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Without the ability to use research tools and procedures that yield consistent measurements, researchers would be unable to draw
conclusions, formulate theories, or make claims about generalizability of their results. In statistics, the coefficient of variation is
commonly used as the index of reliability ofmeasurements.Thus, comparing coefficients of variation is of special interest.Moreover,
the lognormal distribution has been frequently used for modeling data from many fields such as health and medical research. In
this paper, we proposed a simulated Bartlett corrected likelihood ratio approach to obtain inference concerning the ratio of two
coefficients of variation for lognormal distribution. Simulation studies show that the proposed method is extremely accurate even
when the sample size is small.

1. Introduction

In health and medical research, it is common that the
variable of interest, 𝑋, such as the survival time, takes
only positive values and the underlying distribution of this
variable is highly skewed to the right. In this case, the
frequently assumed normal distribution for𝑋 is not suitable.
A standard approach to first transform 𝑋 such that the
transformed variable 𝑌 = 𝑔(𝑋) is normally distributed.
Then the existing statistical theories developed for the normal
distribution can be applied. For 𝑋 > 0 and the distribution
of 𝑋 is highly skewed to the right, the most common
transformation is the logarithmic transformation. In other
words, 𝑌 = log(𝑋) is normally distributed. Hence, 𝑋 is
lognormally distributed.Detailed review of the theories of the
lognormal distribution can be found in Aitchison and Brown
[1], and Crow and Simizu [2]. In practice, Fears et al. [3]
investigated the variability and reproducibility of hormone
assays used by laboratories with the capability of performing
large numbers of tests. They assumed the hormone samples
used in laboratories are independent lognormally distributed.

In this case, it is of special interest to know if each sample
yields consistent measurements.

The coefficient of variation (𝜏) is defined as the ratio of the
standard deviation to the mean, where the mean is assumed
to be non zero. It is an important index for assessment of
the reliability of a measuring procedure. Hence, the problem
considered in Fears et al. [3] can be viewed as testing if the
coefficients of variation used in each laboratory are the same
or not.

Mathematically, if a random variable 𝑋 is distributed as
lognormal(𝜇, 𝜎), then 𝑌 = log(𝑋) is distributed as normal
with mean 𝜇 and variance 𝜎2. It is well-known that

𝐸 (𝑋) = exp{𝜇 + 𝜎2
2 } ,

and var (𝑋) = exp {2𝜇 + 𝜎2} [exp {𝜎2} − 1] .
(1)

Hence, the coefficient of variation, 𝜏, is
𝜏 = √var (𝑋)

𝐸 (𝑋) = √exp {𝜎2} − 1 > 0. (2)

Hindawi
Journal of Probability and Statistics
Volume 2019, Article ID 7173416, 7 pages
https://doi.org/10.1155/2019/7173416

http://orcid.org/0000-0003-3059-4973
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7173416


2 Journal of Probability and Statistics

Nam and Kwon [4] compared various approximate inter-
val estimations of the ratio of two coefficients of variation
for independent lognormal distributions. And their simu-
lation results showed that empirical coverage rates of these
methods are satisfactorily close to the nominal coverage
rate for medium sample size. The aim of this paper is to
develop a more accurate method to obtain inference for
the ratio of two coefficients of variation for independent
lognormal distributions.Moreover, the proposedmethod can
be generalized to test if the coefficients of variation from 𝑘
independent lognormal distributions are heterogeneous.

The rest of the paper is organized as follows. Sec-
tion 2 reviewed the existing methods for obtaining inference
concerning the ratio of two coefficients of variation from
independent lognormal distribution. The simulated Bartlett
corrected likelihood method is proposed in Section 3. A real
data example is presented in Section 4 to illustrate the applica-
tion of themethod discussed in this paper. Simulation studies
are performed to compare the accuracy of the methods
discussed in this paper in Section 5. Extension to testing for
homogeneity of coefficients of variations from 𝑘 independent
lognormal distributions is discussed in Section 6. Some
concluding remarks are recorded in Section 7.

