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The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM) is tracked from a given observational
sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce
an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a
useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible
optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction
approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order
to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially
with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model
parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based
order-transformation forward algorithm (EOTFA) to compute the optimal state sequence of any generalized HHMM.This EOTFA
algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based
decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on
the observational sequence and it requires𝑂(𝑇𝑁̃2) calculations, where 𝑁̃ is the number of states in an equivalent first-order model
and 𝑇 is the length of observational sequence.

1. Introduction

State sequence for the Hidden Markov Model (HMM) is
invisible but we can track the most likelihood state sequence
based on the model parameter and a given observational
sequence.The restored state has many applications especially
when the hidden state sequence has meaningful interpre-
tations for making predictions. For example, Ciriza et al.
[1] have determined the optimal printing rate based on the
HMM model parameter and an optimal time-out based on
the restored states.The classical Viterbi algorithm is the most
common technique for tracking state sequence from a given
observational sequence [2]. However, it does not measure
the uncertainty present in the solution. Proakis and Salehi
[3] proposed a method for measuring the error of a single
state but this method is unable to measure the error of

the entire state sequence. Hernando et al. [4] proposed a
method of using entropy formeasuring the uncertainty of the
state sequence of a first-order HMM tracked from a single
observational sequence with a length of 𝑇. The method is
based on the forward recursion algorithm integrated with
entropy for computing the optimal state sequence. Mann and
McCallum [5] developed an algorithm for computing the
subsequent constrained entropy of HMM which is similar
to the probabilistic model conditional random fields (CRF).
Ilic [6] developed an algorithm based on forward-backward
recursion over the entropy semiring, namely, the Entropy
Semiring Forward-Backward (ESRFB) algorithm for a first-
order HMM with a single observational sequence. ESRFB
has lower memory requirement as compared with Mann and
McCallum’s algorithm for subsequent constrained entropy
computation.
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This paper is organized as follows. In Section 2, we
define the generalized HHMM and present the extended
entropy-based algorithm for computing the optimal state
sequence developed by Hernando et al. [4] from a first-order
to a generalized HHMM. In Section 3, we first review the
high-order transformation algorithm proposed byHadar and
Messer [7] and then we introduce EOTFA, an entropy-based
order-transformation forward algorithm for computing the
optimal state sequence for any generalized HHMM. We
discuss future research in Section 4 on entropy associated
with state sequence of a generalized high-order HMM.

2. Entropy-Based Decoding Algorithm with
an Extended Approach

The uncertainty appearing in a HHMM can be quantified
by entropy. This concept is applied for quantifying the
uncertainty of the state sequence tracked from a single
observational sequence and model parameters. The entropy
of the state sequence equals 0 if there is only one possible state
sequence that could have generated the observation sequence
as there is no uncertainty in the solution. The higher this
entropy the higher the uncertainty involved in tracking the
hidden state sequence. We extend the entropy-based Viterbi
algorithm developed by Hernando et al. [4] for computing
the optimal state sequence from a first-order HMM to a high-
orderHMM, that is, 𝑘th-order, where 𝑘 ≥ 2.The state entropy
in HHHM is computed recursively for the reason of reducing
the computational complexity from 𝑂(𝑁𝑘𝑇) which used
direct evaluation method to 𝑂(𝑇𝑁𝑘+1) in a HHMM where𝑁 is the number of states, 𝑇 is the length of observational
sequence, and 𝑘 is the order of the HiddenMarkovModel. In
terms of memory space, the entropy-based Viterbi algorithm
is more efficient which requires 𝑂(𝑁𝑘+1) as compared to
the classical Viterbi algorithm which requires𝑂(𝑇𝑁𝑘+1). The
memory space for the classical Viterbi algorithm is dependent
on the length of the observational sequence due to the
involvement of the process of “back tracking” in computing
the optimal state sequence.

Before introducing the extended entropy-based Viterbi
algorithm, we define a generalized high-order HMM, that is,𝑘th-order HMM, where 𝑘 ≥ 2. These are followed by the
definition of forward and backward probability variables for
a generalized high-order HMM.These variables are required
for computing the optimal state sequence in our decoding
algorithm.

2.1. Elements of HHMM. HHMM involves two stochastic
processes, namely, hidden state process and observation
process.Thehidden state process cannot be directly observed.
However, it can be observed through the observation process.
The observational sequence is generated by the observation
process incorporated with the hidden state process. For a
discrete HHMM, it must satisfy the following conditions.

Thehidden state process {𝑞𝑡}𝑇𝑡=2−𝑘 is the 𝑘th-orderMarkov
chain that satisfies

𝑃 (𝑞𝑡 | {𝑞𝑙}𝑙<𝑡) = 𝑃 (𝑞𝑡 | {𝑞𝑙}𝑡−1𝑙=𝑡−𝑘) , (1)

where 𝑞𝑡 denotes the hidden state at time 𝑡 and 𝑞𝑡 ∈ 𝑆, where𝑆 is the finite set of hidden states.
The observation process {𝑜𝑡}𝑇𝑡=1 is incorporated with

the hidden state process according to the state probability
distribution that satisfies

𝑃 (𝑜𝑡 | {𝑜𝑙}𝑙<𝑡 , {𝑞𝑙}𝑙≤𝑡) = 𝑃 (𝑜𝑡 | {𝑞𝑙}𝑡𝑙=𝑡−𝑘+1) , (2)

where 𝑜𝑡 denotes the observation at time 𝑡 and 𝑜𝑡 ∈ 𝑉, where𝑉 is the finite set of observation symbols.
The elements for the 𝑘th-order discrete HMM are as

follows:

(i) Number of distinct hidden states,𝑁
(ii) Number of distinct observed symbols,𝑀
(iii) Length of observational sequence, 𝑇
(iv) Observational sequence, 𝑂 = {𝑜𝑡, 𝑡 = 1, 2, . . . , 𝑇}
(v) Hidden state sequence, 𝑄 = {𝑞𝑡, 𝑡 = 2 − 𝑘, . . . , 𝑇}
(vi) Possible values for each state, 𝑆 = {𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑁}
(vii) Possible symbols per observation, 𝑉 = {V𝑤, 𝑤 =1, 2, . . . ,𝑀}
(viii) Initial hidden state probability vector,𝜋𝑖1 , 𝜋𝑖1𝑖2 , . . . , 𝜋𝑖1 ⋅⋅⋅𝑖𝑘

where 𝜋𝑖1 is the probability that model will transit
from state 𝑠𝑖1 ,

𝜋𝑖1 = 𝑃 (𝑞1 = 𝑠𝑖1) ,
𝑁∑
𝑖1=1

𝜋𝑖1 = 1,
𝜋𝑖1 ≥ 0, 1 ≤ 𝑖1 ≤ 𝑁

(3)

𝜋𝑖1𝑖2 is the probability that model will transit from
state 𝑠𝑖1 and state 𝑠𝑖2 ,

𝜋𝑖1𝑖2 = 𝑃 (𝑞0 = 𝑠𝑖1 , 𝑞1 = 𝑠𝑖2) ,
𝑁∑
𝑖2=1

𝜋𝑖1𝑖2 = 1,
𝜋𝑖1𝑖2 ≥ 0, 1 ≤ 𝑖1, 𝑖2 ≤ 𝑁,

...

