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In this study, we present a new family of distributions through generalization of the extended bimodal-normal distribution. This
family includes several special cases, like the normal, Birnbaum-Saunders, Student’s 𝑡, and Laplace distribution, that are developed
and defined using stochastic representation.The theoretical properties are derived, and easily implementedMonteCarlo simulation
schemes are presented. An inferential study is performed for the Laplace distribution. We end with an illustration of two real data
sets.

1. Introduction

Although the normal distribution is the most popular prob-
ability model in statistics, several random phenomena in
nature cannot be described by the normal distribution. In
this regard, Azzalini [1] introduced an extension of the
normal distribution called skew-normal distribution, where
this model shares some properties with the standard normal
model; it is mathematically tractable and it has a wide
range of the coefficients of skewness and kurtosis. From this
work, an important line of research focusing on finding new
distributions that offered greater flexibility is generated.

More recently, Elal-Olivero [2] introduced a new class of
skew-normal distribution called alpha-skew-normal distri-
bution. In doing so, he first defined anewbimodal-symmetric
normal distribution with probability density function given
by

𝜁 (𝑥) = 𝑥2𝜙 (𝑥) , 𝑥 ∈ R, (1)

where 𝜙(⋅) is the standard normal density, which is defined
as the bimodal-normal (BN) distribution. Furthermore, he
studies some properties of this distribution and presents its
stochastic representation as the product of two independent
random variables √𝑇 and 𝑉, where 𝑇 ∼ 𝜒2(3) and 𝑉 is a
discrete random variable such that P(𝑉 = ±1) = 1/2; that

is, 𝑋 = √𝑇𝑉 has the distribution BN. On the other hand, an
extension of the BN density is given by

𝜙𝜉 (𝑥) = (1 + 𝜉𝑥21 + 𝜉 )𝜙 (𝑥) , 𝑥 ∈ R, (2)

where 𝜉 ≥ 0 is the shape parameter. Note that this density
function is symmetric and is characterized by incorporating
bimodality into the normal distribution, which is controlled
by the parameter 𝜉. Elal-Olivero [2] presents this extension
as the symmetric-component of the alpha-skew-normal dis-
tribution. Furthermore, (2) also can be deduced from the
model presented in Elal-Olivero et al. [3]. In this regard,
Gui et al. [4] incorporated (2) into the slash distribution,
developed its properties, and performed inferential studies,
whereas Gómez and Guerrero [5] incorporated (2) into the
Birnbaum-Saunders distribution, tested its bimodality, and
demonstrated its principal properties.

The objective of this article is to present a new family
of distributions through generalization of (2). This gener-
alization can be applied to any density function, thereby
producing a more flexible model incorporating a shape
parameter. Depending on the density at which we apply this
generalization, it is observed that the new model is flexible
enough to support uni- and bimodal shapes. Furthermore,
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Gui et al. [4] andGómez andGuerrero [5] are particular cases
of the generalization proposal.

This article is organized as follows. In Section 2, we
present a generalization of (2) and review some partic-
ular cases (normal, Birnbaum-Saunders, Student’s 𝑡, and
Laplace distribution). In Section 3, we develop the basic
properties of the cases from Section 2 and study the effects
of this new generalization. In Section 4, we study some
inferential aspects of the extended Laplace distribution
using maximum likelihood estimation and perform a Monte
Carlo simulation study. We conclude in Section 5 with a
discussion.

2. A General Class of Distributions

This section describes a general class of distributions gener-
ated by (2), presents its basic properties, and derives explicit
expressions for the normal, Birnbaum-Saunders, Student’s 𝑡,
and Laplace distribution.

2.1. Characterization and Properties

Theorem 1 (general class of distributions). Let 𝑔 be a prob-
ability density function and ℎ a positive continuous function
such that E𝑔[ℎ(𝑌)] = 𝜅 < ∞, where 𝑌 ∼ 𝑔. Then,

𝑓 (𝑥; 𝜉) = (1 + 𝜉ℎ (𝑥)1 + 𝜅𝜉 )𝑔 (𝑥) , 𝑥 ∈ R, (3)

is a probability density function with shape parameter 𝜉 ≥ 0.
Proof. If we note 𝑓(𝑥; 𝜉) can be represented as a mixture of
two densities, then the result follows immediately; that is,𝑓(𝑥; 𝜉) = 𝑝𝑔(𝑥) + (1 − 𝑝)(1/𝜅)ℎ(𝑥)𝑔(𝑥), where 𝑝 = 1/(1 +𝜅𝜉).
Remark 2. On the basis of Theorem 1, we can make the
following observations:

(1) If 𝜉 = 0, then 𝑓(𝑥; 𝜉) = 𝑔(𝑥), 𝑥 ∈ R.
(2) If 𝜉 󳨀→ ∞, then 𝑓(𝑥; 𝜉) 󳨀→ (1/𝜅)ℎ(𝑥)𝑔(𝑥), 𝑥 ∈ R.

