊√
𝑛󸀠1𝑚𝑛 + 𝑅𝐿󸀠 − 𝛿√𝑛󸀠1)

− Φ(𝑊√ 𝑛󸀠1𝑚𝑛 − 𝑅𝐿󸀠 − 𝛿√𝑛󸀠1)]]
− (∫
𝑧∈𝐼2

𝑃̂4 × 𝑓𝑍1,𝑖 (𝑧 | 𝜇0, 𝜎̂0) 𝑑𝑧) ,
(9)

with

𝑃̂4 = Φ[[[𝑊
√ 𝑛󸀠2𝑚𝑛 + 𝑅(𝐿

󸀠
2√𝑛󸀠1 + 𝑛󸀠2 − 𝑧√𝑛󸀠1√𝑛󸀠2 )

− 𝛿√𝑛󸀠2]]] − Φ
[[[𝑊

√ 𝑛󸀠2𝑚𝑛
− 𝑅(𝐿󸀠2√𝑛󸀠1 + 𝑛󸀠2 + 𝑧√𝑛󸀠1√𝑛󸀠2 )− 𝛿√𝑛󸀠2]]] ,

𝑓𝑍1,𝑖 (𝑧 | 𝜇0, 𝜎̂0) = 𝑅𝜙(𝑊√ 𝑛󸀠1𝑚𝑛 + 𝑅𝑧 − 𝛿√𝑛󸀠1) .

(10)

Here, 𝑊 and 𝑅 are random variables denoted
as

𝑊 = (𝜇0 − 𝜇0) √𝑚𝑛𝜎0 , (11)

𝑅 = 𝜎̂0𝜎0 , (12)

respectively.
As 𝜇0 ∼ 𝑁[𝜇0, 𝜎20/(𝑚𝑛)], it can be deduced that the pdf of𝑊 is 𝑓𝑊 (𝑤) = 𝜙 (𝑤) . (13)

For the random variable 𝑅, it is known that 𝜎̂20/𝜎20 ∼𝛾(𝑚(𝑛−1)/2, 2/(𝑚(𝑛−1))), i.e., the gamma distribution with
parameters [𝑚(𝑛−1)]/2 and 2/[𝑚(𝑛−1)]. Using this property,
the pdf of 𝑅 is as follows:

𝑓𝑅 (𝑟 | 𝑚, 𝑛) = 2𝑟𝑓𝛾 (𝑟2 | 𝑚 (𝑛 − 1)2 , 2𝑚 (𝑛 − 1)) , (14)

where 𝑓𝛾(⋅) is the pdf of the gamma distribution with
parameters [𝑚(𝑛 − 1)]/2 and 2/[𝑚(𝑛 − 1)]. Note that, for
complete and detailed derivation, reader can refer to You et
al. [10].

Thus, the ARL of the SDS chart with estimated process
parameters is

ARL𝑚 = ∫+∞
−∞

∫+∞
0

1̂𝑃 × 11 − (1 − 𝑃̂)𝐿󸀠3 𝑓𝑊 (𝑤)
⋅ 𝑓𝑅 (𝑟 | 𝑚, 𝑛) 𝑑𝑟 𝑑𝑤.

(15)

Consequently, when the process parameters are estimated
from the in-control Phase-I samples, the computation of the
EARL is

EARL𝑚

= ∫+∞
−∞

∫+∞
0

EARL𝑓𝑊 (𝑤) 𝑓𝑅 (𝑟 | 𝑚, 𝑛) 𝑑𝑟 𝑑𝑤, (16)

where EARL can be obtained from (3) by replacing 𝑃 and 𝐿3
with 𝑃̂ and 𝐿󸀠3, respectively.
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Table 1: Optimal charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) and the corresponding EARL1s for 𝑛 = {3, 4, 5, 6} with different combinations of(𝑚, 𝛿min, 𝛿max) when EARL0 = 370.4.
𝑛 𝛿min 𝛿max 𝑛1 𝑛2 𝐿 𝐿1 𝐿2 𝐿3 𝑚

30 50 80 200 500 +∞
3 0.2 1.0 2 6 1.3830 5.2804 2.0239 9 3.56 3.36 3.26 3.18 3.15 3.13

1.0 2.0 2 2 0.6745 4.8576 2.0503 2 1.02 1.02 1.02 1.01 1.01 1.01

4 0.2 1.0 3 6 1.3830 5.2804 2.0539 7 2.60 2.51 2.46 2.42 2.40 2.40
1.0 2.0 3 3 0.9674 4.9920 2.0086 2 1.00 1.00 1.00 1.00 1.00 1.00