(4)

𝜋𝑖1 ⋅⋅⋅𝑖𝑘 is the probability that model will transit from
state 𝑠𝑖1 , state 𝑠𝑖2 , . . ., and state 𝑠𝑖𝑘 ,

𝜋𝑖1 ⋅⋅⋅𝑖𝑘 = 𝑃 (𝑞2−𝑘 = 𝑠𝑖1 , 𝑞3−𝑘 = 𝑠𝑖2 , . . . , 𝑞1 = 𝑠𝑖𝑘) ,
𝑁∑
𝑖𝑘=1

𝜋𝑖1 ⋅⋅⋅𝑖𝑘 = 1,
𝜋𝑖1 ⋅⋅⋅𝑖𝑘 ≥ 0, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁

(5)
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(ix) State transition probability matrix, 𝐴1 = {𝑎𝑖1𝑖2}, 𝐴2 ={𝑎𝑖1𝑖2𝑖3}, . . . , 𝐴𝑘 = {𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1},
where 𝐴𝑗−1 is the 𝑗-dimensional state transition
probability matrix and 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑗 , is the probability of a
transition to state 𝑠𝑖𝑗 given that it has had a transition
from state 𝑠𝑖1 to state 𝑠𝑖2 to ⋅ ⋅ ⋅ and to state 𝑠𝑖𝑗−1 where𝑗 = 2, . . . , 𝑘 + 1,

𝑎𝑖1 ⋅⋅⋅𝑖𝑗 = 𝑃 (𝑞𝑡 = 𝑠𝑖𝑗 | 𝑞𝑡−1 = 𝑠𝑖𝑗−1 , 𝑞𝑡−2 = 𝑠𝑖𝑗−2 , . . . , 𝑞𝑡−𝑗+1
= 𝑠𝑖1) ,
𝑁∑
𝑖𝑗=1

𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑗 = 1,
𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑗 ≥ 0

(6)

(x) Emission probability matrix, 𝐵1 = {𝑏𝑖1(V𝑚)}, 𝐵2 ={𝑏𝑖1𝑖2(V𝑚)}, . . . , 𝐵𝑘 = {𝑏𝑖1 ⋅⋅⋅𝑖𝑘(V𝑚)},
where𝐵1 is the two-dimensional emission probability
matrix and 𝑏𝑖1(V𝑚) is a probability of observing V𝑚 in
state 𝑠𝑖1 ,

𝑏𝑖1 (V𝑚) = 𝑃 (𝑜𝑡 = V𝑚 | 𝑞𝑡 = 𝑠𝑖1) ,
𝑀∑
𝑚=1

𝑏𝑖1 (V𝑚) = 1,
𝑏𝑖1 (V𝑚) ≥ 0, 1 ≤ 𝑖1 ≤ 𝑁,

(7)

where𝐵𝑗 is the 𝑗+1-dimensional emission probability
matrix and 𝑏𝑖1 ⋅⋅⋅𝑖𝑗(V𝑚) is a probability of observing V𝑚
in state 𝑠𝑖1 at time 𝑡 − 𝑗 + 1, 𝑠𝑖2 at time 𝑡 − 𝑗 + 2, . . ., and𝑠𝑖𝑗 at time 𝑡 where 𝑗 = 2, . . . , 𝑘,

𝑏𝑖1 ⋅⋅⋅𝑖𝑗 (V𝑚)
= 𝑃 (𝑜𝑡 = V𝑚 | 𝑞𝑡 = 𝑠𝑖𝑗 , 𝑞𝑡−1 = 𝑠𝑖𝑗−1 , . . . , 𝑞𝑡−𝑗+1 = 𝑠𝑖1) ,
𝑀∑
𝑚=1

𝑏𝑖1⋅⋅⋅𝑖𝑗 (V𝑚) = 1,
𝑏𝑖1 ⋅⋅⋅𝑖𝑗 (V𝑚) ≥ 0, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑗 ≤ 𝑁

(8)

For the 𝑘th-order discrete HMM, we summarize the
parameters by using the components of 𝜆 = (𝜋𝑖1 , 𝜋𝑖1𝑖2 ,. . . , 𝜋𝑖1𝑖2 ⋅⋅⋅𝑖𝑘 , 𝐴1, 𝐴2, . . . , 𝐴𝑘, 𝐵1, 𝐵2, . . . , 𝐵𝑘).

Note that throughout this paper, we will use the following
notations.

(i) 𝑞1:𝑡 denotes 𝑞1, 𝑞2, . . . , 𝑞𝑡
(ii) 𝑜1:𝑡 denotes 𝑜1, 𝑜2, . . . , 𝑜𝑡

2.2. Forward and Backward Probability. The entropy-based
algorithm proposed by Hernando et al. [4] for computing the
optimal state sequence of a first-order HMM is incorporated
with forward recursion process. Recently, high-order HMM
are widely used in a variety of applications such as speech
recognition [8, 9] and longitudinal data analysis [10, 11]. For
the HHMM, the Markov assumption has been weakened
since the next state not only depends on the current state but
also depends on other historical states. The state dependency
is subjected to the order of HMM. Hence we have to modify
the classical forward and backward probability variables for
the HHMM, that is, the 𝑘th-order HMM where 𝑘 ≥ 2 are
shown as follows.

Definition 1. The forward variable 𝛼𝑡(𝑖2, 𝑖3, . . . , 𝑖𝑘+1) in the𝑘th-order HMM is a joint probability of the partial observa-
tion sequence 𝑜1, 𝑜2, . . . , 𝑜𝑡 and the hidden state of 𝑠𝑖2 at time𝑡−𝑘+1, 𝑠𝑖3 at time 𝑡−𝑘+2, . . . , 𝑠𝑖𝑘+1 at time 𝑡where 1 ≤ 𝑡 ≤ 𝑇.
It can be denoted as

𝛼𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝜆) .

(9)

From (9), 𝑡 = 1 and 1 ≤ 𝑖2, 𝑖3, . . . , 𝑖𝑘+1 ≤ 𝑁, we obtain the
initial forward variable as

𝛼1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)
= 𝑃 (𝑜1, 𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1 | 𝜆)
= 𝑃 (𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1)
⋅ 𝑃 (𝑜1 | 𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1)
= 𝜋𝑖2𝑖3⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜1) .

(10)

From (9), (10), and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘, 𝑖𝑘+1 ≤ 𝑁, we obtain the
recursive forward variable for 𝑡 = 2, . . . , 𝑇,
𝛼𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘+1 = 𝑠𝑖2 ,

𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝜆)
= 𝑁∑
𝑖1=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2
= 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝜆)
= 𝑁∑
𝑖1=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡−1, 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝜆) 𝑃 (𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘
= 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘) × 𝑃 (𝑜𝑡 | 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1)
= [ 𝑁∑
𝑖1=1

𝛼𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1] 𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡) .

(11)
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Definition 2. The backward probability variable 𝛽𝑡(𝑖1, 𝑖2, . . . ,𝑖𝑘) in the 𝑘th-order HMM is a conditional probability of
the partial observation sequence 𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 given the
hidden state of 𝑠𝑖1 at time 𝑡 − 𝑘+1, 𝑠𝑖2 at time 𝑡 − 𝑘+2, . . ., and𝑠𝑖𝑘 at time 𝑡. It can be denoted as

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1
= 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆) ,

(12)

where 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁.
We obtain the initial backward probability variable as

𝛽𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 1. (13)

From (12) and (13), we obtain the recursive backward proba-
bility variable for 𝑡 = 1, 2, . . . , 𝑇 − 1,

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 ,
𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆)
= 𝑁∑
𝑖𝑘+1=1

𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇, 𝑞𝑡+1 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘+1
= 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆)

= 𝑁∑
𝑖𝑘+1=1

𝑃 (𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡+1
= 𝑠𝑖𝑘+1 , 𝜆) 𝑃 (𝑞𝑡+1 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘 , 𝜆) × 𝑃 (𝑜𝑡+1 | 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡+1 = 𝑠𝑖𝑘+1)
= 𝑁∑
𝑖𝑘+1=1

𝛽𝑡+1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡+1) .
(14)

The probability of the observational sequence given the
model parameter for the first-orderHMMcan be represented
by using the classical forward probability and backward
probability variables [2]. We extend it to HHMM by using
our modified forward probability and backward probability
variables. The proof is due to Rabiner [2].

Definition 3. Let 𝛼𝑡(𝑖1, 𝑖2, . . . , 𝑖𝑘) and 𝛽𝑡(𝑖1, 𝑖2, . . . , 𝑖𝑘) be the
forward probability variable and backward probability vari-
able, respectively; 𝑃(𝑂 | 𝜆) is presented using the forward
and backward probability variables as

𝑃 (𝑂 | 𝜆) = 𝑃 (𝑜1, . . . , 𝑜𝑇 | 𝜆)
= 𝑁∑
𝑖𝑖=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝛼𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) . (15)

Proof.

𝑃 (𝑂 | 𝜆) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑇 | 𝜆) = 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑇, 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 | 𝜆)

= 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 | 𝜆)

× 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆)

= 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝛼𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) .