Theorem 3 (stochastic representation). Let 𝑋1 ∼ 𝑔(𝑥) and𝑋2 ∼ (1/𝜅)ℎ(𝑥)𝑔(𝑥) be independent random variables. If

𝑋 = {{{{{{{
𝑋1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 11 + 𝜅𝜉 ,
𝑋2, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜅𝜉1 + 𝜅𝜉 ,

(4)

then 𝑋 ∼ 𝑓(𝑥; 𝜉).
Proof. Since𝑓(𝑥; 𝜉) can be represented as amixture, the result
follows immediately.

Remark 4. If𝑋 ∼ 𝑓(𝑥; 𝜉), then
(1) The cumulative distribution function is given by

𝐹 (𝑥; 𝜉) = 11 + 𝜅𝜉 (𝐹1 (𝑥; 𝜉) + 𝜅𝜉𝐹2 (𝑥; 𝜉)) , (5)

where 𝐹1(𝑥; 𝜉) and 𝐹2(𝑥; 𝜉) are the cumulative dis-
tribution functions of 𝑋1 ∼ 𝑔(𝑥) and 𝑋2 ∼(1/𝜅)ℎ(𝑥)𝑔(𝑥), respectively.

(2) The moment generating function is given by

𝑀𝑋 (𝑡) = 11 + 𝜅𝜉 (𝑀1 (𝑡) + 𝜅𝜉𝑀2 (𝑡)) , (6)

where𝑀1(𝑡) and𝑀2(𝑡) are the moments generating
functions of 𝑋1 ∼ 𝑔(𝑥) and 𝑋2 ∼ (1/𝜅)ℎ(𝑥)𝑔(𝑥),
respectively, if both exist.

(3) The 𝑟-th moment of the random variable 𝑋 is given
by

E [𝑋𝑟] = 11 + 𝜅𝜉 (E𝑔 [𝑋𝑟] + 𝜉E𝑔 [𝑋𝑟ℎ (𝑋)]) ,
𝑟 = 1, 2, . . .

(7)

2.2. Special Cases. In this section, explicit expressions are
provided for the probability density function in (3) for
the normal, Birnbaum-Saunders, Student’s 𝑡, and Laplace
distribution and different choices of ℎ. These models are
selected to show the benefits of the proposed extension, and
the choice of the function ℎ(𝑥) is conditioned upon a positive
function with finite expectation.

Corollary 5 (normal case). If ℎ(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝜙(𝑥),
then 𝑋 has the probability density function given by

𝑓 (𝑥; 𝜉) = (1 + 𝜉𝑥21 + 𝜉 )𝜙 (𝑥) , 𝑥 ∈ R, (8)

and we say that 𝑋 has an “extended normal distribution,”
which is denoted as𝑋 ∼ EN(𝜉).
Corollary 6 (Birnbaum-Saunders case). Let 𝑎𝑥(𝛼, 𝛽) =(1/𝛼)(√𝑥/𝛽 − √𝛽/𝑥). If ℎ(𝑥) = 𝑎2𝑥(𝛼, 𝛽) and 𝑔(𝑥) =𝑎󸀠𝑥(𝛼, 𝛽)𝜙(𝑎𝑥(𝛼, 𝛽)) where 𝑎󸀠𝑥(𝛼, 𝛽) is the derivative with
respect to 𝑥, with 𝛼 > 0 and 𝛽 > 0, then 𝑋 has the probability
density function given by

𝑓 (𝑥; 𝛼, 𝛽, 𝜉)
= (1 + 𝜉𝑎2𝑥 (𝛼, 𝛽)1 + 𝜉 ) 𝑎󸀠𝑥 (𝛼, 𝛽) 𝜙 (𝑎𝑥 (𝛼, 𝛽)) ,

𝑥 > 0,
(9)

and we say that 𝑋 has an “extended Birnbaum-Saunders
distribution,” which is denoted as𝑋 ∼ EBS(𝛼, 𝛽, 𝜉).
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(a) 𝑋 ∼ EN(𝜉)
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(b) 𝑋 ∼ EBS(𝛼 = 0.5, 𝛽 = 0.8, 𝜉)

VARIABLE
−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

D
EN

SI
TY

(c) 𝑋 ∼ Et(] = 2, 𝜉)
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(d) 𝑋 ∼ EL(𝜉)

Figure 1: PDF’s for the special cases defined in Corollaries 5–8 and several values of 𝜉. 𝜉 = 0 (black line), 𝜉 = 1 (red line), 𝜉 = 2 (green line),
and 𝜉 = 3 (blue line).

Corollary 7 (Student’s 𝑡 case). If ℎ(𝑥) = 𝑥2(1 + ])/(𝑥2 + ])
and 𝑔(𝑥) = (Γ((1 + ])/2)/√𝜋]Γ(]/2))(1 + 𝑥2/])−(1+])/2 where
] > 0, then 𝑋 has the probability density function given by

𝑓 (𝑥; ], 𝜉) = (] + (1 + 𝜉 + 𝜉]) 𝑥2(] + 𝑥2) (1 + 𝜉) )
⋅ Γ ((1 + ]) /2)√𝜋]Γ (]/2) (1 + 𝑥

2

]
)−(1+])/2 ,

𝑥 ∈ R,
(10)

and we say that 𝑋 has an “extended Student’s 𝑡 distribution,”
which is denoted as𝑋 ∼ Et(], 𝜉).
Corollary 8 (Laplace case). If ℎ(𝑥) = |𝑥| and 𝑔(𝑥) =(1/2)𝑒−|𝑥|, then𝑋 has the probability density function given by

𝑓 (𝑥; 𝜉) = ( 1 + 𝜉 |𝑥|2 (1 + 𝜉)) 𝑒−|𝑥|, 𝑥 ∈ R, (11)

and we say that 𝑋 has an “extended Laplace distribution,”
which is denoted as𝑋 ∼ EL(𝜉).

