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A simple and efficient empirical likelihood ratio (ELR) test for normality based on moment constraints of the half-normal
distribution was developed. The proposed test can also be easily modified to test for departures from half-normality and is relatively
simple to implement in various statistical packages with no ordering of observations required. Using Monte Carlo simulations,
our test proved to be superior to other well-known existing goodness-of-fit (GoF) tests considered under symmetric alternative
distributions for small to moderate sample sizes. A real data example revealed the robustness and applicability of the proposed test

as well as its superiority in power over other common existing tests studied.

1. Introduction

Testing for distributional assumptions for normality is of
paramount importance in applied statistical modelling. Sev-
eral well-known numerical tests for normality are widely
used by investigators to supplement the graphical techniques
in assessing departures from normality. Amongst others,
these tests include the Kolmogorov-Smirnov (KS) test [1], the
Lilliefors (LL) test [2], the Anderson-Darling (AD) test [3, 4],
the Shapiro-Wilks (SW) test [5], the Jarque-Bera (JB) test [6],
and the DAgostino and Pearson (DP) test [7]. These tests
differ on certain characteristics of the normal distribution
on which they focus. That is, some focus on the empirical
distribution function (EDF), some are moment based, and
some are based on regression as well as correlation. Of these
tests, some use normalized sample data whilst some use
observed values. However, though these tests are commonly
used in practice they do have major drawbacks. For example,
some of these tests require complete specification of the null
distribution, some require computation of critical values to
be done for each specified null distribution, and some require
ordering of the sample data when computing the test statistic.
Generally, most of these tests are not supported when certain
combinations of parameters of a specified distribution are
estimated.

Of these, the most well-known goodness-of-fit (GoF)
test is the SW test but it was originally restricted to small
sample sizes (i.e., n < 50). Several modifications have been
proposed by several researchers. These include Royston [8]
who suggested a normalized transformation for the test in
order to resolve the limitations on the sample size, Shapiro
and Francia [9] who also modified the test so that it can
be ideal for large sample sizes, Chen and Shapiro [10] who
proposed normalized spacings for an alternative test of the
SW test, and Rahman and Govindarajulu [11] who defined
new weights for the SW test statistic. However, the major
drawback of the SW test is computation time in dealing with
large samples when computing the covariance matrix that
corresponds to order statistics of the vector of weights and
the standard normal distribution.

However, we also have GoF tests that are based on
moment constraints such as the skewness and kurtosis
coefficients and these are well known to be efficient tools
for evaluating normality. These moment based tests include
the skewness test, the kurtosis test, the DP test, and the
JB test. These tests combine moment constraints to check
for deviations from normality. They are often referred to as
omnibus tests because of their ability to detect departures
from normality whilst not depending upon the parameters of
the normal distribution. The adoption of the use of moment
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based tests coupled with the empirical likelihood method-
ology has recently attracted the attention of researchers
in developing GoF tests for normality [12, 13]. Dong and
Giles [12] proposed an empirical likelihood ratio (ELR) test
utilizing the empirical likelihood (EL) methodology of Owen
[14]. They monitored the first four moment conditions of
the normal distribution and their test outperformed alternate
common existing tests studied against several alternative
distributions. Our study followed from the works of Shan
et al. [13] who proposed a simple ELR test for normality
based on moment constraints using a standardized normal
variable. Their test proved to be more powerful than other
well-known GoF tests on small to moderate sample sizes for
several alternative distributions. In this study we adopted
their approach and focused on the construction of a simple
ELR test for normality using the moment constraints of
the half-normal distribution. The next section will outline
the development of our proposed test followed by Monte
Carlo simulations. A real data example will be presented.
Discussions and conclusion of the findings as well as potential
areas of future research will be highlighted.

2. ELR Test Development

Let us assume we have independent and identically dis-
tributed (i.i.d) nonordered random variables X, X,, ..., X,,.
The intention being to assess whether the observed data is
normally distributed. Thus we intend testing the following
null hypothesis:

Hy: X ~N(wo?), (1)

where y and o are considered to be unknown parameters.
We proposed using the standardized random variables of the
normal distribution by using the following transformations:

Pl TS, 2)

SD
where y = X = (1/n)Y, X; and SD is the standard
deviation to be estimated by an unbiased quantity s> =
S/(n—1). One can also decide to use the maximum likelihood
estimate (MLE) 6> = S/n, where § = Y (X; - X)* and
X = (1/n) Y, X;. Both quantities s* and 6 are known to
converge to o as napproaches co. We also used an alternative
transformation following Lin and Mudholkar’s [17] work
which also eliminates the dependency that exists between y
and o on the data distribution. Thus we also transformed our
observations using