(16)

We now normalize both of the forward and backward prob-
ability variables. These normalized variables are required as
the intermediate variables for the algorithm of state entropy
computation.

Definition 4. The normalized forward probability variable𝛼̂𝑡(𝑖2, 𝑖3, . . . , 𝑖𝑘+1) in the 𝑘th-order HMM is defined as the
probability of the hidden state of 𝑠𝑖2 at time 𝑡 − 𝑘 + 1, 𝑠𝑖3 at
time 𝑡 − 𝑘 + 2, . . . , 𝑠𝑖𝑘+1 at time 𝑡 given the partial observation
sequence 𝑜1, 𝑜2, . . . , 𝑜𝑡 where 1 ≤ 𝑡 ≤ 𝑇.

𝛼̂𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘+1 | 𝑜1, 𝑜2, . . . , 𝑜𝑡) .

(17)

From (10), (17), 𝑡 = 1, and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁, we obtain the
initial normalized forward probability variable as

𝛼̂1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)
= 𝑃 (𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1 | 𝑜1)
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= 𝑃 (𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1 , 𝑜1)𝑃 (𝑜1)
= 𝜋𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜1)𝑟0 ,

(18)

where

𝑟0 = 𝑁∑
𝑗𝑘=1

⋅ ⋅ ⋅ 𝑁∑
𝑗1=1

𝜋𝑗1𝑗2 ⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2⋅⋅⋅𝑗𝑘 (𝑜1) . (19)

From (11), (17), (18), and 𝑡 = 2, . . . , 𝑇, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘, 𝑖𝑘+1 ≤𝑁, we obtain the recursive normalized forward probability
variable as

𝛼̂𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)
= 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑜1, 𝑜2, . . . , 𝑜𝑡)

= 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1, 𝑜2, . . . , 𝑜𝑡)𝑃 (𝑜𝑡 | 𝑜1, 𝑜2, . . . , 𝑜𝑡−1)

= [∑𝑁𝑖1=1 𝛼̂𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1] 𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡)𝑟𝑡 ,

(20)

where

𝑟𝑡 = 𝑁∑
𝑗𝑘=1

⋅ ⋅ ⋅ 𝑁∑
𝑗1=1

𝑁∑
𝑖1=1

𝛼𝑡−1 (𝑖1, 𝑗1, . . . , 𝑗𝑘−1)
⋅ 𝑎𝑖1𝑗1⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2 ⋅⋅⋅𝑗𝑘 (𝑜𝑡) .

(21)

Note that the normalization factor 𝑟𝑡 ensures that the prob-
abilities sum to one and it also represents the conditional
observational probability [2].

Definition 5. The normalized backward probability variable𝛽𝑡(𝑖1, 𝑖2, . . . , 𝑖𝑘) in the 𝑘th-order HMM is defined as the
quotient of a conditional probability of the partial obser-
vation sequence 𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 given the hidden state of𝑠𝑖1 at time 𝑡 − 𝑘 + 1, 𝑠𝑖2 at time 𝑡 − 𝑘 + 2, . . . , 𝑠𝑖𝑘 at
time 𝑡, and a conditional probability of the partial observa-
tion sequence 𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 given the entire observation
sequence 𝑜1, 𝑜2, . . . , 𝑜𝑇. It can be denoted as

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
= 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘)𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇) , (22)

where 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁
From (14) and (22), we obtain the recursive normalized

backward probability variable as

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘)𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= ∑𝑁𝑖𝑘+1=1 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝑞𝑡+1 = 𝑠𝑖𝑘+1)𝑃 (𝑜𝑡+1, . . . , 𝑜𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= ∑𝑁𝑖𝑘+1=1 𝛽𝑡+1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡+1)𝑟𝑡+1 ,

(23)

where

𝑟𝑡+1 = 𝑁∑
𝑗𝑘=1

⋅ ⋅ ⋅ 𝑁∑
𝑗1=1

𝑁∑
𝑖1=1

𝛼𝑡 (𝑖1, 𝑗1, . . . , 𝑗𝑘−1)
⋅ 𝑎𝑖1𝑗1 ⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2 ⋅⋅⋅𝑗𝑘 (𝑜𝑡+1) .

(24)

Our extended algorithm includes the normalized forward
recursion given by (18) and (20). The extended algorithm for
the 𝑘th-order HMM requires 𝑂(𝑇𝑁𝑘+1) calculations if we
include either normalized forward recursion given by (18)
and (20) or the normalized backward recursion given by
(13) and (23). The direct evaluation method, in comparison,
requires 𝑂(𝑁𝑇+𝑘−1) calculations where 𝑁 is the number of
states, 𝑇 is the length of observational sequence, and 𝑘 is the
order of the Hidden Markov Model.

2.3. The Algorithm by Hernando et al. Hernando et al. [4]
are pioneers for using entropy to compute the optimal state
sequence of a first-order HMM with a single observational
sequence. This algorithm is based on a first-order HMM
normalized forward probability,

𝛼̂𝑡 (𝑗) = 𝑃 (𝑞𝑡 = 𝑠𝑗 | 𝑜1, 𝑜2, . . . , 𝑜𝑡) , (25)

auxiliary probability,

𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) , (26)

and intermediate entropy,

𝐻𝑡 (𝑠𝑗) = 𝐻(𝑞1:𝑡−1 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) . (27)

The entropy-based algorithm for computing the optimal state
sequence of a first-order HMM is as follows [4].
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(1) Initialization. For 𝑡 = 1 and 1 ≤ 𝑗 ≤ 𝑁,

𝐻1 (𝑠𝑗) = 0,
𝛼̂1 (𝑗) = 𝜋𝑗𝑏𝑗 (𝑜1)

∑𝑁𝑖=1 𝜋𝑖𝑏𝑖 (𝑜1) .
(28)

(2) Recursion. For 𝑡 = 2, . . . , 𝑇 − 1, and 1 ≤ 𝑗 ≤ 𝑁,

𝛼̂𝑡 (𝑗) = ∑𝑁𝑖=1 𝛼̂𝑡−1 (𝑖) 𝑎𝑖𝑗𝑏𝑗 (𝑜𝑡)∑𝑁𝑘=1∑𝑁𝑖=1 𝛼̂𝑡−1 (𝑖) 𝑎𝑖𝑘𝑏𝑘 (𝑜𝑡) ,

𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) = 𝑎𝑖𝑗𝛼̂𝑡−1 (𝑖)
∑𝑁𝑘=1∑𝑁𝑖=1 𝑎𝑖𝑘𝛼̂𝑡−1 (𝑖) ,

𝐻𝑡 (𝑠𝑗) = 𝑁∑
𝑖=1

[𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖)]

− 𝑁∑
𝑖=1

[𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ log2𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗)] .

(29)

(3) Termination

𝐻𝑇 (𝑞1:𝑇 | 𝑜1:𝑇) = 𝑁∑
𝑖=1

𝐻𝑇 (𝑠𝑖) 𝛼̂𝑇 (𝑖)

− 𝑁∑
𝑖=1

𝛼̂𝑇 (𝑖) log2𝛼̂𝑇 (𝑖) .
(30)

This algorithm performs the computation linearly with
respect to the length of the observation sequence with
computational complexity 𝑂(𝑇𝑁2). It requires the memory
space of 𝑂(𝑁2) which indicates that the memory space is
independent of the observational sequence.

2.4. The Computation of the Optimal State Sequence for a
HHMM. The extended classical Viterbi algorithm is com-
monly used for computing the optimal state sequence for
HHMM. This algorithm provides the solution along with its
likelihood. This likelihood probability can be determined as
follows.

𝑃 (𝑞1, 𝑞2, . . . , 𝑞𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= 𝑃 (𝑞1, 𝑞2, . . . , 𝑞𝑇, 𝑜1, 𝑜2, . . . , 𝑜𝑇)𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑇) . (31)

This probability can be used as a measure of quality of the
solution. The higher the probability of our “solution,” the
better our “solution.” Entropy can also be used for measuring
the quality of the state sequence of the 𝑘th-order HMM.
Hence, state entropy is proposed to be used for obtaining the
optimal state sequence of a HHMM.

Wedefine entropy of a discrete randomvariable as follows
[12].