As we notice, in the Corollaries 5–8 and Figure 1, when
the function 𝑔(𝑥) is a symmetric density, the effect of the
extension is that themodel supports uni- and bimodal shapes.
On the other hand, if the model has positive support, the
bimodality depends on the choice of parameters, as seen in
the Birnbaum-Saunders distribution case.

3. Some Results of the Special Cases

In this section, we develop some properties associated with
the models defined in Corollaries 5–8. The cumulative dis-
tribution function, moment, and stochastic representation
will be presented when they correspond to the cases at hand.
Some proofs are straightforward and are, therefore, omitted.

3.1. Extended Normal Distribution. The extended normal
distribution is the basis for the development of the specific
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Table 1: Alternative stochastic representation of special cases.

Case Representation Variables

EN √ 11 + 𝜉𝑍 + √ 𝜉1 + 𝜉𝑋 𝑍 ∼ N(0, 1) and𝑋 ∼ BN

EBS 𝛽(𝛼2 𝑌 + √(𝛼2𝑌)
2 + 1)

2

𝑌 ∼ EN(𝜉)
Et 𝑌√𝑉/] 𝑌 ∼ EN(𝜉) and 𝑉 ∼ 𝜒2(])
EL √2𝑊𝑌 𝑊 ∼ exp(1) and 𝑌 ∼ EN(𝜉)

cases discussed previously. If 𝑔(𝑥) = 𝜙(𝑥) and ℎ(𝑥) =𝑥2, then, from Theorem 3, we know that 𝑋1 ∼ 𝜙(𝑥) and𝑋2 ∼ 𝑥2𝜙(𝑥). Note that the distribution of 𝑋2 corresponds
to the bimodal-normal distribution, for which the stochastic
representation was presented in Section 1.

The stochastic representation of 𝑋 ∼ EN(𝜉) is obtained
through Theorem 3. Table 1 shows an alternative way to
generate random variables 𝑋 ∼ EN(𝜉). Furthermore, the
stochastic representation has a form that is similar to the
representation given in Henze [6] for the skew-normal
distribution presented in Azzalini [1].

Remark 9. If𝑋 ∼ EN(𝜉), then
(1) The cumulative distribution function is given by

𝐹 (𝑥; 𝜉) = Φ (𝑥) − 𝜉𝑥1 + 𝜉𝜙 (𝑥) , 𝑥 ∈ R. (12)

(2) The 𝑟-th moment of the random variable 𝑋 is given
by

E [𝑋𝑟]
= (1 + (−1)𝑟) 2−1+𝑟/2 (1 + 𝜉 + 𝑟𝜉) Γ ((1 + 𝑟) /2)√𝜋 (1 + 𝜉) ,

𝑟 = 1, 2, . . .
(13)

(3) The expected value and variance of the random
variable 𝑋 is given by

E [𝑋] = 0,
V (𝑋) = 1 + 3𝜉1 + 𝜉 .

(14)

3.2. Extended Birnbaum-Saunders distribution. The Birn-
baum-Saunders (BS) distribution (see Birnbaum and Saun-
ders [7, 8]) describes the lifetime of components exposed to
fatigue caused by cyclical stress and tension. Since 1969, the
number of studies that have investigated this distribution and
discussed the development of both its theoretical properties
and its applications has increased dramatically. Because of its
significance, this distribution has been extended in a variety
of manners to relax its behavior and thus make it applicable

to a wide range of situations. For example, see Birnbaum and
Saunders [7, 8], Mann et al. [9], Desmond [10, 11], Chang
and Tang [12], Dı́az-Garcı́a and Leiva-Sánchez [13], Gómez
et al. [14], and Olmos et al. [15]. The BS distribution with
parameters 𝛼 > 0 and 𝛽 > 0 has density function given by

𝑔 (𝑥) = 𝑎󸀠𝑥 (𝛼, 𝛽) 𝜙 (𝑎𝑥 (𝛼, 𝛽)) , 𝑥 > 0, (15)

where 𝑎𝑥(𝛼, 𝛽) is defined in Corollary 6 and is denoted as
BS(𝛼, 𝛽). If 𝑋1 ∼ BS(𝛼, 𝛽) and ℎ(𝑥) = 𝑎2𝑥(𝛼, 𝛽), then
𝑋2 ∼ 1𝜅ℎ (𝑥) 𝑔 (𝑥) = 𝑎2𝑥 (𝛼, 𝛽) 𝑎󸀠𝑥 (𝛼, 𝛽) 𝜙 (𝑎𝑥 (𝛼, 𝛽)) ,

𝑥 > 0, (16)

with a stochastic representation given by

𝑋2 = 𝛽(𝛼2𝑌 + √(𝛼2𝑌)
2 + 1)

2

, (17)

where 𝑌 ∼ BN. From Theorem 1, the extended Birnbaum-
Saunders distribution has density (9) and from Theorem 3
we can generate random variables 𝑋 ∼ EBS(𝛼, 𝛽, 𝜉). An
alternative way to generate this random variable can be seen
in Table 1.