2. Existing Methods for Inference on the Ratio
of Two Coefficients of Variation of Two
Independent Lognormal Distributions

Let (𝑥𝑖1, . . . , 𝑥𝑖𝑛𝑖) be the 𝑖𝑡ℎ sample from the lognormal(𝜇𝑖, 𝜎𝑖)
distribution, where 𝑖 = 1, . . . , 𝑘. Then (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖) =
(log𝑥𝑖1, . . . , log𝑥𝑖𝑛𝑖) is the 𝑖𝑡ℎ sample from the normal dis-
tribution with mean 𝜇𝑖 and variance 𝜎2𝑖 . From (2), the 𝑖𝑡ℎ
coefficient of variation is 𝜏𝑖 = √exp{𝜎2𝑖 } − 1. Nam and Kwon
[4] compared fourmethods in obtaining confidence intervals
for 𝜓 = 𝜏1/𝜏2. The following is the summary of the methods
discussed in Nam and Kwon [4]:

(1) Wald type method
Let the observed test statistic be

𝑧𝑊 (𝜓) = 𝜓̂ − 𝜓
√v̂ar (𝜓̂) (3)

where 𝜓̂ = 𝜏1/𝜏2, 𝜏𝑖 = √exp{𝜎̂2𝑖 } − 1, 𝜎̂2𝑖 =
(1/𝑛𝑖) ∑𝑛𝑖𝑗=1(log𝑥𝑖𝑗 − ∑𝑛𝑖

ℎ=1
log𝑥𝑖ℎ/𝑛𝑖)2, and v̂ar(𝜓̂) =

(𝑛1𝜓4[(1 + 𝜏22 )𝜎̂22]2 + 𝑛2[(1 + 𝜏21 )𝜎̂21]2)/2𝑛1𝑛2(𝜏1𝜏2)2.
Then𝑍𝑊(𝜓) is asymptotically distributed as standard
normal distribution.The significance function of 𝜓 is𝑝(𝜓) = Φ(𝑧𝑊(𝜓)), whereΦ() is the cumulative distri-
bution function of the standard normal distribution.

(2) Fieller type method
Let the observed test statistic be

𝑧𝐹 (𝜓) = 𝜏1 − 𝜓𝜏2
√ṽar (𝜏1) + 𝜓2ṽar (𝜏2) (4)

where

ṽar (𝜏𝑖) = 𝜎̂2𝑖 (1 + 𝜏𝑖)22𝑛𝑖𝜏2𝑖 𝑖 = 1, 2. (5)

Then𝑍𝐹(𝜓) is also asymptotically distributed as stan-
dard normal distribution.The significance function of𝜓 is 𝑝(𝜓) = Φ(𝑧𝐹(𝜓)).

(3) Log method
Let the observed test statistic be

𝑧𝐿 (𝜓) = log 𝜏1 − log 𝜏2 − log𝜓
√ṽar (log 𝜏1) + ṽar (log 𝜏2) (6)

where

ṽar (log 𝜏i) = ṽar (𝜏𝑖)𝜏2𝑖 𝑖 = 1, 2. (7)

Then𝑍𝐿(𝜓) is also asymptotically distributed as stan-
dard normal distribution.The significance function of𝜓 is 𝑝(𝜓) = Φ(𝑧𝐿(𝜓)).

(4) Method of variance estimates recovery (MOVER)
This is a method that will directly obtain an approxi-
mate (1 − 𝛼)100% confidence interval for 𝜓 only. Let

𝑙𝑖 = log 𝜏𝑖 − 𝑧𝛼/2√ṽar (log 𝜏𝑖),
and 𝑢𝑖 = log 𝜏𝑖 + 𝑧𝛼/2√ṽar (log 𝜏𝑖).

(8)

Then an approximate (1−𝛼)100% confidence interval
for log𝜓 is (𝐿, 𝑈) where

𝐿 = (log 𝜏1 − log 𝜏2)
− √(log 𝜏1 − 𝑙1)2 + (𝑢2 − log 𝜏2)2,

𝑈 = (log 𝜏1 − log 𝜏2)
+ √(log 𝜏1 − 𝑙1)2 + (𝑢2 − log 𝜏2)2.