Definition 6. Theentropy𝐻(𝑋) of a discrete random variable𝑋 with a probability mass function 𝑃(𝑋 = 𝑥) is defined as

𝐻(𝑋) = − ∑
𝑥∈𝑋

𝑃 (𝑥) log2𝑃 (𝑥) . (32)

When the log has a base of 2, the unit of the entropy is bits.
Note that 0 log 0 = 0.

From (32), the entropy of the distribution for all possible
state sequences is as follows:

𝐻(𝑞1, 𝑞2, . . . , 𝑞𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇) = −∑
𝑄

[𝑃 (𝑞1
= 𝑠𝑖1 , 𝑞2 = 𝑠𝑖2 , . . . , 𝑞𝑇 = 𝑠𝑖𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
⋅ log2𝑃 (𝑞1 = 𝑠𝑖1 , 𝑞2 = 𝑠𝑖2 , . . . , 𝑞𝑇
= 𝑠𝑖𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)] .

(33)

For the first-order HMM, if all 𝑁𝑇 possible state sequences
are equally likely to generate a single observational sequence
with a length of 𝑇, then the entropy equals 𝑇 log2𝑁. The
entropy is 𝑘𝑇 log2𝑁 in the 𝑘th-orderHMM if all𝑁𝑘𝑇 possible
state sequences are equally likely to produce the observational
sequence.

For this extended algorithm, we require an intermediate
state entropy variable, 𝐻𝑡(𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) that can be com-
puted recursively using the previous variable,𝐻𝑡−1(𝑠𝑖1 , 𝑠𝑖2 , . . . ,𝑠𝑖𝑘).

We define the state entropy variable for the 𝑘th-order
HMM as follows.

Definition 7. The state entropy variable, 𝐻𝑡(𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1),
in the 𝑘th-orderHMMis the entropy of all the state sequences
that lead to state of 𝑠𝑖2 at time 𝑡 − 𝑘 + 1, 𝑠𝑖3 at time 𝑡 −𝑘 + 2, . . ., and 𝑠𝑖𝑘+1 at time 𝑡, given the observation sequence𝑜1, 𝑜2, . . . , 𝑜𝑡. It can be denoted as

𝐻𝑡 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) = 𝐻(𝑞2−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) .

(34)

We analyse the state entropy for the 𝑘th-order HMM in
detail, shown as follows.

From (34) and 𝑡 = 1, we obtain the initial state entropy
variable as

𝐻1 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) = 0. (35)

From (34) and (35) we obtain the recursion on the entropy
for 𝑡 = 2, . . . , 𝑇, and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘+1 ≤ 𝑁,

𝐻𝑡 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑖𝑘+1) = 𝐻(𝑞2−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
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= 𝐻(𝑞𝑡−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘+1 , 𝑜1:𝑡) + 𝐻(𝑞2−𝑘:𝑡−2 | 𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2

= 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) ,
(36)

where

𝐻(𝑞𝑡−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
= − 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡))] ,

𝐻 (𝑞2−𝑘:𝑡−2 | 𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
= 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
⋅ 𝐻 (𝑞2−𝑘:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)]
= 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)] .

(37)

The auxiliary probability 𝑃(𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 =𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) is required for
our extended entropy-based algorithm. It can be computed as
follows:

𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
= 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑜1:𝑡−1) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑜1:𝑡−1)𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑜1:𝑡−1)
= 𝑃 (𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1) 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑜1:𝑡−1)𝑃 (𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1) 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑜1:𝑡−1)
= 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑜1:𝑡−1)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑗2 , . . . , 𝑞𝑡 = 𝑠𝑗𝑘+1 | 𝑞𝑡−𝑘 = 𝑠𝑗1 , . . . , 𝑞𝑡−1 = 𝑠𝑗𝑘) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑗1 , . . . , 𝑞𝑡−1 = 𝑠𝑗𝑘 | 𝑜1:𝑡−1)
= 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘𝑖𝑘+1 𝛼̂𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝑎𝑗1𝑗2⋅⋅⋅𝑗𝑘𝑖𝑘+1 𝛼̂𝑡−1 (𝑗1, 𝑗2, . . . , 𝑗𝑘) .

(38)

For the final process of our extended algorithm, we are
required to compute the conditional entropy 𝐻(𝑞1:𝑇 | 𝑜1:𝑇)
which can be expanded as follows:

𝐻(𝑞1:𝑇 | 𝑜1:𝑇) = 𝐻 (𝑞1:𝑇−𝑘 | 𝑞𝑇−𝑘+1 = 𝑠𝑖1 , 𝑞𝑇−𝑘+2 = 𝑠𝑖2 ,
𝑞𝑇−𝑘+3 = 𝑠𝑖3 , . . . , 𝑞𝑇 = 𝑠𝑖𝑘 , 𝑜1:𝑇) + 𝐻 (𝑞𝑇−𝑘+1:𝑇 | 𝑜1:𝑇)
= 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝐻𝑇 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)
⋅ 𝛼̂𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)

− 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝛼̂𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
⋅ log2 (𝛼̂𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)) .

(39)

The following basic properties of HMM and entropy are used
for proving Lemma 8.

(i) According to the generalized high-order HMM, state𝑞𝑡−𝑘−𝑗+1, 𝑗 ≥ 2 and 𝑞𝑡 are statistically independent given𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1, 𝑞𝑡−𝑘+2, . . . , 𝑞𝑡−1. The same applies to 𝑞𝑡−𝑘−𝑗+1,
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𝑗 ≥ 2 and 𝑜𝑡 are statistically independent given 𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1,𝑞𝑡−𝑘+2, . . . , 𝑞𝑡−1.
(ii) According to the basic property of entropy [12],

𝐻(𝑋 | 𝑌 = 𝑦) = 𝐻 (𝑋)
if 𝑋 and 𝑌 are independent. (40)

We now introduce the following lemma for the 𝑘th-order
HMM.The following proof is due to Hernando et al. [4].

Lemma 8. For the 𝑘th-order HMM, the entropy of the state
sequence up to time 𝑡 − 𝑘− 1, given the states from time 𝑡 − 𝑘 to
time 𝑡−1 and the observations up to time 𝑡−1, is conditionally
independent of the state and observation at time 𝑡

𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘) = 𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) .

(41)

Proof.

𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘+1 , 𝑜1:𝑡) = 𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1

= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑜1:𝑡−1, 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜𝑡)
= 𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2
= 𝑠𝑖3 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑜1:𝑡−1) = 𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘) .

(42)

Our extended entropy-based algorithm for computing
the optimal state sequence is based on normalized forward
recursion variable, state entropy recursion variable, and
auxiliary probability. From (18), (20), (35), (36), (38), and (39),
we construct the extended entropy-based decoding algorithm
for the kth-order HMM as follows:

(1) Initialization. For 𝑡 = 1 and 1 ≤ 𝑖2, 𝑖3, . . . , 𝑖𝑘+1 ≤ 𝑁,

𝐻1 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) = 0,
𝛼̂1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)

= 𝜋𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜1)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝜋𝑗1𝑗2⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2 ⋅⋅⋅𝑗𝑘 (𝑜1) .
(43)

(2) Recursion. For 𝑡 = 2, . . . , 𝑇−1, and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘+1 ≤ 𝑁,

𝛼̂𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = ∑𝑁𝑖1=1 𝛼̂𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘𝑖𝑘+1 (𝑜𝑡)∑𝑁𝑗𝑘=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1∑𝑁𝑖1=1 𝛼̂𝑡−1 (𝑖1, 𝑗1, . . . , 𝑗𝑘−1) 𝑎𝑖1𝑗1⋅⋅⋅𝑗𝑘𝑏𝑗2𝑗3⋅⋅⋅𝑗𝑘+1 (𝑜𝑡) ,

𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) = 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘𝑖𝑘+1 𝛼̂𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝑎𝑗1𝑗2 ⋅⋅⋅𝑗𝑘𝑖𝑘+1 𝛼̂𝑡−1 (𝑗1, 𝑗2, . . . , 𝑗𝑘) ,

𝐻𝑡 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) =
𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)]

− 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡))] .