Theorem 10. Let 𝑋 ∼ EBS(𝛼, 𝛽, 𝜉) with 𝛼 > 0, 𝛽 > 0 and𝜉 ≥ 0. Then

(1) 𝑎𝑋 ∼ EBS(𝛼, 𝑎𝛽, 𝜉), for 𝑎 > 0.
(2) 𝑋−1 ∼ EBS(𝛼, 𝛽−1, 𝜉).

Proof. The proofs are immediate from the theorem of the
change of variable.

Remark 11. Like the Birnbaum-Saunders distribution
observes that the property (1) established in Theorem 10
implies that the EBS distribution belongs to the scale family,
whilst the property (2) implies that it also belongs to the
family of random variables closed under reciprocation;
see Saunders [16]. Furthermore, based on properties (1)
and (2), we can have the two-parameter EBS distribution:𝛼𝑋/𝛽 ∼ EBS(𝛼, 𝛼, 𝜉).
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Remark 12. If𝑋 ∼ EBS(𝛼, 𝛽, 𝜉), then
(1) The cumulative distribution function is given by

𝐹 (𝑥; 𝛼, 𝛽, 𝜉) = 𝐹𝐵𝑆 (𝑥; 𝛼, 𝛽)
− 𝜉𝑎𝑥 (𝛼, 𝛽)1 + 𝜉 𝜙 (𝑎𝑥 (𝛼, 𝛽)) , 𝑥 > 0, (18)

where 𝐹𝐵𝑆(⋅) is the cumulative distribution function
of the Birnbaum-Saunders distribution.

(2) The 𝑟-th moment of the random variable 𝑋 is given
by

E [𝑋𝑟]
= 𝛽𝑟 𝑟∑
𝑗=0

(2𝑟2𝑗)
𝑗∑
𝑚=0

( 𝑗𝑚)(𝛼2)
2(𝑟+𝑚−𝑗)

E [𝑌2(𝑟+𝑚−𝑗)] ,
𝑟 = 1, 2, . . . ,

(19)

where 𝑌 ∼ EN(𝜉).
(3) The expected value and variance of the random

variable 𝑋 is given by

E [𝑋] = 𝛽 + 𝛽 (1 + 3𝜉) 𝛼22 (1 + 𝜉) ,
V (𝑋)
= 𝛼2𝛽2 (4 (1 + 𝜉) (1 + 3𝜉) + (5 + 3𝜉 (10 + 7𝜉)) 𝛼2)4 (1 + 𝜉)2 .

(20)

3.3. Extended Student’s 𝑡-Distribution. The Student’s 𝑡-
distribution serves as a robust alternative when it is desired
to model data sets with atypical values and with a coefficient
of kurtosis that is greater than of the normal distribution.
The Student’s 𝑡-distribution with parameter ] > 0 has a
density function given by

𝑔 (𝑥) = Γ ((1 + ]) /2)√𝜋]Γ (]/2) (1 + 𝑥
2

]
)−(1+])/2 , 𝑥 ∈ R. (21)

If𝑋1 ∼ 𝑔(𝑥) and ℎ(𝑥) = 𝑥2(1 + ])/(𝑥2 + ]), then,
𝑋2 ∼ 1𝜅ℎ (𝑥) 𝑔 (𝑥)
= (𝑥2 (1 + ])𝑥2 + ] ) Γ ((1 + ]) /2)√𝜋]Γ (]/2) (1 + 𝑥

2

]
)−(1+])/2 ,

𝑥 ∈ R,
(22)

with a stochastic representation given by 𝑋2 = 𝑌/√𝑊/],
where 𝑌 ∼ BN and𝑊 ∼ 𝜒2(]) are independent random vari-
ables. FromTheorem 1, the extended Student’s 𝑡-distribution
has density (10) and fromTheorem 3we can generate random
variables 𝑋 ∼ Et(], 𝜉). An alternative way to generate this
random variable can be seen in Table 1.

Remark 13. If 𝑋 ∼ Et(], 𝜉), then
(1) The cumulative distribution function is given by

𝐹 (𝑥; ], 𝜉) = 𝐹𝑇 (𝑥; ]) − 𝜉𝑥1 + 𝜉𝑓𝑇 (𝑥; ]) , 𝑥 ∈ R, (23)

where 𝐹𝑇(⋅) and 𝑓𝑇(⋅) are the cumulative distribution
function and probability density function of the 𝑡-
Student distribution, respectively.