(9)

Thus, an approximate (1−𝛼)100%confidence interval
for 𝜓 is (exp{𝐿}, exp{𝑈}). If ṽar(log 𝜏𝑖), for 𝑖 = 1, 2,
to be the same as that obtained in the Log method,
the MOVER method is identical to the Log method.
Note that Hasan and Krishamoorthy [5] proposed an
improved version of the MOVER method.

3. Proposed Method

In this section, we will first review the likelihood basedmeth-
ods and the Bartlett corrected likelihood ratio method. Since
the required Bartlett adjustment for the Bartlett corrected
likelihood ratiomethod is very difficult to obtain, a numerical
algorithm is proposed to approximate the Bartlett adjust-
ment. Then the methods are applied to obtain inference for
the ratio of two coefficients of variaation of two independent
lognormal distribution.
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3.1. Likelihood Based Methods and Bartlett Corrected Like-
lihood Ratio Method. Let (𝑥1, . . . , 𝑥𝑛) be a sample from a
known distribution with probability density function 𝑓(⋅, 𝜃),
where 𝜃 is a 𝑝-dimensional vector of parameters. Let 𝜓 =𝜓(𝜃), which has dimension𝑑 < 𝑝 be the parameter of interest.
The log-likelihood function is

ℓ (𝜃) = ℓ (𝜃; 𝑥1, . . . , 𝑥𝑛) =
𝑛∑
𝑖=1

log𝑓 (𝑥𝑖; 𝜃) . (10)

Under the regularity conditions stated in Barndorff-Nielsen
and Cox [6], we have the standardized maximum likelihood
estimate (MLE) statistic (𝜃 − 𝜃)󸀠[var(𝜃)]−1(𝜃 − 𝜃) and the
likelihood ratio statistic 2[ℓ(𝜃)− ℓ(𝜃)] that are asymptotically
chi-square distributed with 𝑝 degrees of afreedom, 𝜒2𝑝, where𝜃 is the overall MLE, which is the value of 𝜃 that maximizedℓ(𝜃), and var(𝜃) is approximately the inverse of the Fisher’s
expected information. When the parameter of interest is 𝜓 =𝜓(𝜃), Barndorff-Nielsen and Cox [6] showed that similar
statistics can be obtained. The standardized MLE statistic
becomes

𝑄 (𝜓) = (𝜓̂ − 𝜓)󸀠 [var (𝜓̂)]−1 (𝜓̂ − 𝜓) (11)

where 𝜓̂ = 𝜓(𝜃), and var(𝜓̂) can be approximated by the delta
method, which takes the form

var (𝜓̂) ≈ {𝜕𝜓 (𝜃)𝜕𝜃 }󸀠 var (𝜃) {𝜕𝜓 (𝜃)𝜕𝜃 } . (12)

The likelihood ratio statistic is

𝑊(𝜓) = 2 [ℓ (𝜃) − ℓ (𝜃)] , (13)

where 𝜃 is the constrained MLE, which is obtained by
maximizing ℓ(𝜃) for the given 𝜓 value. Both 𝑄(𝜓) and𝑊(𝜓) are asymptotically 𝜒2𝑑. As defined in Fraser [7], the
significance function for𝜓 is defined as 𝑝(𝜓) = 𝑃(𝜒2𝑑 ≤ 𝑞(𝜓))
or 𝑝(𝜓) = 𝑃(𝜒2𝑑 ≤ 𝑤(𝜓)) can be used to obtain inference
concerning 𝜓 where 𝑞(𝜓) and 𝑤(𝜓) are the observed values
of𝑄(𝜓) and𝑊(𝜓), respectively. In particular, the (1−𝛼)100%
confidence region of 𝜓 is