/ (X -X
Z; = n s;)(l ), i=12,...,n, (3

1

where X = (1/n) ¥, X, SD?, = (1/(n - 2)) Y (X -
X ) and X ; = (1/(n-1)) Y1 jui Xj- As n gets large the
standardized data points Z,,Z,, ..., Z, become asymptoti-
cally independent. If X ~ N(0,0?), then the absolute value
|X| ~ HN(u, 02). Tt also follows that if X ~ Ny, 0?), then the
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modulus of the standardized normal random variables, Z*
and Z*, follows a standardized half-normal random variable
with mean = /2/7 and variance = 1. The standardized form
of the half-normal distribution is also known as the x*-
distribution with v = 1. The standardized half-normal
random variable has a PDF that is given by

2 a2
me for z >0, @)

0 for z < 0.

fz(2) =

and we denote it as Z ~ HN(y, a?). Following Prudnikov
et al. [18], the k™ moment of the standardized half-normal
variable for some integer k > 0 is as outlined in the
proposition below.

Proposition 1. Let Z ~ HN(~+/2/m, 1), for k =1, 2,..., n, and
then the k'™ moments are given by

E(Z") =y = %ZWF(%» )

where I'(-) denotes the gamma function.

We then derived the first four moments using the func-
tion given in (5). These moments are easily obtained as
follows.

Corollary 2. Let Z ~ HN(u,0?). The first two moments of Z,
that is y and o are given by

E(Z)=u= \/7%1"(1) = \E ~ 0.7979, (6)

var (Z) = %F(;) =1. (7)

Corollary 3. Let Z ~ HN(u,0”). The skewness and kurtosis
coefficients of Z are given by

3
y(2))=E(2*) = ps = \/%r(z) = Z\E ~ 15958, (8)

4 4 5
Y(Zz)=E(Z)=#4=\/—EF(E)=3- )

In this study we used the first four moment constraints of
the standardized half-normal distribution.

2.1. The ELR Based Test Statisticc. We used an empirical
likelihood ratio test (ELR) to construct our test statistic.
Our aim was to compare the GoF test under H,, against the
alternative (H,). In order to achieve this, we constructed our
test statistic as follows. Let us consider #n nonordered observa-
tions X, X5, ..., X, that are independent and identically dis-
tributed and assumed to have unknown g and o. The inten-
tion is to perform a GoF test for the distributional assumption
that X, X,, ..., X,, are consistent with a normal distribution.
Now consider that the random variables Z,,Z,,..., Z, are
absolute standardized normal variables from the random
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variables X, X,, ..., X,,. Thus the transformed/standardized
observations have a moment function given in Proposition 1
above. Following the EL methodology we assigned p;, which
is a probability parameter to each transformed observation
Z;, and then formulated the EL function that is given by

L(F) =] ]ps (10)
i=1

where p;’s satisfy the fundamental properties of probability;
that is 0 < p; < 1 and Y., p; = 1. Probability
parameters, p;’s, will then be chosen subject to unbiased
moment conditions and the EL method will utilize these
p;’s in order to maximize the EL function. Following this
EL technique, E(Z*) has sample moments Y piZf and the
probability parameters (p;’s) are elements of the EL function.
Under H,, the four unbiased empirical moment equations
have the form

Y piZi— =0, k=12,...,n. (1)
i=1

The composite hypotheses for the ELR test are given by

Hy: z;s ~HN (‘u,az)
(12)
vs H, : zlfs + HN (y,az).

Alternatively considering the above unbiased empirical
moment equations, the hypotheses for the ELR test can be
written as

Hy:E(Z") =
(13)
vs H, : E(Zk) # Ui

The nonparametric empirical likelihood function corre-
sponding to the given hypotheses has the form:

LF)=L(Zp 2y Zy L) = [ [P0 (18)
i=1

where the unknown probability parameters and p;’s are
attained under H, and H,. Under H, the EL function is
maximized with respect to the p;’s subject to two constraints

(15)
n
Z;,Pizf = M
Following this, the weights of p;’s are identified as
n n
PisPr-- s Pn = supHai | Zai =1
i=1 i=1 (16)

n

k
Zaizi = P
i=1

where 0 < a;j < 1, for j = {1,2,...,n}. If we then use the
Lagrangian multipliers technique, it can be shown that the
maximum EL function under H, can be expressed by the
given form:

L(Fy)=L(Zy, 2. s 2 | h)
ﬁ 1 (17)
i (1+ A (Zf( - l‘k)),

where A, is a root of
7k
nE ( i k) =0 (18)

51+ M (ZF - )

Under the alternative hypothesis, Y-, pisz = g is not
required to identify the weights, p;, in order to maximize
the EL function but only " p; = 1. Thus under H, the
nonparametric EL function is given by