(2) The 𝑟-th moment of the random variable 𝑋 is given
by

E [𝑋𝑟] = (1 + (−1)𝑟) ]𝑟/2 (1 + 𝜉 + 𝑟𝜉)2√𝜋 (1 + 𝜉) Γ (]/2)Γ (1 + 𝑟2 )
⋅ Γ (−𝑟 + ]2 ) , 𝑟 = 1, 2, . . . ,

(24)

where ] > 𝑟.
(3) The expected value and variance of the random

variable 𝑋 is given by

E [𝑋] = 0, ] > 1,
V (𝑋) = (1 + 3𝜉) ](1 + 𝜉) (−2 + ]) , ] > 2. (25)

3.4. Extended LaplaceDistribution. TheLaplace (L) or double
exponential distribution, which was originally published by
Pierre Laplace in 1774, is a symmetric distribution with
density function given by

𝑔 (𝑥) = 12𝑒−|𝑥|, 𝑥 ∈ R. (26)

If𝑋1 ∼ L and ℎ(𝑥) = |𝑥|, then,
𝑋2 ∼ 1𝜅ℎ (𝑥) 𝑔 (𝑥) = |𝑥|2 𝑒−|𝑥|, 𝑥 ∈ R, (27)

with a stochastic representation given by 𝑋2 = √2𝑊𝑌,
where 𝑊 ∼ exp(1) and 𝑌 ∼ BN are independent random
variables. FromTheorem 1, the extended Laplace distribution
has density (11) and fromTheorem 3 we can generate random
variables 𝑋 ∼ EL(𝜉). An alternative way to generate this
random variable can be seen in Table 1.

Remark 14. If𝑋 ∼ EL(𝜉), then
(1) The cumulative distribution function is given by

𝐹 (𝑥; 𝜉) = {{{{{{{
12𝑒𝑥 (1 − 𝜉𝑥1 + 𝜉) , if 𝑥 < 0,
1 − 12𝑒−𝑥 (1 + 𝜉𝑥1 + 𝜉) , if 𝑥 ≥ 0. (28)

(2) The 𝑟-th moment of the random variable 𝑋 is given
by

E [𝑋𝑟] = (1 + (−1)𝑟) 𝑟 (1 + 𝜉 + 𝑟𝜉)2 (1 + 𝜉) Γ (𝑟) ,
𝑟 = 1, 2, . . .

(29)
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(3) The expected value and variance of the random
variable 𝑋 are given by

E [𝑋] = 0,
V (𝑋) = 2 (1 + 3𝜉)1 + 𝜉 . (30)

Table 1 shows an alternative way to generate random variables
for the special cases defined in Corollaries 5–8. We can see
that the extended normal distribution is the basis for the
development of the specific cases discussed previously.

4. Inferential Aspects of the EL Distribution

In this section, we will study some inferential properties of
the extended Laplace distribution defined in Corollary 8 .
We will explore maximum likelihood estimators and Monte
Carlo simulation and will apply there results to two real data
sets, comparing the fit with the Laplace distribution using the
likelihood ratio and the Akaike Information Criterion (AIC).

4.1. Maximum Likelihood Estimator. In practice, it is com-
mon to work with a location and scale transformation 𝑋 =𝜇 + 𝜎𝑌, where 𝜇 ∈ R, 𝜎 > 0, and 𝑌 ∼ EL(𝜉) with 𝜉 ≥ 0.
Hence, the density for the random variable 𝑋, denoted as𝑋 ∼ EL(𝜇, 𝜎, 𝜉), is
𝑓 (𝑥; 𝜇, 𝜎, 𝜉) = (𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥 − 𝜇󵄨󵄨󵄨󵄨2𝜎2 (1 + 𝜉) ) 𝑒−|𝑥−𝜇|/𝜎, 𝑥 ∈ R. (31)

Assume that 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤ is a random sample of
size 𝑛 from an EL(𝜇, 𝜎, 𝜉) distribution. From (31), the log-
likelihood function is

ℓ (𝜃) ∝ −2𝑛 log (𝜎) − 𝑛 log (1 + 𝜉)
+ 𝑛∑
𝑖=1

log (𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨) − 1𝜎
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 , (32)

where 𝜃 = (𝜇, 𝜎, 𝜉)⊤, which is a continuous function in each
parameter, but it is not differentiable at 𝑥𝑖 = 𝜇, for 𝑖 = 1, . . . , 𝑛.
Thus, by assuming 𝑥𝑖 ̸= 𝜇, for 𝑖 = 1, . . . , 𝑛, we have that
elements of the score vector are 𝑆(𝜃) = (𝑆𝜇, 𝑆𝜎, 𝑆𝜉)⊤, where𝑆𝑎 = 𝜕ℓ/𝜕𝑎, given by

𝑆𝜇 = −𝜉 𝑛∑
𝑖=1

sgn (𝑥𝑖 − 𝜇)𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 +
1𝜎
𝑛∑
𝑖=1

sgn (𝑥𝑖 − 𝜇) ,
𝑆𝜎 = −2𝑛𝜎 + 1𝜎2

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 + 𝑛∑
𝑖=1

1𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 ,
𝑆𝜉 = − 𝑛1 + 𝜉 +

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 ,
(33)

where sgn(⋅) denotes the sign function.
Hence, the maximum likelihood estimator 𝜃̂ solves the

score equations 𝑆(𝜃) = 0. Which must be obtained through a
numerical method. A lot of software, including optimization

toolbox, can be used for obtaining the maximum likelihood
estimates. To achieve the maximization of log-likelihood
function, we used the function optim on R (see R Core
Team [17]), the specific method being Nelder-Mead (see
Nelder and Mead [18]), that uses only function values and
is robust but relatively slow. It will work reasonably well for
nondifferentiable functions.