{𝜓 : 𝑞 (𝜓) ≤ 𝜒2𝑑,1−𝛼}
and {𝜓 : 𝑤 (𝜓) ≤ 𝜒2𝑑,1−𝛼} ,

(14)

respectively, where 𝜒2𝑑,1−𝛼 is the (1 − 𝛼)100𝑡ℎ percentile of 𝜒2𝑞 .
It is well-known that these two asymptotic methods have

rate of convergence 𝑂(𝑛−1/2), and they are referred to as
the first-order methods. In statistics literature, there exists
various adjustments to improve the accuracy of the above
methods. In particular, Barndorff-Nielsen [8, 9] introduced
the modified signed log-likelihood ratio statistics, a third-
order method. However, this method is restricted to scalar
parameter of interest only. On the other hand, Bartlett [10]
proposed a transformation of the likelihood ratio statistic

such that the mean of the transformed statistic matched the
mean of the asymptotic distribution. More specifically,

𝑊∗ (𝜓) = 𝑊(𝜓)
𝐵 (15)

where 𝐵 is the Bartlett adjustment such that 𝐸[𝑊∗(𝜓)] = 𝑑.
And𝑊∗(⋅) is known as the Bartlett corrected likelihood ratio
statistic. An obvious choice of 𝐵 is

𝐵 = 𝐸 [𝑊∗ (𝜓)]
𝑑 . (16)

Bartlett [10] showed that the Bartlett corrected likelihood
ratio statistic is also asymptotically 𝜒2𝑑 distributed and it has
rate of convergence 𝑂(𝑛−2). Therefore, it is an extremely
accurate method. Nevertheless, except in a few well-defined
problem, 𝐸[𝑊∗(𝜓)] is very difficult to obtain which hinders
the use of this method in applied statistics. A review of the
Bartlett corrected likelihood ratio method can be found in
Barndorff-Nielsen and Cox [6].

Although, mathematically, the explicit closed form of 𝐵,
or even an asypmptotic expansion of 𝐵, is difficult to obtain,
we propose the following algorithmic way to obtain 𝐸[𝑊(𝜓)]
numerically, and hence, an estimated 𝐵.

Given: (𝑥1, . . . , 𝑥𝑛) is a sample of size 𝑛 from a distribution
with known probability density function 𝑓(⋅; 𝜃).

Interest: Inference concerning 𝜓 = 𝜓(𝜃).
Have: Overall maximum likelihood estimate 𝜃, the con-

strained maximum likelihood estimate 𝜃, and the observed
likelihood ratio statistic 𝑤(𝜓).

Step 1: Simulate𝑀 samples of data of size 𝑛 from 𝑓(⋅; 𝜃).
Step 2: For each set of simulated data, obtain the simulated

observed likelihood ratio statistic. As a result, we have𝑤1(𝜓), . . . , 𝑤𝑀(𝜓).
Step 3: Calculate

𝑤 (𝜓) = ∑𝑀𝑖=1 𝑤𝑖 (𝜓)𝑀 , (17)

which is an estimate of the mean of the likelihood ratio
statistic. Hence, we have 𝐵 = 𝑤(𝜓)/𝑑.

Step 4: The observed simulated Bartlett corrected likeli-
hood ratio statistic is

𝑤∗ (𝜓) = 𝑤 (𝜓)
𝐵 , (18)

is asymptotically distributed as 𝜒2𝑑 with fourth order rate
of convergence. Thus, the significance function is 𝑝(𝜓) =𝑃(𝜒2𝑑 ≤ 𝑤∗(𝜓)), and the (1 − 𝛼)100% confidence region of𝜓 is

{𝜓 : 𝑤∗ (𝜓) ≤ 𝜒2𝑑,1−𝛼} . (19)