L(Fy) = L(Z0Zss.. Z,) = H(%) - (%) (19)

Now let us consider (-2LLR); to be -2 log likelihood test
statistic for the hypotheses H, : E(ZF) = W vs H,:
E(Zk) # . It should be noted that, under H, minus
two times the log ELR has an asmymptotic y* limiting
distribution [19]. Thus considering the null and alternative
hypotheses, the above test statistic will simply be transformed
to

L(F
(~2LLR), = —2log (Fr,)

L(Fn,)
(20)

L(Z,2Z,,...,Z

_ —210g ( IZ 2Z nZ| Hk)
L(21,2,,...,2,)
With simple substitution the above can be simplified to
" (1n(1+7, (2F -
(-2LLR); - ~21og 1! (1/n( . (2= m)))
Hi:1 (1/n)

(1)

= zi log [1 +Ag (ch - P‘k)] :

i=1

We used the likelihood ratio to compare to size adjusted
critical values in order to decide whether or not to reject H,,.
We then proposed to reject the null hypothesis if

ELR; = max (-2LLR); > C,, (22)

where C,, is the test threshold and is 100(1 — &) % percentile of
the x*(1) distribution whilst G are integer values representing
the set of moment constraints that maximizes the test statistic.
As recommended by Dong and Giles [12], we used the first
four moment constraints; that is, we set G = {1,2,3,4}. In
this study we used the abbreviation ELR,; to refer to the



first test where we transformed data using (2) and we used
the abbreviation ELR,, to refer to the second alternative
test where we transformed data using (3). Our test statistic
ELR, = max.g(-2LLR), is a CUSUM-type statistic as
classified by Vexler and Wu [20]. In their article, Vexler and
Wu [20] stated that based on the change point literature,
another common alternative is to utilize the Shiryaev-Roberts
(SR) statistic in replacement of the CUSUM-type statistic
(see, for example, [21, 22]). In our case the classical SR
statistic was of the form ), . exp(—~2LLR);. Vexler, Liu, and
Pollak [23] showed that the classical SR statistic and the
simple CUSUM-type statistic have almost equivalent optimal
statistical properties due to their common null-martingale
basis. Moreover, the classical SR statistic is adapted from the
CUSUM-type statistic.

Shan etal. [13] used Monte Carlo experiments to compare
the CUSUM-type statistic for their ELR test for normality
with an equivalent classical SR statistic and based on the
relative simplicity of the CUSUM-type statistic, as well as
its power properties, the authors opted to use the CUSUM-
type statistic for their study. We conducted a numerical
experiment to compare power for the CUSUM-type and
SR statistic for our proposed test statistics with increased
moment constraints and, based on the same reasons given by
Shan et al. [13], we decided to use the CUSUM-type statistic
for our Monte Carlo comparisons. Also, from the results,
ELR,, outperformed ELR,,, hence ELR,,, was our preferred
test. For all further comparisons, ELR,, was excluded in
this study. Findings for this Monte Carlo experiment are
presented in Table 4. However, it should be noted from these
findings that ELR ;; has the potential to be superior to ELR,,
under certain alternatives. Further investigations to uncover
the alternatives in which ELRy, is superior to ELR,, are a
potential area of future research which will not be further
addressed in this study. The next section will outline the
Monte Carlo simulation procedures using the R statistical
package.

3. Monte Carlo Simulation Study

We used the R statistical package to implement our Monte
Carlo simulation procedures in power comparisons as well as
assessment of our preferred proposed test (ELR,). It should
be noted that other standard statistical packages can easily
be used to implement our proposed tests. In order for us to
conduct any assessments and evaluations of the proposed test,
firstly we had to determine the size adjusted critical values.

3.1. Size Adjusted Critical Values. Since the proposed ELR test
is an asymptotic test, we therefore computed the unknown
actual sizes for finite samples using Monte Carlo simulations
with 50,000 replications. Motivated by practical applications,
we considered critical values for relatively small sample sizes,
i.e, 10 < n < 200 because most applied statistical sciences
datasets fall within this range. The actual rejection rate for
a given sample size (n) is considered to be the total number
of the rejections divided by the total number of replications.
Data was simulated from a standard normal distribution. The
stored ordered test statistics were then used to determine
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the percentiles of the empirical distribution. This makes it
possible to obtain the 30%, 25%, 20%, ..., 1%, size adjusted
critical values.