For obtaining the standard errors of the maximum
likelihood estimates one should compute the information
matrix 𝐹(𝜃). It is well known that the elements of 𝐹(𝜃) are
given by

𝐹 (𝜃) = −E[ 𝜕2ℓ𝜕𝜃𝑖𝜕𝜃𝑗] ,
𝑖, 𝑗 = 1, 2, 3 and 𝜃 = (𝜇, 𝜎, 𝜉)⊤ .

(34)

Since expectation over EL distribution is not straightforward,
numerical methods should be performed to obtain the
explicit form of the information matrix. This matrix can
be approximated by the observed information matrix 𝐼(𝜃̂),
which is defined as minus the Hessian matrix evaluated at 𝜃̂;
that is

𝐼 (𝜃̂) ≈ −( 𝜕2ℓ𝜕𝜃𝑖𝜕𝜃𝑗)𝑖,𝑗 , (35)

where the second derivatives are given below:

𝜕2ℓ𝜕𝜇2 = −𝜉2
𝑛∑
𝑖=1

1
(𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨)2 ,

𝜕2ℓ𝜕𝜇𝜕𝜎 = − 1𝜎2
𝑛∑
𝑖=1

sgn (𝑥𝑖 − 𝜇) + 𝜉 𝑛∑
𝑖=1

sgn (𝑥𝑖 − 𝜇)(𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨)2 ,
𝜕2ℓ𝜕𝜇𝜕𝜉 = −𝜎

𝑛∑
𝑖=1

sgn (𝑥𝑖 − 𝜇)(𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨)2 ,
𝜕2ℓ𝜕𝜎2 = 2𝑛𝜎2 −

𝑛∑
𝑖=1

1
(𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨)2 −

2𝜎3
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 ,
𝜕2ℓ𝜕𝜎𝜕𝜉 = −

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨(𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨)2 ,
𝜕2ℓ𝜕𝜉2 = 𝑛(1 + 𝜉)2 −

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2(𝜎 + 𝜉 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨)2 .

(36)

Thus, we use the observed information matrix for computing
the standard errors in the rest of the paper. Note that
this approximation of the observed information matrix is
obtained under a less stringent supposition, this is, assuming
that the density function is absolutely continuous, as is the
case with the Laplace distribution (see Kotz et al. [19], remark
2.6.1).

4.2. Numerical Study. We shall use Monte Carlo simulation
to evaluate the finite sample performance of the maximum
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Table 2: Empirical means and standard error for maximum likelihood estimators.

𝑛 Parameters Estimations𝜇 𝜎 𝜉 𝜇 (𝑆𝐸) 𝜎̂ (𝑆𝐸) 𝜉 (𝑆𝐸)50 0 1 0.5 0.0204 (0.4820) 1.0389 (0.3676) 0.5309 (1.0881)1 0.0242 (0.3654) 1.0280 (0.2816) 1.0336 (1.5642)3 0.0427 (0.1831) 0.9960 (0.1650) 3.1850 (3.7918)5 2 0.5 5.1040 (0.8495) 2.0082 (0.6631) 0.6770 (1.1768)1 5.1001 (0.6149) 2.0170 (0.5393) 1.2138 (1.7345)3 5.0971 (0.3587) 1.9945 (0.3280) 3.2898 (3.9105)100 0 1 0.5 0.0204 (0.2839) 1.0221 (0.2745) 0.5318 (0.8100)1 0.0252 (0.2173) 1.0146 (0.1887) 1.0345 (1.0549)3 0.0248 (0.1206) 0.9968 (0.1203) 3.1760 (2.8356)5 2 0.5 5.0733 (0.5707) 1.9895 (0.4675) 0.6398 (0.7921)1 5.0679 (0.3964) 1.9881 (0.3951) 1.1650 (1.2693)3 5.0555 (0.2397) 1.9874 (0.2444) 3.2888 (2.9978)250 0 1 0.5 0.0145 (0.1416) 1.0051 (0.1676) 0.5347 (0.5004)1 0.0213 (0.1290) 1.0011 (0.1171) 1.0335 (0.6633)3 0.0065 (0.0699) 0.9963 (0.0732) 3.1530 (1.6987)5 2 0.5 5.0293 (0.2936) 1.9586 (0.2806) 0.6131 (0.4630)1 5.0441 (0.2255) 1.9774 (0.2034) 1.1208 (0.6059)3 5.0255 (0.1387) 1.9922 (0.1469) 3.2357 (1.7630)500 0 1 0.5 0.0107 (0.0806) 0.9960 (0.1048) 0.5341 (0.3108)1 0.0149 (0.0856) 0.9992 (0.0721) 1.0362 (0.3982)3 0.0067 (0.0488) 0.9944 (0.0497) 3.1315 (1.1299)5 2 0.5 5.0058 (0.1794) 1.9592 (0.1822) 0.5861 (0.2886)1 5.0205 (0.1587) 1.9802 (0.1348) 1.0922 (0.3904)3 5.0165 (0.0954) 1.9908 (0.0985) 3.2127 (1.1524)
likelihood estimator.Thenumber ofMonte Carlo replications
was 1000 from simulated samples of the EL distribution for
several samples sizes. Each sample was generated using the
stochastic representation of the EL distribution, described
above. For each generated sample, we obtain the maximum
likelihood estimates using the function optim on R, the
specific method being Nelder-Mead.