(44)

(3) Termination

𝐻(𝑞1:𝑇 | 𝑜1:𝑇) = 𝑁∑
𝑖1=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝐻𝑇 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)
⋅ 𝛼̂𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
− 𝑁∑
𝑖1=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝛼̂𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) log2 𝛼̂𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) .
(45)

This extended algorithmperforms the computation of the
optimal state sequence linearly with respect to the length of
observational sequence which requires𝑂(𝑇𝑁𝑘+1) calculation
and it has memory space that is independent of the length

of observational sequence, 𝑂(𝑁𝑘+1), since 𝛼̂𝑡(𝑖2, 𝑖3, . . . , 𝑖𝑘+1),𝐻𝑡(𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1), 𝑃(𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 =𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) should be computed only once in 𝑡th
iteration and, having been used for the computation of (𝑡 +1)th, they can be deleted from the space storage.

2.5. Numerical Illustration for the Second-Order HMM. We
consider a second-order HMM for illustrating our extended
entropy-based algorithm in computing the optimal state
sequence. Let us assume that this second-orderHMMhas the
state space 𝑆, which is 𝑆 = {𝑠1, 𝑠2} and the possible symbols
per observation which is 𝑂 = {V1, V2, V3}.

The graphical representation of the first-order HMM that
is used for the numerical example in this section is given in
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a11 = 0.5

a12 = 0.5

a21 = 1

b1(1) = 0.5 b1(2) = 0.5 b2(3) = 1

S2S1

V1 V2 V3

Figure 1: The graphical diagram shows a first-order HMM with 2
states and 3 observational symbols.

V1
V1 V2V3

V3

a111 = 0.5

a212 = 1

a121 = 0.5

a112 = 0.5

a122 = 0.5

b11(V3) = 0.5

b11(V1) = 0.5
b21(V3) = 1

b12(V1) = 0.5

b12(V2) = 0.5

S2S1

Figure 2: The graphical diagram shows a second-order HMM with
2 states and 3 observational symbols.

Figure 1. The second-order HMM in Figure 2 is developed
based on the first-order HMM in Figure 1 which has two
states and three observational symbols. A HMM of any order
has the parameters of 𝜆 = (𝜋, 𝐴, 𝐵) where 𝜋 is the initial
state probability vector, 𝐴 is the state transition probability
matrix, and𝐵 is the emission probabilitymatrix. Note that the
matrices of 𝐴 and 𝐵 whose components are indicated as 𝑎𝑖1𝑖2 ,𝑎𝑖1𝑖2𝑖3, 𝑏𝑖2(𝑜𝑡 = V𝑚) and 𝑏𝑖2𝑖3(𝑜𝑡 = V𝑚) where 1 ≤ 𝑖1, 𝑖2, 𝑖3 ≤ 2
and 1 ≤ 𝑚 ≤ 3 can be obtained from Figures 1 and 2.
However, the initial state probability vector is not shown in
the above graphical diagrams.

The initial state probability vectors for the first-order and
second-order HMM are shown as follows:

𝜋1 = [0.5 0.5] ,
𝜋2 = [0.5 0] ,
𝜋3 = [0.5 0] .

(46)

𝜋1 = {𝜋̇𝑖2} is the initial state probability vector for the first-
order HMM and 𝜋2 = {𝜋̇𝑖21} and 𝜋3 = {𝜋̇𝑖22} are the initial
state probability vectors for the second-order HMM where𝜋̇𝑖2 = 𝑃(𝑞1 = 𝑠𝑖2), 𝜋̇𝑖21 = 𝑃(𝑞1 = 𝑠1, 𝑞0 = 𝑠𝑖2), 𝜋̇𝑖22 = 𝑃(𝑞1 =𝑠2, 𝑞0 = 𝑠𝑖2), and 1 ≤ 𝑖2 ≤ 2.

The state transition probabilitymatrices for the first-order
and second-order HMMs are shown as follows:

𝐴1 = [0.5 0.5
1 0 ] ,

𝐴2 = [0.5 0.5
0 0 ] ,

𝐴3 = [0.5 0.5
1 0 ] .

(47)

𝐴1 = {𝑎𝑖1𝑖2} is the state transition probability matrix for the
first-order HMM and 𝐴2 = {𝑎𝑖1𝑖21} and 𝐴3 = {𝑎𝑖1𝑖22} are
the state transition probability matrices for the second-order
HMMwhere 𝑎𝑖1𝑖2 = 𝑃(𝑞𝑡 = 𝑠𝑖2 | 𝑞𝑡−1 = 𝑠𝑖1), 𝑎𝑖1𝑖21 = 𝑃(𝑞𝑡 = 𝑠1 |𝑞𝑡−1 = 𝑠𝑖2 , 𝑞𝑡−2 = 𝑠𝑖1), 𝑎𝑖1𝑖22 = 𝑃(𝑞𝑡 = 𝑠2 | 𝑞𝑡−1 = 𝑠𝑖2 , 𝑞𝑡−2 = 𝑠𝑖1),
and 1 ≤ 𝑖1, 𝑖2 ≤ 2

The emission probability matrices for the first-order and
second-order HMMs are shown as follows:

𝐵1 = [[
[
0.5 0
0.5 0
0 1

]]
]
,

𝐵2 = [0.5 0.5
0 0 ] ,

𝐵3 = [0 0.5
0 0 ] ,

𝐵4 = [0.5 0
1 0] .

(48)

𝐵1 = {𝑏𝑖2(𝑜𝑡 = V𝑚)} is the emission probability matrix for the
first-order HMM and 𝐵2 = {𝑏𝑖2𝑖3(𝑜𝑡 = V1)}, 𝐵3 = {𝑏𝑖2𝑖3(𝑜𝑡 =
V2)}, and 𝐵4 = {𝑏𝑖2𝑖3(𝑜𝑡 = V3)} are the emission probability
matrices for the second-order HMM where 𝑏𝑖2(𝑜𝑡 = V𝑚) =𝑃(𝑜𝑡 = V𝑚 | 𝑞𝑡 = 𝑠𝑖2), 𝑏𝑖2𝑖3(𝑜𝑡 = V1) = 𝑃(𝑜𝑡 = V1 | 𝑞𝑡 =𝑠𝑖3 , 𝑞𝑡−1 = 𝑠𝑖2), 𝑏𝑖2𝑖3(𝑜𝑡 = V2) = 𝑃(𝑜𝑡 = V2 | 𝑞𝑡 = 𝑠𝑖3 , 𝑞𝑡−1 = 𝑠𝑖2),
and 𝑏𝑖2𝑖3(𝑜𝑡 = V3) = 𝑃(𝑜𝑡 = V3 | 𝑞𝑡 = 𝑠𝑖3 , 𝑞𝑡−1 = 𝑠𝑖2).

The following is the observational sequence that we used
for illustrating our extended algorithm:

𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6
= V1) . (49)

We applied our extended algorithm for computing the opti-
mal state sequence based on state entropy. The computed
value of the state entropy is shown in Figure 3.

The total entropy after each time step is displayed at the
bottom of Figure 3. For example, after receiving the second
observation, that is, 𝑜1:2 = (𝑜1 = V1, 𝑜2 = V1), it has produced
two state sequences which are 𝑞1:2 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠1)
and 𝑞1:2 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2) as shown by the bold arrows.
Each possible state sequence has a probability of 0.5; that is,𝛼̂2(1, 1) = 𝛼̂2(1, 2) = 0.5, and hence the total entropy is 1 bit.
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Obs

State

Total
entropy

1 1 1.41 0 0 0

s1

s2

o1 = 1 o2 = 1 o3 = 3 o4 = 2 o5 = 3 o6 = 1

H1(1, 1) = 0

1(1, 1) = 0.5

H1(2, 1) = 0

1(2, 1) = 0

H1(1, 2) = 0

1(1, 2) = 0.5

H1(2, 2) = 0

1(2, 2) = 0

H2(1, 2) = 0

2(1, 2) = 0.5

H2(2, 2) = 0

2(2, 2) = 0

H3(1, 2) = 0

3(1, 2) = 0

H3(2, 2) = 0

3(2, 2) = 0

H4(1, 2) = 0

4(1, 2) = 1

H4(2, 2) = 0

4(2, 2) = 0

H3(1, 2) = 0

3(1, 2) = 0

H3(2, 2) = 0

3(2, 2) = 0

H6(1, 2) = 0

6(1, 2) = 1

H6(2, 2) = 0

6(2, 2) = 0

H6(1, 1) = 0

6(1, 1) = 0

H6(2, 1) = 0

6(2, 1) = 0

H5(1, 1) = 0

5(1, 1) = 0

H5(2, 1) = 0

5(2, 1) = 1

H3(1, 1) = 0.5

3(1, 1) = 0.33

H3(2, 1) = 0.5

3(2, 1) = 0.67

H2(1, 1) = 0

2(1, 1) = 0.5

H2(2, 1) = 0

2(2, 1) = 0

H4(1, 1) = 0

4(1, 1) = 0

H4(2, 1) = 0

4(2, 1) = 0

Figure 3:The evolution of the trellis structure of the second-order HMMwith the observation sequence 𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 =
V2, 𝑜5 = V3, 𝑜6 = V1).