3.2. ELR Test Assessment. The power of the proposed test
(ELR,,) was compared to that of common existing GoF tests
that include the Anderson-Darling (AD) test [3, 4] test, the
modified Kolmogorov-Smirnov (KS) test [2] the Cramer-
von Mises (CVM) test [24-26], the Jarque-Bera (JB) test [6],
the Shapiro-Wilk (SW) test [5], the density based empirical
likelihood ratio based (DB) test [16], and the simple and exact
empirical likelihood test based on moment relations (SEELR)
[13] at the 5% significance level. Power simulations were done
using 5,000 replications for all tests with varying sample
sizes (n = 20, 30, 50 and 80) against different alternative
distributions. We adopted alternative distributions used by
Shan et al. [13] which covers a wide range of both symmetric
and asymmetric applied distributions. To assess robustness
and applicability of our proposed test (ELR,), we conducted
a bootstrap study using some real data.

4. Results of the Monte Carlo Simulations

This section presents the findings of the power comparisons
for the different categories of the alternative distributions
considered. The results of the power comparisons are pre-
sented in Tables 5-8. Under symmetric cases defined on
(—00, 00) our new test ELR,, outperformed all other studied
tests against the considered alternative distributions but
slightly inferior to the JB test. For symmetric distributions
defined on (0, 1) our proposed test (ELR,,) was comparable
to the DB test and significantly outperformed other alternate
tests studied. However, when the alternative is Beta (0.5, 0.5),
the ELR,, test is comparable to the SW and SEELR tests
whilst only outperforming the KS test, the CVM test and the
JB test.

As for asymmetric distributions defined on (0, 00), the
SW and SEELR are the most powerful tests and should be
the preferred tests under these cases. The AD and DB tests
are comparable and they performed better than the proposed
test as well as the KS and CVM tests. Lastly, in the category of
asymmetric alternative distributions defined on (-00, 00) the
ELR,, test was comparable to the SEELR test at low sample
sizes (i.e., n = 20,30) for the non-central ¢-distributions.
The SW test outperformed all the tests considered in this
study under these asymmetric alternative distributions. For
the ELR based tests only the SEELR test was comparable to
the common existing tests studied, that is, the AD test, the
KS,, test, the CVM test, and the JB test.

Overall, when considering all the normality tests with
respect to all of the alternative distributions considered, it can
be seen that, the JB, the ELR ,, and the SW tests are generally
the most powerful tests given symmetric alternatives defined
on (—00, 00), whilst the DB and the ELR,, tests are the most
powerful tests for symmetric alternatives defined on (0, 1).
On the other hand, the SEELR and the SW tests are the most
powerful tests for asymmetric alternatives defined on (0, c0),
whereas, the JB and SW tests are the most powerful tests for
asymmetric alternatives defined on (-00, 00).
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TaBLE 1: Comparisons of computational times (in seconds) for the studied tests.
Test Replications Elapsed Relative User.self Sys.self
AD 5,000 114 2.000 1.14 0.00
CVM 5,000 0.82 1.439 0.81 0.00
DB 5,000 17.00 29.825 16.94 0.04
ELR,, 5,000 44.83 78.649 44.78 0.01
JB 5,000 252.64 443.228 252.60 0.00
KS,, 5,000 0.89 1.561 0.90 0.00
SEELR 5,000 45.42 79.684 45.41 0.00
SW 5,000 0.57 1.000 0.58 0.00
TaBLE 2: The baby boom data.
Times between births (in min)
59 14 37 62 68 2 15 9 157 27 37 2 55 86 14
4 40 36 47 9 61 1 26 13 28 77 26 45 25 18
29 15 38 2 2 19 27 14 13 19 54 70 28
Note. Data appeared in the newspaper the Sunday Mail on December 21,1997 [15].
It was of paramount importance for us to determine the Histogram of Baby
computational cost of the new algorithms by focusing on the
computation time of the proposed test as compared to that
of the considered existing tests. To assess this, we used the R Rl
benchmark tool on a notebook installed with 64 Bit Windows
10 Home addition. Equipped with a 4th generation Intel Core
i5-4210U processor which has a speed of 1.7 GHz cache and o |
memory (RAM) of 4 GB PC3 DDR3L SDRAM, we set our g
simulations to 5,000 for each test with sample size set at n = S
80. The results (see Table 1) show only a clear advantage of =
our proposed approach to that of the widely known JB test. 0]
Also from the results, our proposed methods are comparable
to the SEELR test but inferior to the DB test. The SW, CVM,
KS and AD tests are computationally more efficient in terms o J 1 ]
of time than the rest of the studied tests. I I I I
0 50 100 150
Baby

5. A Real Data Example

In this example we used baby boom data from an observa-
tional study with records of forty-four (44) babies born at
a 24-hour hospital in Brisbane, Australia. We opted for this
dataset because it can be used to demonstrate applicability
of various statistical procedures to some common applied
distributions which include the normal (by modelling the
birth weights), the binomial (inferences in the number of
boys/girls born), the geometric (by considering the number
of births until a boy/girl is born), the Poisson (births per
hour for each hour), and the exponential (inference on
times between births). Recently, Miecznikowski et al. [27]
used the baby boom dataset in a resampling study on the
application of their ELR based goodness-of-fit test. For more
information regarding this dataset one can refer to Dunn [28].
For our application we opted to make use of the exponential
distribution; thus we were interested in inference on the times
between births. Table 2 shows the times between births which
were computed by taking the differences between successive
times of birth after midnight of birth times.