As a final note on the proposed algorithm, theoretically,
the choice of𝑀 should be as large as possible. However, the
larger𝑀 is, themore calculations are required to obtain𝑤(𝜓).
Moreover, the more nuisance parameters exist in the model,
the larger𝑀 has to be. We recommend to use trial-by-error
of𝑀 until 𝑤(𝜓) is stablized.
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3.2. Applying Likelihood Based Method to Obtain Inference on
the Ratio of Two Coefficients of Variation of Two Independent
LogNormal Distribution. Let𝑌𝑖 = ∑𝑛𝑖𝑗=1 𝑌𝑖𝑗/𝑛𝑖 and (𝑛𝑖−1)𝑆2𝑖 =∑𝑛𝑖𝑗=1(𝑌𝑖𝑗 − 𝑌𝑖)2. Then 𝑌𝑖 is normally distributed with mean 𝜇𝑖
and variance 𝜎2𝑖 /𝑛, and (𝑛𝑖−1)𝑆2𝑖 /𝜎2𝑖 is 𝜒2𝑛−1. Moreover,𝑌𝑖 and(𝑛𝑖 − 1)𝑆2𝑖 /𝜎2𝑖 are independent. Hence, inference concerning𝜎2𝑖 will be based on 𝜒2𝑛𝑖−1. Since 𝜏𝑖 is a function of 𝜎2𝑖 only,
inference concerning 𝜏𝑖 will be based on 𝜒2𝑛𝑖−1. Let 𝜃 =
(𝜎21 , 𝜎22). Then the likelihood function for 𝜃 can be written as

ℓ (𝜃) = ℓ (𝜎21 , 𝜎22 ; 𝑠21, 𝑠22)
= −𝑛1 − 12 log𝜎21 − (𝑛1 − 1) 𝑠212𝜎21 − 𝑛2 − 12 log𝜎22

− (𝑛2 − 1) 𝑠222𝜎22 .
(20)

It is easy to show that the overall MLE

𝜃 = (𝜎̂21 , 𝜎̂22) = (𝑠21, 𝑠22) . (21)

Since our parameter of interest is 𝜓 = 𝜓(𝜃) = 𝜏1/𝜏2, where
𝜏𝑖 = √exp{𝜎2𝑖 } − 1, we have

𝜎21 = log (𝜓2 exp {𝜎22} − 𝜓2 + 1) . (22)

For a given 𝜓 value, the log-likelihood function in (20) can
be expressed as a function of 𝜎22 only, and is

ℓ (𝜎22) = ℓ (𝜎22 ; 𝑠21, 𝑠22)
− 𝑛1 − 12 log [log (𝜓2 exp {𝜎22} − 𝜓2 + 1)]

− (𝑛1 − 1) 𝑠212 [log (𝜓2 exp {𝜎22} − 𝜓2 + 1)]
− 𝑛2 − 12 log𝜎22 − (𝑛2 − 1) 𝑠222𝜎22 .

(23)

Hence, to solve for the constrained MLE 𝜃 = (𝜎̃21 , 𝜎̃22),
we have to find 𝜎̃22 that maximized (23), and then 𝜎̃21 =
log(𝜓2exp{𝜎̃22} − 𝜓2 + 1). Once we have both the overall and
constrained MLEs, we can obtain the observed likelihood
ratio statistic𝑤(𝜓) as given in (13).Therefore, the significance
function is 𝑝(𝜓) = 𝑃(𝜒21 ≤ 𝑤(𝜓)). Moreover, by applying the
algorithm given in the previous section, we can also obtain
the observed simulated modified likelihood ratio statistic𝑤∗(𝜓) and the corresponding significance function is 𝑝(𝜓) =𝑃(𝜒21 ≤ 𝑤∗(𝜓)).
4. Real Data Example

To illustrate the application of the methods discussed in this
paper, we revisit the example discussed inNam andKwon [4].

Table 1: 95% confidence interval for𝜓 for the experiment by Faupel-
Badger et al. [11].

Method 95% confidence interval for 𝜓
Wald type (2.1798, 3.8620)
Fieller type (2.2705, 3.9992)
Log method (2.2867, 3.9907)
Likelihood ratio (2.2776, 4.0126)
Bartlett correction (2.2770, 4.0138)

Faupel-Badger et al. [11] compare concentrations of estrogen
metabolites by RIA with the concentrations obtained using a
novel and high-performance liquid chromatography-tandem
mass spectrometry (LC-MS/MS). The 10% blinded quality
control samples were used for assessment of quality control of
the laboratory assay. Partial summary of data were presented
in Nam and Kwon [4] and we have