However, after receiving the fourth observation, that is, 𝑜1:4 =(𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2), it has produced one state
sequence which is 𝑞1:4 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2, 𝑞3 = 𝑠1, 𝑞4 = 𝑠2) as
shown by the dashed arrow. This possible state sequence has
a probability of 1, that is, 𝛼̂4(1, 2) = 1, and hence the total
entropy is 0 bit. After receiving the sixth observation, this
second-order HMM has produced only one possible optimal
state sequence; that is, 𝑞1:6 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2, 𝑞3 = 𝑠1, 𝑞4 =𝑠2, 𝑞5 = 𝑠1, 𝑞6 = 𝑠2)with the total entropy of 0 which indicates
that there is no uncertainty.

3. Entropy-Based Decoding Algorithm with
a Reduction Approach

The extended entropy-based Viterbi algorithm in Section 2
has addressed only the issue related to memory space
but this algorithm is not able to overcome the compu-
tational complexity. In this section, we introduce an effi-
cient entropy-based algorithm that used reduction approach,
namely, entropy-based order-transformation forward algo-
rithm (EOTFA) to compute the optimal state sequence based
on entropy of any generalized HHMM. This algorithm has
addressed issues related to memory space and computational
complexity.

3.1. Transforming a High-Order HMM with a Single Observa-
tional Sequence. This EOTFA algorithm involves a transfor-
mation of a generalized high-order HMM into an equivalent
first-order HMM and an algorithm is developed based on
the equivalent first-order HMM. This algorithm performs
the computation based on the observational sequence and
it requires 𝑂(𝑇𝑁̃2) calculations, where 𝑁̃ is the number of

states in an equivalent first-order model and 𝑇 is the length
of observational sequence.

The transformation of a generalized high-order HMM
into an equivalent first-order HMM is based on Hadar and
Messer’s method [7].

Suppose 𝑄𝑡 = (𝑞𝑡, 𝑞𝑡−1, . . . , 𝑞𝑡−𝑘+1) for 1 ≤ 𝑡 ≤ 𝑇; then the
hidden state process {𝑄𝑡}𝑇𝑡=1 of the 𝑘th-order Markov chain
satisfies

𝑃 (𝑄𝑡 | {𝑄𝑙}𝑙<𝑡)
= 𝑃 (𝑞𝑡, 𝑞𝑡−1, . . . , 𝑞𝑡−𝑘+1 | 𝑞𝑡−1, 𝑞𝑡−2, . . . , 𝑞2−𝑘)
= 𝑃 (𝑞𝑡 | 𝑞𝑡−1, 𝑞𝑡−2, . . . , 𝑞𝑡−𝑘)
= 𝑃 (𝑞𝑡, 𝑞𝑡−1, . . . , 𝑞𝑡−𝑘+1 | 𝑞𝑡−1, 𝑞𝑡−2, . . . , 𝑞𝑡−𝑘)
= 𝑃 (𝑄𝑡 | 𝑄𝑡−1) ,

(50)

where 𝑄𝑡 takes the value from the set of hidden states 𝑆 ={𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑁}𝑘. Hence, the hidden state process {𝑄𝑡}𝑇𝑡=1
forms the first-order HMMMarkov process.

The observation process {𝑜𝑡}𝑇𝑡=1 satisfies
𝑃(𝑜𝑡 | {𝑜𝑙}𝑙<𝑡 , {𝑄𝑙}𝑙≤𝑡) = 𝑃 (𝑜𝑡 | {𝑜𝑙}𝑙≤𝑡−1 , {𝑞𝑙}𝑙≤𝑡)

= 𝑃 (𝑜𝑡 | {𝑞𝑙}𝑙≤𝑡) = 𝑃 (𝑜𝑡 | {𝑞𝑙}𝑡𝑙=𝑡−𝑘)
= 𝑃 (𝑜𝑡 | 𝑄𝑡) .

(51)

Hence, the hidden state process {𝑄𝑡}𝑇𝑡=1 and the observation
process {𝑜𝑡}𝑇𝑡=1 form the first-order HMM.
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Remarks 9. (i)

𝑃 (𝑄𝑡 | 𝑄𝑡−1) = 𝑃 (𝑄𝑡
= [𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1] | 𝑄𝑡−1
= [𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘]) = 𝑃 (𝑄𝑡
= [𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] | 𝑄𝑡−1 = [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘])
= 𝑃 (𝑄𝑡 = 𝑠𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 | 𝑄𝑡−1 = 𝑠𝑖1𝑖2 ⋅⋅⋅𝑖𝑘) ,

(52)

where [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] and [𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] ∈ 𝑆.
(ii)

𝑃 (𝑜𝑡 | 𝑄𝑡) = 𝑃 (𝑜𝑡 | 𝑄𝑡
= [𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1])
= 𝑃 (𝑜𝑡 | 𝑄𝑡 = [𝑠𝑖2 , . . . , 𝑠𝑖𝑘+1]) = 𝑃 (𝑜𝑡 | 𝑄𝑡
= 𝑠𝑖2𝑖3⋅⋅⋅𝑖𝑘+1) ,

(53)

where [𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] ∈ 𝑆.
Note that we assume 𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘 = 𝑠𝑖1𝑖2⋅⋅⋅𝑖𝑘 and 𝑠𝑖2 , 𝑠𝑖3 ,. . . , 𝑠𝑖𝑘+1 = 𝑠𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 .
The elements for the transformation of a high-order into

an equivalent first-order discrete HMM are as follows:

(i) Number of distinct hidden states, 𝑁̃
(ii) Number of distinct observed symbols,𝑀
(iii) Length of observational sequence, 𝑇
(iv) Observational sequence, 𝑂 = {𝑜𝑡, 𝑡 = 1, 2, . . . , 𝑇}
(v) Hidden state sequence, 𝑄 = {𝑄𝑡, 𝑡 = 1, 2, . . . , 𝑇}
(vi) Possible values for each state, 𝑆 = {𝑠𝑖, 𝑖 =1, 2, . . . , 𝑁}𝑘
(vii) Possible symbols per observation, 𝑉̃ = {]𝑤, 𝑤 =1, 2, . . . ,𝑀}
(viii) Initial hidden state probability vector, 𝜋̃ = {𝜋̃𝑖}, and𝜋̃𝑖 is the probability that model will transit from state𝑠𝑖 = [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] = 𝑠𝑖1𝑖2 ⋅⋅⋅𝑖𝑘 , where

𝜋̃𝑖 = 𝑃 (𝑄1 = 𝑠𝑖) ,
𝑁̃∑
𝑖=1

𝜋̃𝑖 = 1,
𝜋̃𝑖 ≥ 0

(54)

(ix) State transition probability matrix, 𝐴 = {𝑎𝑖𝑗} and𝑎𝑖𝑗 is the probability of a transition from state

𝑠𝑖 = [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] at time 𝑡 − 1 to state 𝑠𝑗 =[𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] at time 𝑡 where
𝑎𝑖𝑗 = 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑄𝑡−1 = 𝑠𝑖) ,
𝑁̃∑
𝑗=1

𝑎𝑖𝑗 = 1,
𝑎𝑖𝑗 ≥ 0,

(55)

where the first 𝑘 − 1 entries of 𝑠𝑖 are equal to the last𝑘 − 1 entries of 𝑠𝑗
(x) Emission probability matrix, 𝐵 = {𝑏̃𝑖(V𝑚)}, and𝑏̃𝑖(V𝑚) is a probability of observing V𝑚 in state 𝑠𝑖 =[𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] at time 𝑡:

𝑏̃𝑖 (V𝑚) = 𝑃 (𝑜𝑡 = V𝑚 | 𝑄𝑡 = 𝑠𝑖) ,
𝑀∑
𝑚=1

𝑏̃𝑖 (V𝑚) = 1,
𝑏̃𝑖 (V𝑚) ≥ 0.