FIGURE 1: Histogram for times between births for baby boom data.

The goal of this example was to carry out a bootstrap study
in assessing the robustness and applicability of our proposed
test (ELR,,) on uniformly distributed data. However, the
times between births are known to be consistent with the
exponential distribution (see Figurel). By assessing the
histogram one can easily see that the data resembles the
exponential distribution revealing that the times between
births are exponentially consistent. We used the inverse
exponential distribution to transform the times between
births so that they can be uniformly distributed. We then
used the density based empirical likelihood ratio based test
(dbEmpLikeGOF) to check if the transformed baby boom
data are uniformly distributed. The dbEmpLikeGOF test
returned a p value of 0.6950 suggesting that the transformed
data are consistent with the uniform distribution.
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TABLE 3: Bootstrapping using the inverse exponential transformed baby boom data.
Bootstrap power comparisons: H, : data is normally distributed
Observations removed AD KS,, CVM JB SW DB SEELR ELR,,
3 0.0000 0.0000 0.0000 0.0000 0.1012 0.6040 0.0000 0.6132
8 0.0164 0.0006 0.0012 0.0000 0.1182 0.4486 0.0146 0.4054
13 0.0281 0.0073 0.0066 0.0011 0.1023 0.3488 0.0568 0.2714

TABLE 4: A numerical assessment on power using the Shiryaev-Roberts (S-R) and CUSUM-type (C-t) statistics for the proposed tests (ELR

and ELR ;,) with increased moment constraints at o« = 0.05.

ELR,, ELR,,

n k=1{1,2,3,4} k={1,2,3,4,5} k={1,23,4} k={1,2,34,5
S-R C-t S-R C-t S-R C-t S-R C-t
t(2)
30 0.0416 0.0330 0.0020 0.0010 0.6980 0.6998 0.6166 0.5912
50 0.5142 0.4112 0.1666 0.1356 0.8766 0.8774 0.8320 0.8030
80 0.8732 0.8336 0.7476 0.7184 0.9718 0.9684 0.9544 0.9488
Cauchy(0,1)
30 0.3262 0.3438 0.0000 0.0000 0.9560 0.9556 0.9248 0.9192
50 0.9538 0.9344 0.7246 0.6754 0.9970 0.9974 0.9928 0.9900
80 0.9996 0.9996 0.9964 0.9940 1.0000 1.0000 0.9998 0.9996
Uniform(0,1)
30 0.7230 0.1958 0.7208 0.7206 0.5772 0.5986 0.6996 0.7004
50 0.9458 0.5222 0.9532 0.9474 0.9032 0.9122 0.9434 0.9398
80 0.9966 0.8462 0.9978 0.9980 0.9940 0.9956 0.9986 0.9976
Exp(1)
30 0.0094 0.0304 0.0070 0.0068 0.4638 0.4818 0.3874 0.3772
50 0.0836 0.8096 0.0022 0.0042 0.6274 0.6306 0.5628 0.5380
80 0.3764 0.9972 0.2504 0.2346 0.7942 0.8070 0.7558 0.7506
t(d=1,v=2)
30 0.0476 0.0136 0.0012 0.0028 0.7168 0.7230 0.6476 0.6280
50 0.5204 0.4172 0.1932 0.1676 0.8904 0.8908 0.8450 0.8294
80 0.8752 0.8610 0.7736 0.7700 0.9714 0.9766 0.9636 0.9558
SN(0,1,5)

30 0.0514 0.0520 0.0486 0.0442 0.1394 0.1242 0.1048 0.0944
50 0.0404 0.0362 0.0350 0.0352 0.1408 0.1432 0.1114 0.0904
80 0.0358 0.0338 0.0272 0.0204 0.1592 0.1646 0.1158 0.1226

Note. Our proposed tests are maximized on k € G, where G can take any integer to represent the moment constraints used to maximise the test statistics for
specified sample sizes at 5% level of significance using 5,000 simulations.  is the sample size. Bold represents the powerful test statistic for the given simulation

scenarios.

