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In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the
synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each
heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network
is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm
is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is
used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy
of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than
the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.

1. Introduction

Atrial fibrillation (AF) is the most common type of cardiac
arrhythmia in clinical setting, affecting about 1–2% of the
general population [1]. Clinical progress indicates that the
presence of AF is associated with an increased risk for stroke,
heart failure, hospitalization, and death [2]. However, the
occurrence of AF is usually unknown because for many
patients, the condition is asymptomatic and thus remains
undetected. As a result, there is a pressing need to develop
AF detection methods.

Electrocardiogram (ECG) is commonly used as a diag-
nostic tool for AF detection, and considerable research has
been conducted on ECG. These works are either based on
RR interval (RRI, i.e., the interval between two adjacent QRS
complex waves) variability or abnormal atrial activity (AA)
(AlGhatri [3]). Previous results showed that the RRI-based

algorithms are robust compared with the AA-based algo-
rithms (Kikillus [4] and Dash [5]). However, such methods
failed to be effective if the patient has a pacemaker, is taking
rate-control drugs, or has other simultaneous heart problems,
such as atrioventricular (AV) block [6]. Thus, it is necessary
to develop AF detection algorithms based on the AA feature,
namely, designing rate-independent methods [7].

In view of the atrial activity, during AF, the P-wave is
replaced by fibrillatory waves. Thus, a natural way to detect
AF is to check the absence of P-waves. Previous algorithms
were proposed to address this issue [8–10]; however, the
results were not satisfactory because P-wave fiducial point
detection is challenging, especially for dynamic monitoring
applications.

Recently, signal processing techniques have been
employed to extract AA features from ECG waves for AF
detection. Stridh et al. proposed using a time-frequency
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distribution estimation method to estimate the fibrillation
frequency of the ECG signal, in which a set of parameters
describing the fundamental frequency, amplitude, shape, and
signal-to-noise ratio of the atrial waveforms are derived based
on the frequency-shift of an adaptively updated spectral
profile [11]. Lee et al. analyzed the dominant frequency of
the atrial activity by using the variable frequency complex
demodulation (VFCDM) method [12]. The value of the
dominant frequency has been shown to be a distinctive
feature for AF detection. In another ECG-based pattern
analysis method for the classification of normal sinus
rhythm and atrial fibrillation (AF) beats [13], the denoised
and registered ECG beats were subjected to independent
component analysis (ICA) for data reduction, and the ICA
weights were used as features for classification using Naive
Bayes and Gaussian mixture model (GMM) classifiers. All of
these methods use handcraft features for pattern recognition.
Such features are not invariant on different personalities. In
their experiments, the classification accuracy was estimated
by tenfold cross-validation, where the probability that
the training set contains training samples of every user
who provides test ECG samples is great. We use the term
individual variation to refer to the above phenomena.
However, in ECG monitoring applications, it is crucial that
the system is able to tackle this problem.

Magnitude-squared coherence, a frequency domainmea-
sure of the linear phase relation between two signals, has been
shown to be a reliable discriminator of AF [14, 15]. However,
the accuracy of the corresponding AF detection algorithm is
relatively low; thus, it has to be combinedwith the RRI feature
in order to achieve acceptable accuracy. The Recurrence
Complex Network has been employed to detect AF from dog
epicardial signals recorded by an epicardial mapping system
with 128 unipolar electrodes [16]. It has been demonstrated
that the phase space of the Recurrence Complex Network is
suitable for between distinguishing normal sinus rhythm and
atrial fibrillation beats. However, in [16], only two numerical
features calculated from the adjacent matrix of the complex
network are used to detect AF.This processmay cause the loss
of a lot of discriminating information of the adjacent matrix.