(56)

3.2. The Forward and Backward Probabilities Variables for the
Transformed Model. In this subsection, we omit the deriva-
tions for forward and backward probability variables since the
derivations are similar to the derivations in Section 2.2.

The forward recursion variable for the transformedmodel
at time 𝑡 is as follows:

𝛼̃𝑡 (𝑗) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑄𝑡 = 𝑠𝑗 | 𝜆)
= 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑄𝑡 = 𝑠𝑖2𝑖3 ⋅⋅⋅𝑖𝑘 | 𝜆)
= 𝑁̃∑
𝑖=1

𝛼̃𝑡−1 (𝑖) 𝑎𝑖𝑗𝑏̃𝑗 (𝑜𝑡) .
(57)

The backward recursion variable for the transformed model
at time 𝑡 is as follows:

𝛽𝑡 (𝑖) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑄𝑡 = 𝑠𝑖, 𝜆)
= 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑄𝑡 = 𝑠𝑖1𝑖2 ⋅⋅⋅𝑖𝑘)
= [
[
𝑁̃∑
𝑗=1

𝛽𝑡+1 (𝑗) 𝑎𝑖𝑗]]
𝑏̃𝑗 (𝑜𝑡+1) .

(58)

The normalized forward variable at time 𝑡 is as follows:
𝛼̃∙𝑡 (𝑗) = 𝑃 (𝑄𝑡 | 𝑜1:𝑡) = ∑𝑁̃𝑖=1 𝛼̃∙𝑡−1 (𝑖) 𝑎𝑖𝑗𝑏̃𝑗 (𝑜𝑡)𝑟∙𝑡 , (59)

where 𝑟∙𝑡 = ∑𝑁̃𝑗=1∑𝑁̃𝑖=1 𝛼̃𝑡−1(𝑖)𝑎𝑖𝑗𝑏̃𝑗(𝑜𝑡).
The normalized backward variables at time 𝑡 is as follows:
𝛽∙𝑡 (𝑖) = 𝑃 (𝑜𝑡+1:𝑇 | 𝑄𝑡)𝑃 (𝑜𝑡+1:𝑇 | 𝑜𝑜:𝑡) = ∑𝑁̃𝑗=1 𝛽∙𝑡+1 (𝑗) 𝑎𝑖𝑗𝑏̃𝑗 (𝑜𝑡+1)𝑟∙𝑡+1 , (60)

where 𝑟∙𝑡+1 = ∑𝑁̃𝑗=1∑𝑁̃𝑖=1 𝛼̃𝑡(𝑖)𝑎𝑖𝑗𝑏̃𝑗(𝑜𝑡+1).
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3.3. The Computation of the Optimal State Sequence for a
HHMM. For EOFTA algorithm, we require state entropy
variable, 𝐻𝑡(𝑠𝑗), that can be computed recursively using the
previous variable,𝐻𝑡−1(𝑠𝑖).

We define the state entropy variable as follows.

Definition 10. The state entropy variable,𝐻𝑡(𝑠𝑗), in an order-
transformationHMM, is the entropy of all the paths that lead
to state of 𝑠𝑗 at time 𝑡, given the observations 𝑜1, 𝑜2, . . . , 𝑜𝑡. It
can be denoted as

𝐻𝑡 (𝑠𝑗) = 𝐻(𝑄1:𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) . (61)

From (61) at 𝑡 = 1, we obtain the initial state entropy variable
as

𝐻1 (𝑠𝑗) = 0. (62)

From (61) and (62), we obtain the recursion on the entropy
for 𝑡 = 2, . . . , 𝑇 − 1, and 1 ≤ 𝑖, 𝑗 ≤ 𝑁̃

𝐻𝑡 (𝑠𝑗) = 𝐻(𝑄1:𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝐻(𝑄1:𝑡−2, 𝑄𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝐻(𝑄𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)

+ 𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) ,
(63)

where

𝐻(𝑄𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= − 𝑁̃∑
𝑖=1

[𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡))] ,

𝐻 (𝑄1:𝑡−2 | 𝑄𝑡−1, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝑁̃∑
𝑖=1

[𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ 𝐻 (𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)]
= 𝑁̃∑
𝑖=1

[𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖)] .

(64)

The auxiliary probability 𝑃(𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) is
required for our EOTFA algorithm. It can be computed as
follows:

𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) = 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜𝑡, 𝑜1:𝑡−1)
= 𝑃 (𝑄𝑡 = 𝑠𝑗, 𝑜𝑡 | 𝑄𝑡−1 = 𝑠𝑖, 𝑜1:𝑡−1) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑜1:𝑡−1)

𝑃 (𝑄𝑡 = 𝑠𝑗, 𝑜𝑡 | 𝑜1:𝑡−1)
= 𝑃 (𝑜𝑡 | 𝑄𝑡 = 𝑠𝑗) 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑄𝑡−1 = 𝑠𝑖) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑜1:𝑡−1)

𝑃 (𝑜𝑡 | 𝑄𝑡 = 𝑠𝑗) 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑜1:𝑡−1)

= 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑞𝑡−1 = 𝑠𝑖) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑜1:𝑡−1)
∑𝑁̃𝑘=1 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑄𝑡−1 = 𝑠𝑘) 𝑃 (𝑄𝑡−1 = 𝑠𝑘 | 𝑜1:𝑡−1)

= 𝑎𝑖𝑗𝛼̃∙𝑡−1 (𝑖)
∑𝑁̃𝑘=1 𝑎𝑘𝑗𝛼̃∙𝑡−1 (𝑘) .

(65)

For the final process, we compute𝐻(𝑞1:𝑇 | 𝑜1:𝑇)which can be
expanded as follows:

𝐻(𝑄1:𝑇 | 𝑜1:𝑇) = 𝐻(𝑄1:𝑇−1 | 𝑄𝑇 = 𝑠𝑗, 𝑜1:𝑇)
+ 𝐻(𝑄𝑇 | 𝑜1:𝑇)

= 𝑁̃∑
𝑖=1

𝐻𝑇 (𝑠𝑖) 𝛼̃∙𝑇 (𝑖)

− 𝑁̃∑
𝑖=1

𝛼̃∙𝑇 (𝑖) log2 (𝛼̃∙𝑇 (𝑖)) .

(66)

The basic entropy concept in (40) and the following basic
properties of HMM are used for proving our Lemma 11.
According to the transformation of a high-order into an
equivalent first-order HMM, state 𝑄𝑡−𝑟, 𝑟 ≥ 2, and 𝑄𝑡 are
statistically independent given𝑄𝑡−1.The same applies to𝑄𝑡−𝑟,𝑟 ≥ 2 and 𝑜𝑡 are statistically independent given 𝑄𝑡−1.

The following proof is due to Hernando et al. [4].

Lemma 11. For the transformation of a high-order into an
equivalent first-order HMM, the entropy of the state sequence
up to time 𝑡−2, given the states at time 𝑡−1 and the observations
up to time 𝑡 − 1, is conditionally independent on the state and
observation at time 𝑡

𝐻𝑡−1 (𝑠𝑖) = 𝐻 (𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) . (67)

Proof.

𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑜1:𝑡−1, 𝑄𝑡 = 𝑠𝑗, 𝑜𝑡)
= 𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑜1:𝑡−1) = 𝐻𝑡−1 (𝑠𝑖) .

(68)

Our EOTFA algorithm for computing the optimal state
sequence is based on the normalized forward recursion
variable, state entropy recursion variable, and auxiliary prob-
ability. From (59), (60), (61), (62), (63), and (66), we construct
our EOTFA algorithm as follows.