5 0.2 1.0 3 8 1.1503 5.0443 2.0618 6 2.05 2.00 1.98 1.96 1.96 1.95
1.0 2.0 4 3 0.9674 4.9920 2.0363 2 1.00 1.00 1.00 1.00 1.00 1.00

6 0.2 1.0 4 9 1.2206 5.1630 2.0210 5 1.73 1.71 1.69 1.68 1.68 1.67
1.0 2.0 5 3 0.9674 4.9920 2.0527 2 1.00 1.00 1.00 1.00 1.00 1.00

3. Results and Discussion

In practice, the exact shift size of a process is unknown. In this
situation, if the corresponding optimal charting parameters
are employed based on a particular shift size, the performance
of the control chart will be significantly different if different
shift occurred in the process. Therefore, it is essential to
evaluate the performance of the SDS chart using alternative
performance measure, i.e., EARL. In this paper, the optimal
charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) of the SDS chart
were computed using a nonlinear minimisation problem, i.e.,
optimal statistical design that minimises the out-of-control
EARL (EARL1).Theprogrammes arewritten in the ScicosLab
software version 4.4.2 (http://www.scicoslab.org).

The optimal charting parameters and the correspond-
ing EARL1s with different combinations of sample size,𝑛 = {3, 4, 5, 6}, the number of Phase-I samples, 𝑚 ={30, 50, 80, 200, 500, +∞} with (𝛿min, 𝛿max) = (0.2, 1.0) and(𝛿min, 𝛿max) = (1.0, 2.0) with the in-control EARL, i.e.,
EARL0 = 370.4, are presented in Table 1. Here, 𝑚 = +∞
denotes the known process parameters case, while 𝑚 ={30, 50, 80, 200, 500} denotes the estimated process param-
eters case. The performance of the SDS chart for both
the known and estimated process parameters cases was
calculated using the optimal charting parameters in columns
4–9, which were obtained by minimising EARL1 when the
process parameters are known.

From Table 1, for the same 𝑛, 𝛿min, and 𝛿max, the value
of EARL1 decreases with the increases in 𝑚. This is due
to the fact that as the more Phase-I samples are taken,
the performance of the estimated process parameters SDS
chart approaches to the corresponding chart with known
process parameters; i.e., EARL1 value decreases to indicate
better performance. For instance, when 𝑛 = 3, 𝛿min =0.2, and 𝛿max = 1.0, the optimal charting parameters(𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) = (2, 6, 1.3830, 5.2804, 2.0239, 9) yield
the lowest EARL1 = 3.13, when the process parameters are
known. With these optimal charting parameters, EARL1 ={3.56, 3.36, 3.26, 3.18, 3.15} for 𝑚 = {30, 50, 80, 200, 500},
respectively. It is noticeable that the EARL1 for the estimated
process parameters case is deviated from the known process
parameters. However, the EARL1 value approaches to the
EARL1 value which corresponds to the 𝑚 = +∞ when

the number of Phase-I samples increased. These findings
show that more than 80 Phase-I samples are required to
reduce the effects of process parameters estimation when
estimating the process parameters from the in-control Phase-
I samples.

To illustrate the implementation of the proposed optimal
charting parameters, Table 2 presents the optimal charting
parameters for the known process parameters SDS chart
based on minimising out-of-control ARL (ARL1) and the
corresponding ARL1s for the same combinations of (𝑚, 𝑛)
in Table 1. Here, the in-control ARL, i.e., ARL0 = 370.4
is intended. Note that 𝛿 = {0.2, 0.5, 0.9, 1.2, 1.5, 1.9} are
considered here to accommodate the (𝛿min, 𝛿max) that are
considered in Table 1; i.e., 𝛿 ∈ {0.2, 0.5, 0.9} and 𝛿 ∈{1.2, 1.5, 1.9} are included in (𝛿min, 𝛿max) = (0.2, 1.0) and(𝛿min, 𝛿max) = (1.0, 2.0), respectively. In Table 1, when 𝑛 = 3,𝛿min = 0.2, and 𝛿max = 1.0, the EARL1 = 3.13 is obtained
using the optimal charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) =(2, 6, 1.3830, 5.2804, 2.0239, 9). Here, by using the same opti-
mal charting parameters for 𝛿 = 0.5 (i.e. 𝛿 ∈ (𝛿min, 𝛿max)),
it yields ARL1 = {17.76, 14.32, 12.89, 11.72, 11.32} when𝑚 = {30, 50, 80, 200, 500} using the ScicolsLab program. It is
observed that the ARL1 value is almost the same to those in
Table 2 when 𝑛 = 3 and 𝛿 = 0.5, although the optimal chart-
ing parameters based on minimising ARL1 are different, i.e.,(𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) = (2, 6, 1.3830, 5.2804, 2.1867, 18) (see
Table 2). This indicates that the optimal charting parameters
obtained based on minimising EARL1 can be employed as
long as 𝛿 ∈ (𝛿min, 𝛿max), i.e., when the practitioners do not
have knowledge to determine the exact process shift size in
advance.