In order to analyze the point estimation results, we
computed, for each sample size and for each estimator, the
standard error from the observed information matrix defined
in (35). The result can be seen in Table 2. From the results,
we can see that the estimates are quite stable and estimates
are asymptotically unbiased as expected, that is, it is observed
that the bias becomes smaller as the sample size 𝑛 increases.
4.3. Data Illustration. In this section we shall examine the
application of the EL distribution to two real data sets. The
first data set is related to the project WHOMONICA (World
HealthOrganizationMultinationalMonitoring of Trends and
Determinants in Cardiovascular Disease). This data set has
been previously analyzed and studied in Kuulasmaa et al.
[20], Kulathinal et al. [21], and de Castro et al. [22] and
corresponds to the average annual rate of occurrence of
cardiovascular mortality or the presence of coronary disease.
The data are as follows: −5.6, −3.1, 0.3, −1.9, −1.6, 2.0, −0.9,−3.1, −7.4, −7.2, −4.6, 1.2, −2.3, −3.5, −4.9, −1.6, −3.5, −0.8,−4.1, −2.2, 0.9, 1.8, −6.7, −1.0, −2.3, 0.6, −1.8, 0.8, 2.2, −1.3,

−4.9, −5.4, 0.7, −2.9, −6.1, −0.6, −5.9, 2.3, −5.8, −4.3, −4.7,−0.4, 4.0, −2.9, 4.9, −0.9, −5.4, −8.7, −1.6, −5.9, −3.9, −7.0,−0.1, −5.9, −0.3, 2.4, 1.4, −5.1, 8.4, 4.8, −6.1, −1.1, 0.0, −8.5,−1.7, 7.5, 0.5, −0.1, 0.4, −5.4, −4.0, −3.3, −1.8, 4.3.The second
data set consists of the heights in inches of 126 students from
University of Pennsylvania. This data set has been previously
analyzed and studied by Hassan and Hijazi [23] and Gui et
al. [4]. The data are as follows: 55.00, 60.00, 60.25, 61.00,61.75, 62.25, 62.25, 62.63, 62.75, 63.00, 63.25, 63.25, 63.25,63.25, 63.38, 64.00, 64.25, 64.25, 64.50, 64.75, 64.75, 65.00,65.00, 65.13, 65.13, 65.17, 65.25, 65.25, 65.25, 65.25, 65.25,65.50, 65.75, 66.00, 66.00, 66.25, 66.25, 66.25, 66.50, 66.75,66.75, 66.75, 66.75, 67.00, 67.13, 67.25, 67.38, 67.50, 67.50,67.75, 67.75, 67.75, 68.13, 68.75, 69.00, 69.00, 69.25, 69.50,69.88, 70.00, 70.00, 70.25, 70.38, 71.00, 71.00, 71.25, 71.75,65.50, 65.75, 66.00, 66.25, 66.75, 67.00, 67.13, 67.25, 68.00,68.13, 68.75, 68.75, 69.13, 69.25, 69.25, 69.38, 69.75, 70.00,70.13, 70.50, 70.75, 70.75, 71.00, 71.00, 71.50, 71.50, 71.63,71.75, 71.75, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.25,72.25, 72.25, 72.38, 72.50, 72.50, 72.88, 73.00, 73.00, 73.00,73.25, 73.25, 73.63, 74.00, 74.63, 75.00, 75.00, 75.05, 76.00,77.00, 77.13, 77.50, 77.50, 78.50. Table 3 shows a descriptive
summary of the data sets analyzed.

From these data sets, the maximum likelihood estimators
of the parameters associated with the Laplace (L(𝜇, 𝜎)) and
the extended Laplace (EL(𝜇, 𝜎, 𝜉)) distributions are obtained;
the results of the comparison are summarized in Table 4 and
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Table 3: Descriptive summary.

Data set 𝑛 𝑥 𝑠𝑥 Asymmetry Kurtosis
WHOMONICA 74 −1.9014 3.6037 0.4724 3.0893
HEIGHT 126 68.5462 4.1578 −0.0497 3.0528

Table 4: Maximum likelihood estimation and standard error.