𝑛1 = 48,
𝜎̂21 = (0.1687)2 ,
𝑛2 = 53,
𝜎̂22 = (0.0562)2

(24)

where the first sample is taken from RIA, and the second
sample is taken from LC-MS/MS. Table 1 records the 95%
confidence interval for the ratio of the two coefficients of
variation assuming that the data are obtained from inde-
pendent lognormal distributions obtained by the methods
discussed in this paper. Note that the MOVER method is
identical to the Log method and Hasan and Krishnamoorthy
[5] showed that results from the improved version of the
MOVERmethod are still similar to those obtained by the Log
method. Hence, both the MOVER method and its improved
version are not included in the calculations. Except for the
Wald type, the intervals obtained in Nam and Kwon [4] seem
to be close to each other. Notice that the results from the
Fieller type are different from that reported in Nam and
Kwon [4]. Moreover, we observed that the likelihood ratio
method and the proposed Bartlett correctionmethod seem to
be different from the other methods by having a larger upper
confidence limit.

With the above observation, it is of interest to compare the
accuracy of the methods discussed in this paper, especially
when the sample size is small.

5. Simulation Studies

To compare the accuracy of the methods discussed in this
paper, simulations studies are performed. The parameters
settings are given in Table 2. Other settings have also been
calculated but not reported because the results are very
similar to those presented. However, they are available upon
request. Sincewe are interested in developing amethod that is
accurate even for small sample sizes, hence the chosen sample
sizes in the simulations studies are relatively small.
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Table 2: Parameters settings for simulation studies.

Study 𝜇1 𝜎1 𝜇2 𝜎2 𝑛1 𝑛2
1 0.6 0.1 3.0 0.5 5 5
2 10 20
3 15 25
4 20 10
5 1.1 0.2 0.8 0.4 5 5
6 10 20
7 15 25
8 20 10
9 2.5 1.2 3.0 0.7 5 5
10 10 20
11 15 25
12 20 10
13 5.0 0.7 6.0 1.4 5 5
14 10 20
15 15 25
16 20 10

For each study, we obtain 10,000 simulated samples.
Theoretically, 𝑀 should be as large as possible because we
want to use 𝑤(𝜓) to be the estimate of 𝐸[𝑊(𝜓)]. However,
numerically, we have 𝑁 simulated samples, and for each
simulated sample, we have to do 𝑀 simulations to obtain𝑤(𝜓). For these simulation studies, we use𝑀 = 500. For each
simulated sample, we compute the 95% confidence interval
obtained by the methods discussed in this paper. Table 3
reported the percentage of samples where the true 𝜓 is less
than the lower 95% confidence limit (le), is within the 95%
confidence interval (cc), and is greater than the upper 95%
confidence limit (ue). The nominal values are 2.5%, 95% and
2.5%, respectively.

From Table 3, the three methods discussed in Nam and
Kwon [4] do not give satisfactory coverage, especially when
the sample sizes are small.The coverage of the likelihood ratio
method is improving when the sample sizes increase and,
in general, it has asymmetric errors. Nevertheless the pro-
posed simulated Bartlett corrected likelihood ratio method
is extremely accurate even when the sample sizes are as small
as 5.

6. Testing Homogeneity of Coefficients of
Variation from 𝑘 Independent Lognormal
Distributions

For 𝑘 samples from independent lognormal(𝜇𝑖, 𝜎𝑖) distribu-
tion, the required log-likelihood function can be written as

ℓ (𝜃) = ℓ (𝜎21 , . . . , 𝜎2𝑘 ; 𝑠21, . . . , 𝑠2𝑘)
= 𝑘∑
𝑖=1

[−𝑛𝑖 − 12 log𝜎2𝑖 − (𝑛𝑖 − 1) 𝑠2𝑖2𝜎2𝑖 ] (25)