4. Conclusions

In the production andmanufacturing industries, it is a typical
situation where quality practitioners are undecided about the
process shift size to be implemented. The findings showed
that the performance criterion EARL is capable of tackling
the random shift size situation. Furthermore, the results also
revealed that the performance of the SDS chart was adversely
affected by process parameters estimation. This was proven
whenmore than 80Phase-I sampleswere needed for the chart
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Table 2: Optimal charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) and the corresponding ARL1s for 𝑛 = {3, 4, 5, 6} with different combinations of(𝑚, 𝛿) when ARL0 = 370.4.
𝑛 𝛿 𝑛1 𝑛2 𝐿 𝐿1 𝐿2 𝐿3 𝑚

30 50 80 200 500 +∞
3

0.2 2 6 1.3830 5.2804 2.4572 68 247.22 168.88 136.75 110.56 101.56 96.01
0.5 2 6 1.3830 5.2804 2.1867 18 16.68 13.35 12.03 10.99 10.63 10.41
0.9 2 6 1.3830 5.2804 1.9945 8 2.83 2.72 2.67 2.62 2.60 2.59
1.2 2 4 1.1503 5.0443 2.0178 4 1.64 1.62 1.60 1.59 1.58 1.58
1.5 2 3 0.9674 4.9920 2.0523 3 1.24 1.23 1.23 1.22 1.22 1.22
1.9 2 3 0.9674 4.9920 2.0523 3 1.06 1.06 1.06 1.05 1.05 1.05

4

0.2 3 8 1.5341 5.1956 2.3954 60 149.45 113.15 95.73 80.45 75.01 71.62
0.5 3 8 1.5341 5.1956 2.0910 15 9.65 8.45 7.93 7.49 7.33 7.23
0.9 3 6 1.3830 5.2804 2.0153 6 2.12 2.07 2.04 2.02 2.01 2.00
1.2 3 4 1.1503 5.0443 2.0185 3 1.34 1.33 1.32 1.32 1.32 1.31
1.5 3 3 0.9674 4.9920 2.0086 2 1.10 1.10 1.10 1.09 1.09 1.09
1.9 3 3 0.9674 4.9920 2.0086 2 1.01 1.01 1.01 1.01 1.01 1.01

5

0.2 4 10 1.6449 5.1247 2.3394 55 108.31 84.83 73.06 62.63 58.92 56.60
0.5 3 10 1.2816 5.1041 2.1216 12 6.64 6.05 5.78 5.54 5.46 5.40
0.9 3 8 1.1503 5.0443 2.0186 5 1.73 1.71 1.69 1.68 1.68 1.67
1.2 4 4 1.1503 5.0443 2.0615 3 1.20 1.19 1.19 1.18 1.18 1.18
1.5 4 4 1.1503 5.0443 1.9647 2 1.05 1.04 1.04 1.04 1.04 1.04
1.9 4 3 0.9674 4.9920 2.0363 2 1.00 1.00 1.00 1.00 1.00 1.00

6

0.2 4 12 1.3830 5.2804 2.3744 44 84.09 66.77 58.05 50.35 47.62 45.91
0.5 4 12 1.3830 5.2804 2.0727 11 5.02 4.69 4.54 4.40 4.35 4.32
0.9 4 8 1.1503 5.0443 2.0178 4 1.50 1.48 1.47 1.46 1.46 1.46
1.2 5 5 1.2816 5.1041 2.0235 3 1.12 1.11 1.11 1.11 1.11 1.11
1.5 5 4 1.1503 5.0443 1.9954 2 1.02 1.02 1.02 1.02 1.02 1.02
1.9 5 3 0.9674 4.9920 2.0527 2 1.00 1.00 1.00 1.00 1.00 1.00

with the estimated process parameters to behave similarly like
the one with known process parameters. Therefore, future
research works can consider the optimal charting parameters
by minimising EARL1 for the SDS chart when the process
parameters are estimated.

Data Availability

The ScicosLab programs to compute the average run length
and expected average run length of the synthetic double
sampling chart can be requested from the author.
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