(1) Initialization. For 𝑡 = 1 and 1 ≤ 𝑗 ≤ 𝑁̃,

𝐻1 (𝑠𝑗) = 0,
𝛼̃∙1 (𝑗) = 𝜋̃ (𝑗) 𝑏̃𝑗 (𝑜1)

∑𝑁̃𝑖=1 𝜋̃ (𝑖) 𝑏̃𝑖 (𝑜1) .
(69)
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(2) Recursion. For 𝑡 = 2, . . . , 𝑇 and 1 ≤ 𝑗 ≤ 𝑁̃,

𝛼̃∙𝑡 (𝑗) = ∑𝑁̃𝑖=1 𝛼̃∙𝑡−1 (𝑖) 𝑎𝑖𝑗𝑏̃𝑗 (𝑜𝑡)
∑𝑁̃𝑘=1∑𝑁̃𝑖=1 𝛼̃∙𝑡−1 (𝑖) 𝑎𝑖𝑘𝑏̃𝑘 (𝑜𝑡) ,

𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) = 𝑎𝑖𝑗𝛼̃∙𝑡−1 (𝑖)
∑𝑁̃𝑘=1 𝑎𝑘𝑗𝛼̃∙𝑡−1 (𝑘) ,

𝐻𝑡 (𝑠𝑗) = 𝑁̃∑
𝑖=1

𝐻𝑡−1 (𝑠𝑖) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)

− 𝑁̃∑
𝑖=1

𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡))] .

(70)

(3) Termination

𝐻(𝑄1:𝑇 | 𝑜1:𝑇) = 𝑁̃∑
𝑖=1

𝐻𝑇 (𝑠𝑖) 𝛼̃∙𝑇 (𝑖)

− 𝑁̃∑
𝑖=1

𝛼̃∙𝑇 (𝑖) log2 (𝛼̃∙𝑇 (𝑖)) .
(71)

The direct evaluation algorithm, Hernando et al.’s algo-
rithm, and our algorithm perform the computation of state
entropy exponentially with respect to the order of HMM.
Our algorithm proposes the transformation of a generalized
high-order into an equivalent first-order HMM and then
compute the state entropy based on the equivalent first-order
model; hence our algorithm is the most efficient in which
it requires 𝑂(𝑇𝑁̃2) calculations as compared to the direct
evaluation method which requires 𝑂(𝑁𝑇+𝑘−1) calculations
and the extended algorithm which requires 𝑂(𝑇𝑁𝑘+1) cal-
culations where 𝑁 is the number of states in a model, 𝑁̃ is
the number of states in an equivalent first-order model, 𝑇 is
the length of observational sequence, and 𝑘 is the order of
HMM.

3.4. Numerical Illustration for an Equivalent First-Order
HMM. We consider the second-order HMM in Section 2.5
for illustrating our EOTFA algorithm in computing the
optimal state sequence. According to our proposed novel
algorithm, we first transformed the second-order HMM in
Section 2.5 into the equivalent first-order HMM by using
Hadar and Messer method [7]. The equivalent first-order
HMM has the following model parameters 𝜆̃ = (𝜋̃, 𝐴, 𝐵),
where 𝜋̃ is the initial state probability vector, 𝐴 is the
state transition probability matrix, and 𝐵 is the emission
probability matrix.

𝜋̃ = [0.5 0.5 0 0] ,

𝐴 = [[[[[
[

0.5 0.5 0 0
0 0 0.5 0.5
0 1 0 0
0 0 0 0

]]]]]
]
,

𝐵 = [[
[
0.5 0.5 0 0
0 0.5 0 0
0.5 0 1 0

]]
]
.

(72)

Note that the above state transition probability and
the emission probability matrices whose components are
indicated as 𝑎𝑖1𝑖2 and 𝑏̃𝑖2(𝑜𝑡 = V𝑚) where 1 ≤ 𝑖1, 𝑖2 ≤ 4 and1 ≤ 𝑚 ≤ 3 can be obtained from the graphical diagram in
Figure 4.

The state space for the equivalent first-order HMM is 𝑆 ={𝑠1, 𝑠2, 𝑠3, 𝑠4}, where 𝑠1 = [𝑠1, 𝑠1], 𝑠2 = [𝑠1, 𝑠2], 𝑠3 = [𝑠2, 𝑠1],
and 𝑠4 = [𝑠2, 𝑠2], and the possible symbols per observation are𝑂 = {V1, V2, V3}. Note that 𝜋̃1 = {̃̇𝜋𝑖2}, where ̃̇𝜋𝑖2 = 𝑃(𝑄𝑡 = 𝑠𝑖2),𝐴 = {𝑎𝑖1𝑖2}, where 𝑎𝑖1𝑖2 = 𝑃(𝑄𝑡 = 𝑠𝑖2 | 𝑄𝑡−1 = 𝑠𝑖1), and 𝐵 =
{𝑏̃𝑖2(𝑜𝑡 = V𝑚)}, where 𝑏̃𝑖2(𝑜𝑡 = V𝑚) = 𝑃(𝑜𝑡 = V𝑚 | 𝑄𝑡 = 𝑠𝑖2).

The equivalent first-order HMMwas developed based on
Hadar and Messer’s method [7] is shown in Figure 4.

Secondly, the optimal state sequence is computed based
on the equivalent first-order HMM by using our proposed
algorithm. Finally, the optimal state sequence of the second-
order HMM is inferred from the optimal state sequence from
the equivalent first-order HMM.

The following is the observational sequence used for
illustrating our algorithm:

𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6
= V1) . (73)

We applied our EOFTA algorithm for computing the
optimal state sequence based on the state entropy. The
computed value of state entropy is shown in Figure 5.

The total entropy after each time step for the transformed
model, that is, the second-order transformed into the equiv-
alent first-order HMM is displayed at the bottom of Figure 5.
For example, this model has produced only one possible state
sequence; that is, 𝑄1:5 = (𝑄1 = 𝑠1, 𝑄2 = 𝑠2, 𝑄3 = 𝑠3, 𝑄4 =𝑠2, 𝑄5 = 𝑠3), as shown by the bold arrow with a probability
of 1 after receiving the fifth observation. The total entropy
is 0 at 𝑡 = 5 which indicates that there is no uncertainty.
After receiving the sixth observation, that is, 𝑜1:6 = (𝑜1 =
V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6 = V1), this equivalent
first-order HMM has produced one possible optimal state
sequence 𝑄1:6 = (𝑄1 = 𝑠1, 𝑄2 = 𝑠2, 𝑄3 = 𝑠3, 𝑄4 = 𝑠2, 𝑄5 =𝑠3, 𝑄6 = 𝑠2) which is similar to 𝑞1:6 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2, 𝑞3 =𝑠1, 𝑞4 = 𝑠2, 𝑞5 = 𝑠1, 𝑞6 = 𝑠2) that is produced by the second-
order HMM in Section 2.5 with a total entropy of 0 which
indicates that there is no uncertainty. As a result, the optimal
state sequence of the high-order HMM is inferred from the
optimal state sequence of the equivalent first-order HMM.
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a11 = 0.5

a12 = 0.5
a23 = 0.5

a24 = 0.5

a32 = 1

s1 s2 s3 s4

1 1 2 33

b1(1) = 0.5 b1(3) = 0.5

b2(1) = 0.5 b2(3) = 0.5 b3(3) = 1

Figure 4: The graphical diagram shows an equivalent first-order HMM.
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Figure 5:The evolution of the trellis structure for a transformation of a second-order into an equivalent first-orderHMMwith the observation
sequence 𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6 = V1).

Our proposed algorithm is based on the equivalent first-order
HMM and only requires𝑂(𝑇𝑁̃2) computation and hence we
can conclude that our EOTFA algorithm is more efficient.

4. Conclusion and Future Work

We have introduced a novel algorithm for computing the
optimal state sequence for HHMM that requires 𝑂(𝑇𝑁̃2)
calculations and 𝑂(𝑁̃2) memory space where 𝑁̃ is the
number of states in an equivalent first-order HMM and 𝑇 is
the length of observational sequence. This algorithm is to be
running with Viterbi algorithm in tracking the optimal state
sequence as well as the entropy of the distribution of the state
sequence. We have developed this algorithm for the case of
a generalized discrete high-order HMM. This research can
be also extended for continuous high-order HMMs and these
models are widely used in speech recognition.
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