Table 3

(a) Empirical coverage rate for the simulation studies 1 to 8

Study Method le cc ue
1 Wald type 0.08 87.78 12.14

Fieller type 3.48 95.50 1.02
Log method 6.28 88.51 5.21

Likelihood ratio 3.12 93.39 3.49
Bartlett correction 2.40 94.90 2.70

2 Wald type 0.20 89.31 10.49
Fieller type 0.82 94.01 5.17
Log method 1.94 92.71 5.35

Likelihood ratio 2.22 94.78 3.00
Bartlett correction 1.92 95.29 2.79

3 Wald type 0.68 92.92 6.40
Fieller type 3.48 95.50 1.02
Log method 3.93 93.25 2.82

Likelihood ratio 2.77 94.57 2.66
Bartlett correction 2.53 94.85 2.27

4 Wald type 1.44 94.14 4.42
Fieller type 7.81 91.99 0.20
Log method 7.04 91.46 1.50

Likelihood ratio 3.15 94.23 2.62
Bartlett correction 2.88 94.85 2.27

5 Wald type 0.05 87.47 12.48
Fieller type 2.99 95.28 1.73
Log method 5.88 88.45 5.67

Likelihood ratio 3.13 93.39 3.48
Bartlett correction 2.42 94.90 2.68

6 Wald type 0.13 89.18 10.69
Fieller type 0.67 93.59 5.74
Log method 1.84 92.58 5.58

Likelihood ratio 2.25 94.75 3.01
Bartlett correction 2.00 95.23 2.77

7 Wald type 0.57 92.73 6.70
Fieller type 2.87 95.26 1.87
Log method 3.68 93.20 3.12

Likelihood ratio 2.70 94.66 2.64
Bartlett correction 2.52 94.90 2.58

8 Wald type 1.34 94.14 4.52
Fieller type 7.36 92.28 0.36
Log method 6.68 91.63 1.69

Likelihood ratio 3.15 94.34 2.49
Bartlett correction 2.88 94.83 2.29

(b) Empirical coverage rate for the simulation studies 9 to 16

Study Method le cc ue
9 Wald type 0.00 82.10 17.90

Fieller type 0.01 98.88 1.11
Log method 1.27 90.26 8.47

Likelihood ratio 2.99 93.61 3.40
Bartlett correction 2.40 94.94 2.66
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(b) Continued.

Study Method le cc ue
10 Wald type 0.00 83.91 16.09

Fieller type 0.00 90.18 9.82
Log method 0.07 90.86 9.07

Likelihood ratio 2.04 94.82 3.14
Bartlett correction 1.92 95.24 2.84

11 Wald type 0.00 89.36 10.64
Fieller type 0.00 96.70 3.30
Log method 0.96 93.93 5.11

Likelihood ratio 2.75 94.59 2.66
Bartlett correction 2.48 94.97 2.55

12 Wald type 0.02 92.69 7.29
Fieller type 0.47 99.16 0.37
Log method 3.62 93.86 2.52

Likelihood ratio 3.17 94.34 2.49
Bartlett correction 2.96 94.71 2.33

13 Wald type 0.00 79.33 20.67
Fieller type 2.01 97.99 0.00
Log method 10.56 88.87 0.57

Likelihood ratio 3.52 94.54 2.94
Bartlett correction 2.68 95.03 2.29

14 Wald type 0.01 91.26 8.73
Fieller type 0.64 99.32 0.04
Log method 3.15 94.73 2.12

Likelihood ratio 2.44 94.69 2.87
Bartlett correction 2.10 95.19 2.71

15 Wald type 0.59 93.88 5.53
Fieller type 5.44 94.56 0.00
Log method 6.29 93.43 0.28

Likelihood ratio 3.01 94.48 2.51
Bartlett correction 2.84 94.83 2.33

16 Wald type 1.60 94.18 4.22
Fieller type 12.16 87.84 0.00
Log method 10.64 89.36 0.00

Likelihood ratio 3.01 94.48 2.51
Bartlett correction 2.95 94.71 2.34

where 𝑠2𝑖 is the unbiased sample variance estimate of the 𝑖𝑡ℎ
sample given in Section 3. It is well-known that the overall
MLE is

𝜃 = (𝜎̂21 , . . . , 𝜎̂2𝑘) = (𝑠21, . . . , 𝑠2𝑘) . (26)