Parameter estimates WHOMONICA HEIGHT
L EL L EL𝜇 −1.7000 (0.0580) −2.1310 (0.1889) 68.7500 (0.0353) 68.4236 (0.1469)𝜎 3.3319 (0.4563) 1.6204 (0.1876) 3.7162 (0.3628) 1.7988 (0.1308)𝜉 – 3.5025 (2.9071) – 7.9689 (5.1001)

Log-likelihood −204.0124 −199.5330 −368.2153 −354.6919
AIC 412.0249 405.0661 740.4306 715.3838
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Figure 2: Histograms and the fitted curves. Extended Laplace distribution (red line) and Laplace distribution (black line).

Figure 2 shows the histograms and the fitted curves for the
data set.

The AIC is used to compare the estimated models. As
one can see, our model with the smallest values of AIC is
preferable. In addition, we can use the likelihood ratio (LR)
test statistic to confirm our claim. To do this, we consider the
following hypotheses:

H0 : 𝜉 = 0 (L (𝜇, 𝜎)) vs. H1 : 𝜉 ̸= 0 (EL (𝜇, 𝜎, 𝜉)) (37)

The value of the LR test statistic for the data WHOMONICA
is 7.22 and for the data set of the height of students is 26.96
and comparing this quantity with 𝜒2(1) = 3.83, the null
hypothesis is rejected.

Figure 3 shows the graphs of the QQ-plots for the WHO
MONICA andHEIGHT data sets calculated with the Laplace
and extended Laplace models fitted with the maximum
likelihood estimates of the parameters. These also show the
good agreement of the EL distribution for the two data sets.

5. Conclusion and Final Comments

We have presented a generalization of the extended bimodal-
normal distribution that depends on a shape parameter that
controls the effect of bimodality when the density is symmet-
ric. But, generally speaking, it produces amore flexible model
in terms of asymmetry and kurtosis coefficients. Additionally,
we have demonstrated its basic properties and stochastic
representation, the latter of which played a significant role
in the development of this work. The family of distributions
includes a large number of distributions. For example, four
of them were presented as corollaries, leaving the Laplace
distribution for last, and used to develop some inferential
aspects and Monte Carlo simulation schemes, which were
facilitated by the use of stochastic representation in the
generation of random variables. Finally, using two real data
sets, we demonstrated that the proposed model resulted
in better behavior relative to the standard Laplace model.
Moreover, in the statistical literature, there are a variety of
extensions of the Laplace distribution, in order to achieve
greater flexibility, but without the effect of bimodality that
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Figure 3: QQ-plot for the WHOMONICA and HEIGHT data sets.

fitted the data analyzed. Although bimodality can be achieved
through a mixture of distributions, the proposed model is
more parsimonious in terms of the number of parameters. It
is important to emphasize thatTheorem 1 can be extended, as
demonstrated below.

Theorem 15. Let 𝑔1 and 𝑔2 be a probability density functions
and ℎ a positive continuous function such that E𝑔2[ℎ(𝑌)] = 𝜅 <∞, where 𝑌 ∼ 𝑔2. Then

𝑓 (𝑥; 𝜉) = ( 11 + 𝜅𝜉) 𝑔1 (𝑥) + ( 𝜉ℎ (𝑥)1 + 𝜅𝜉)𝑔2 (𝑥) , (38)

is a probability density function with shape parameter 𝜉 ≥ 0.
Note that when 𝑔1(𝑥) = 𝑔2(𝑥) = 𝑔(𝑥) we have

Theorem 1. Furthermore, this new extension has stochastic
representation given by the following theorem.

Theorem 16. Let 𝑋1 ∼ 𝑔1(𝑥) and 𝑋2 ∼ (1/𝜅)ℎ(𝑥)𝑔2(𝑥) be
independent random variables. If

𝑋 = {{{{{{{
𝑋1, with probability 11 + 𝜅𝜉 ,
𝑋2, with probability 𝜅𝜉1 + 𝜅𝜉 ,

(39)

then 𝑋 ∼ 𝑓(𝑥; 𝜉).
Proof. Since 𝑓(𝑥; 𝜉) is a mixture, the result follows immedi-
ately.

This new extension includes, for examples, the case of
the slash distribution Rogers and Tukey [24], Mosteller and
Tukey [25], and Kafadar [26], if we consider the following
definitions: (i) 𝑔1(𝑥) = 𝑞 ∫1

0
𝑢𝑞𝜙(𝑥𝑢)𝑑𝑢, (ii) 𝑔2 = (𝑞 +

2) ∫1
0
𝑢𝑞+2𝜙(𝑥𝑢)𝑑𝑢, and (iii) ℎ(𝑥) = 𝑞𝑥2/(𝑞 + 2), with 𝑥 ∈ R

and 𝑞 > 2, with density given by
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𝑓 (𝑥; 𝜉) = ( 11 + 𝜉) 𝑞∫
1

0
𝑢𝑞𝜙 (𝑥𝑢) 𝑑𝑢

+ ( 𝜉1 + 𝜉) 𝑞𝑥2 ∫
1

0
𝑢2+𝑞𝜙 (𝑥𝑢) 𝑑𝑢.

(40)
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