For the resampling study we performed a power simu-
lation study by randomly removing 3, 8, and 13 observations
from the transformed baby boom data at 5% significance level
using 20,000 replications for each simulation. For compari-
son’s sake we considered the AD test, the modified KS test, the
CVM test, the JB test, the SW test, the DB test, the SEELR test,
and our proposed test (ELR,). The Monte Carlo bootstrap
simulation results are presented in Table 3. It is undeniably
clear that our test outperformed all the common existing
tests and therefore suggests its robustness and applicability
on real data. It should be noted that we opted for uniformly
distributed data for our application since our proposed
test (ELR,,) proved to be more powerful for symmetric
alternative distributions which are defined on (0, 1).

6. Conclusion

An empirical likelihood ratio test for normality based on
moment constraints of the half-normal distribution has been
developed. Overall, the proposed ELR test has good power
properties and significantly outperformed the considered
well-known common existing tests against the studied alter-
native symmetric distributions. In our case, the attractive
power properties of the proposed ELR test resulted from
the EL method being able to integrate most of the available
information by utilizing the first four moment constraints
and also through the utilization of the EL function which
leads to additional power benefits. We advocate for our
proposed test (ELR,,) to be the preferred choice when one
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TABLE 5: Results of the Monte Carlo power comparisons based on samples with sizes (n) from symmetric alternative distributions defined
on (—00, 00) at « = 0.05.

Symmetric alternative distributions defined on (-0, 00) at a = 0.05

Distribution n AD KSy, CVM JB SW DB SEELR ELR,,
t(2) 20 0.5068 0.4482 0.5138 0.5632 0.5282 0.2806 0.3774 0.5268
30 0.6834 0.5832 0.6552 0.7016 0.6908 0.3946 0.4228 0.7004
50 0.8538 0.7782 0.8370 0.8812 0.8572 0.5640 0.4800 0.8726
80 0.9602 0.9200 0.9554 0.9646 0.9566 0.8010 0.5420 0.9658
t(4) 20 0.2270 0.1768 0.2114 0.2898 0.2410 0.0922 0.1698 0.2450
30 0.3002 0.2182 0.2764 0.3788 0.3338 0.1084 0.2164 0.3398
50 0.4150 0.3176 0.3794 0.5400 0.4520 0.1388 0.2468 0.4784
80 0.5558 0.3994 0.5210 0.7064 0.6282 0.2094 0.2784 0.6760
t(7) 20 0.1162 0.0952 0.1006 0.1670 0.1398 0.0492 0.1066 0.1346
30 0.1404 0.1008 0.1306 0.2222 0.1806 0.0552 0.1188 0.1664
50 0.1806 0.1272 0.1578 0.2954 0.2362 0.0502 0.1422 0.2276
80 0.2380 0.1618 0.2086 0.4010 0.3122 0.0650 0.1590 0.3324
Cauchy(0,1) 20 0.8780 0.8386 0.8898 0.8622 0.8674 0.7012 0.6368 0.8450
30 0.9672 0.9410 0.9622 0.9574 0.9610 0.8606 0.6910 0.9542
50 0.9976 0.9950 0.9964 0.9954 0.9958 0.9712 0.7424 0.9976
80 1.0000 1.0000 0.9998 0.9998 0.9998 0.9992 0.8882 1.0000
Cauchy(0,5) 20 0.8778 0.8374 0.8796 0.8650 0.8704 0.6902 0.6454 0.8550
30 0.9628 0.9414 0.9648 0.9512 0.9590 0.8664 0.6950 0.9542
50 0.9968 0.9948 0.9976 0.9968 0.9966 0.9730 0.7468 0.9962
80 1.0000 1.0000 1.0000 0.9998 1.0000 0.9996 0.8872 1.0000
Logistic 20 0.1090 0.0872 0.0982 0.1460 0.1138 0.0436 0.0944 0.1158
30 0.1176 0.0908 0.1220 0.1982 0.1474 0.0452 0.1044 0.1482
50 0.1562 0.1184 0.1456 0.2620 0.1986 0.0414 0.1216 0.1900
80 0.2098 0.1406 0.1870 0.3474 0.2662 0.0468 0.1266 0.2908

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSy;) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test

ELR,.

TABLE 6: Results of the Monte Carlo power comparisons based on samples with sizes (1) from symmetric alternative distributions defined
on (0,1) at = 0.05.