The aim is to test

𝐻0: 𝜏1 = ⋅ ⋅ ⋅ = 𝜏𝑘 = 𝜏
V𝑠 𝐻𝑎: not all coefficients of variation are the same, (27)

which, in this case, is the same as testing

𝐻0: 𝜎21 = ⋅ ⋅ ⋅ = 𝜎2𝑘 = 𝜎2
V𝑠 𝐻𝑎: not all variances are the same. (28)

Therefore, when 𝐻0 is true, the log-likelihood function can
be re-written in terms of 𝜎2 and is

ℓ (𝜎2) = ℓ (𝜎2; 𝑠21, . . . , 𝑥2𝑘)
= 𝑘∑
𝑖=1

[−𝑛𝑖 − 12 log𝜎2 − (𝑛𝑖 − 1) 𝑠2𝑖2𝜎2 ] , (29)

and the constrained MLE is

𝜎̃2 = ∑𝑘𝑖=1 (𝑛𝑖 − 1) 𝑠2𝑖
∑𝑘𝑖=1 (𝑛𝑖 − 1) , (30)

which is the usual pooled variance estimate. The observed
likelihood ratio statistic is

𝑤 = 2 [ℓ (𝜃) − ℓ (𝜎̃2)] , (31)

which is asymptotically distributed as 𝜒2𝑘−1. Hence, the
observed simulated Bartlett corrected likelihood ratio statis-
tic is

𝑤∗ = 𝑤
𝑤/ (𝑘 − 1) , (32)

where 𝑤 is obtained by the algorithm given in Section 2.
Simulation studies are performed to compare the accu-

racy of the likelihood ratiomethod and the simulated Bartlett
corrected likelihood ratio method. In particular, three sam-
ples of data from lognormal(𝜇𝑖, 𝜎) distribution are generated.𝑤 is calculated and 𝑤∗ is also the calculation with 𝑀 =1000. We repeat this process 𝑁 = 10,000. The proportion of
samples that have 𝑝-values less than 5% is reported in Table 4
for various sample sizes. The choice of 𝜇𝑖 is not important
because it does not involve in any of the calculations and,
hence, we take it to be 0. Different choices of 𝜎 result in
similar results and are not reported, but they are available
upon request. Table 4 reported the cases 𝜇𝑖 = 0 and 𝜎 = 1.
When sample sizes are small, the likelihood ratio method
does not give satisfactory results, but it is improving when
the sample sizes increase. The simulated Bartlett corrected
likelihood ratiomethod consistently gives extremely accurate
result even when the sample sizes are small.

7. Conclusion

The lognormal distribution has been frequently used for
modeling positive valued right skewed data, which com-
monly arise in health and medical research. In this paper,
we proposed a simulated Bartlett corrected likelihood ratio
approach to obtain inference concerning the ratio of two
coefficients of variation for lognormal distribution. Simu-
lation studies show that the proposed Bartlett correction
method is extremely accurate even when the sample size is
small. Moreover, the proposed proposed Bartlett correction
method is extended to test homogeneity of 𝑘 coefficients of
variation from independent lognormal distributions.
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Table 4: The proportion of samples rejected at 5% level of significance for testing 𝐻0 : 𝜏1 = 𝜏2 = 𝜏3 = 𝜏 when data are generated from
lognormal(0, 1) distribution.

Proportion of samples rejected at 𝛼 = 0.05
(𝑛1, 𝑛2, 𝑛3) Likelihood ratio Bartlett correction
(5, 5, 5) 0.0658 0.0512
(5, 10, 15) 0.0646 0.0524
(10, 10, 10) 0.0565 0.0495
(10, 15, 20) 0.0529 0.0487
(50, 50, 50) 0.0544 0.0523

Data Availability

The data set for compared concentrations of estrogen
metabolites by RIA with the concentrations obtained using a
novel and high-performance liquid chromatography-tandem
mass spectrometry (LC-MS/MS) is from previously reported
in Faupel-Badger et al. [11], which has been cited. This data
set was further analyzed in Nam and Kwon [4], which was
also cited in themanuscript.The other numerical examples in
the submitted paper are based on simulation studies, which is
available from the corresponding author upon request.
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