Symmetric alternative distributions defined on (0, 1) at « = 0.05

Distribution n AD KSy, CVM JB SW DB SEELR ELR,,
Beta(2,2) 20 0.0564 0.0544 0.0594 0.0052 0.0516 0.1310 0.0696 0.0970
30 0.0786 0.0520 0.0812 0.0012 0.0768 0.2004 0.0550 0.1962
50 0.1222 0.0852 0.1172 0.0010 0.1528 0.3468 0.0628 0.4252
80 0.2340 0.1256 0.1834 0.0128 0.3170 0.5978 0.1128 0.7204
Beta(3,3) 20 0.0404 0.0474 0.0408 0.0076 0.0372 0.0780 0.0518 0.0620
30 0.0786 0.0520 0.0812 0.0046 0.0768 0.1112 0.0392 0.1030
50 0.0736 0.0524 0.0650 0.0014 0.0682 0.1654 0.0326 0.1906
80 0.1076 0.0762 0.0826 0.0022 0.1128 0.2772 0.0298 0.3458
Beta(0.5,0.5) 20 0.6160 0.3098 0.5058 0.0066 0.7190 0.9094 0.7092 0.7015
30 0.8576 0.4998 0.7332 0.0052 0.9392 0.9914 0.8830 0.8960
50 0.9902 0.7976 0.9568 0.3822 0.9992 1.0000 0.9916 0.9956
80 1.0000 0.9724 0.9990 0.9872 1.0000 1.0000 1.0000 1.0000
Uniform(0,1) 20 0.1640 0.1014 0.1396 0.0040 0.1886 0.4064 0.2598 0.3332
30 0.3004 0.1422 0.2262 0.0020 0.3894 0.6622 0.3202 0.6002
50 0.5780 0.2532 0.4282 0.0118 0.7546 0.9358 0.5624 0.9120
80 0.8636 0.4578 0.7092 0.3706 0.9688 0.9990 0.8730 0.9944
Logit-norm(0,1) 20 0.0648 0.0442 0.0562 0.0056 0.0578 0.1294 0.0700 0.1010
30 0.0858 0.0574 0.0748 0.0024 0.0796 0.1974 0.0658 0.1990
50 0.1394 0.0812 0.1220 0.0010 0.1612 0.3420 0.0676 0.4156
80 0.2630 0.1368 0.2114 0.0126 0.3408 0.5830 0.1094 0.7108
Logit-norm(0,2) 20 0.3758 0.1844 0.2934 0.0046 0.4366 0.7034 0.4806 0.5348
30 0.6092 0.2884 0.4822 0.0030 0.7342 0.9150 0.6512 0.8258
50 0.9016 0.5412 0.7814 0.1174 0.9742 0.9976 0.9006 0.9818
80 0.9942 0.8170 0.9644 0.8594 1.0000 1.0000 0.9958 0.9996

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSy;) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test

ELR,.
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TABLE 7: Results of the Monte Carlo power comparisons based on samples with sizes (1) from asymmetric alternative distributions defined
on (0, 00) at &« = 0.05.

Asymmetric alternative distributions defined on (0, c0) at o = 0.05

Distribution n AD KS,, CVM JB SW DB SEELR ELR,,
Exp(1) 20 0.7850 0.5722 0.7222 0.6230 0.8334 0.8384 0.8522 0.3642
30 0.9296 0.7780 0.8922 0.8286 0.9646 0.9754 0.9996 0.4752
50 0.9972 0.9594 0.9878 0.9756 0.9998 0.9992 1.0000 0.6400
80 1.0000 0.9990 0.9998 0.9998 1.0000 1.0000 1.0000 0.8114
Gamma(2,1) 20 0.4590 0.3066 0.4136 0.4080 0.5380 0.4420 0.5684 0.2264
30 0.6662 0.4776 0.6072 0.5852 0.7502 0.6876 0.8094 0.2844
50 0.8960 0.6926 0.8436 0.8242 0.9500 0.9180 0.9668 0.3822
80 0.9840 0.8962 0.9682 0.9782 0.9976 0.9914 0.9984 0.5210
Lognorm(0,1) 20 0.9080 0.7760 0.8846 0.8172 0.9350 0.9210 0.9418 0.6036
30 0.9838 0.9304 0.9730 0.9466 0.9888 0.9906 1.0000 0.7418
50 1.0000 0.9942 0.9998 0.9976 1.0000 1.0000 1.0000 0.9068
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9838
Lognorm(0,2) 20 0.9986 0.9904 0.9970 0.9840 0.9990 0.9998 0.9999 0.8894
30 0.9998 0.9998 1.0000 0.9994 1.0000 1.0000 1.0000 0.9684
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Weibull(2,1) 20 0.1348 0.0980 0.1142 0.1258 0.1582 0.1264 0.1626 0.0932
30 0.1828 0.1306 0.1654 0.1704 0.2274 0.1958 0.2718 0.0892
50 0.3050 0.2000 0.2530 0.2738 0.4086 0.3446 0.5202 0.1120
80 0.4954 0.3186 0.4200 0.4346 0.6644 0.5634 0.7812 0.1080
Weibull(0.5,1) 20 0.9962 0.9810 0.9954 0.9562 0.9990 0.9996 0.9986 0.8014
30 1.0000 0.9990 1.0000 0.9972 1.0000 1.0000 1.0000 0.9168
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9866
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSy;) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test
ELR,.

TaBLE 8: Results of the Monte Carlo power comparisons based on samples with sizes (1) from asymmetric alternative distributions defined
on (—00, 00) at « = 0.05.

Asymmetric alternative distributions defined on (00, co0) at « = 0.05

Distribution n AD KSy, CVM JB SW DB SEELR ELR,,
t(0=1v=2) 20 0.6446 0.5692 0.6440 0.6556 0.6498 0.4612 0.5688 0.5542
30 0.8060 0.7178 0.7934 0.8080 0.8072 0.6210 0.6678 0.7242
50 0.9492 0.8900 0.9394 0.9414 0.9410 0.7820 0.7782 0.8872
80 0.9928 0.9762 0.9892 0.9924 0.9924 0.9294 0.8410 0.9726
t0=1v=4) 20 0.3180 0.2368 0.2848 0.3606 0.3142 0.1638 0.2790 0.2744
30 0.4086 0.3246 0.3884 0.4810 0.4518 0.2262 0.3584 0.3718
50 0.5912 0.4618 0.5538 0.6592 0.6360 0.3202 0.4830 0.5344
80 0.7642 0.6370 0.7296 0.8290 0.8108 0.4626 0.5826 0.7084
t(6=1v=7) 20 0.1490 0.1138 0.1404 0.1934 0.1692 0.0766 0.1420 0.1492
30 0.1958 0.1424 0.1736 0.2722 0.2318 0.0940 0.1876 0.1936
50 0.2846 0.1968 0.2522 0.3834 0.3372 0.1194 0.2556 0.2738
80 0.3848 0.2756 0.3542 0.5102 0.4556 0.1620 0.3300 0.3798
SN(0,1,2) 20 0.0896 0.0756 0.0882 0.1054 0.1068 0.0636 0.0978 0.0710
30 0.1194 0.0912 0.1062 0.1214 0.1422 0.0784 0.1336 0.0792
50 0.1666 0.1260 0.1488 0.1810 0.1968 0.1164 0.2080 0.0800
80 0.2434 0.1918 0.2258 0.2712 0.2940 0.1550 0.3074 0.0890
SN(0,1,5) 20 0.2406 0.1744 0.2212 0.2060 0.2660 0.2092 0.2810 0.1144
30 0.3586 0.2604 0.3152 0.3056 0.4230 0.3346 0.4742 0.1278
50 0.5796 0.4098 0.5430 0.4768 0.6672 0.5250 0.7110 0.1372
80 0.8080 0.6084 0.7554 0.7378 0.8888 0.7394 0.9020 0.1722
SC(0,2,5) 20 0.9660 0.9360 0.9658 0.9410 0.9736 0.9436 0.9462 0.8482
30 0.9978 0.9884 0.9954 0.9910 0.9970 0.9882 0.9774 0.9524
50 1.0000 0.9998 1.0000 0.9998 0.9998 0.9992 0.9844 0.9940
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9998

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSy;) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test
ELR,.
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is testing for departures from normality against symmetric
alternative distributions for small to moderate sample sizes.
However, our test has low power in the considered asymmet-
ric alternatives and further modifications in improving the
power of the test under these alternatives would be much
appreciated.

In this study we used the moment constraints of the
standardized variables of the half-normal distribution. It will
be of interest for one to use the raw moments (nonstandard-
ized data points) of the half-normal distribution. However,
according to Dong and Giles [12], the power of the ELR test
using standardized observations is within the same range
as it is when using nonstandardized data points. Also of
interest are the findings by Mittelhammer et al. [29] where
they suggested that the power of ELR based tests increases
as the moment constraints increase. From our numerical
experiment we did not extensively explore this conjecture
and this is a potential area of future research and it might be
interesting to carry out a more detailed investigation for the
proposed tests. We focused on tests for normality, which is a
common distribution to test in applied statistical modelling
and we believe that our proposed test will assist investigators
to use empirical likelihood approaches using moment con-
straints for goodness-of-fit tests of other applied distributions
in practice. By simply ignoring the absolute values of the
transformed observations and utilizing standardized half-
normal data points our proposed test will simply transform
to a GoF test for assessing departures from half-normality.

Data Availability

The data appeared in an article entitled “Babies by the Dozen
for Christmas: 24-Hour Baby Boom” in the newspaper the
Sunday Mail on December 21,1997 [15]. One can get the data
in the package ‘dbEmpLikeGOF’ in R.
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