The objective of this paper is to improve the performance
of the AF detection algorithm by combining the Recurrence
Complex Network (RCN) with convolution neural network
(CNN). As one of the deep learning algorithms [17], CNN
has great potential in feature extraction and has been applied
to image processing and speech recognition with notable
success [18–20]. In the proposed algorithm, CNN is exploited
to learn robust AF features from the output of the RCN and
then to detect AF signal with high accuracy. The proposed
AF detection algorithm is composed of two procedures.
The first is a heartbeat classification procedure that can
distinguish between AF beat and normal beat based on
the ECG waveform of a single heartbeat. The second is a
voting procedure that improves classification performance
by fusing the classification results of multiple beats. The first
procedure is the crucial part, in which the synchronization
feature of each heartbeat is first extracted by the RCN, and
then, a CNN is used to extract more abstract AF features
and recognize an AF heartbeat. Experimental results on the

MIT-BIH database show that the AF features learned by the
CNN are robust to the variation of the ECG signals between
different personalities so that the proposed algorithm has
good generalization ability.

2. The Data

The real data (surface ECGs) used in this method were
provided by the MIT-BIH AF database (AFDB) [21]. The
database is from Physionet [22] and includes 25 long-term
(10 hour) annotated ECG recordings of humans with AF and
contains 299 AF episodes. Each recording contains two ECG
signals (ECG1 and ECG2), which are sampled at 250HZ and
12-bit resolution. In this work, only ECG1 signals are used to
evaluate the AF detection methods.

3. Methods

3.1. Data Preprocessing. For each data recording, a seven-
order Butterworth bandpass filter is applied with poles at 0.5
Hz and 49 Hz to reduce baseline wander (BW) and noise.
Then, the onset of the QRS wave is detected by finding
the local maximums of the convolution between the ECG
recording and a set of predefined QRS models. At each QRS
onset point, the QRS wave is canceled based on the most
matched model. The remaining signals are departed into
segments; each ofwhich is approximately theAA segment of a
heartbeat. All the segments are interpolated into 128 bit data
samples with the Fourier transform interpolation. Next, an
AF detection algorithm is developed based on such samples.
Themain ECG preprocessing steps are illustrated in Figure 1,
which clearly illustrates the changing process of the data.
Figure 1(a) shows that the Butterworth filter can successfully
correct the baseline and reduce the effects of the noise. In
Figure 1(b), the right figure only contains information outside
the QRS wave. It shows that the ventricular signals are almost
removed; thus, the output signal essentially represents theAA
signal. These are the single heartbeats before and after the
interpolation operation, as shown in Figure 1(c).

3.2. Extracting Low Level AF Features Based on the Recurrence
Complex Network. The ECG data is a nonstationary time
series [23]; thus, it can be analyzed by the Recurrence
Complex Network (RCN), a popular tool for processing
nonstationary time series [23, 24]. Traditionally, there are
two issues that need to be explored when applying the RCN:
the construction of the recurrence matrix and the extraction
of the RCN features. This section mainly focuses on the
construction of the recurrence matrix from the ECG data.

The recurrence matrix is obtained by the phase space
reconstruction method. Generally, there are two kinds of
phase space construction methods: the time delay method
and the derivative reconstruction method [24]. In this
study, the time delay method was selected because the
derivation is sensitive to the calculation error. Let 𝑥(𝑡) ={𝑥(𝑡1) 𝑥(𝑡2) ⋅ ⋅ ⋅ 𝑥(𝑡𝑁)} denote an ECG data of length 𝑁,
and then, the vector 𝑋(𝑡𝑖) = [𝑥(𝑡𝑖) 𝑥(𝑡𝑖+𝜏) ⋅ ⋅ ⋅ 𝑥(𝑡𝑖+(𝑚−1)𝜏)]
represents a vector in the phase space. Here, 𝑚 is the
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Figure 1: ECG data preprocessing.
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embedding dimension, and 𝜏 is the embedding delay time.
If the parameters𝑚 and 𝜏 are properly specified, the dynamic
characteristics of the data will be transferred into the rela-
tionship between the vectors in the phase space, and it will
be much easier to observe and extract the dynamic features
of the data than that in the original space.

The most common method for choosing the time delay
parameter 𝜏 is based on the mutual information between the
coordinates of the phase space (Frase [25]). By the assignment[𝑠𝑖, 𝑞𝑖] = [𝑥(𝑡𝑖), 𝑥(𝑡𝑖+𝜏)], a couple of random variables 𝑆 and𝑄 are defined, where 𝑠𝑖 = 𝑥(𝑡𝑖) is an instance of 𝑆, and 𝑞𝑖 =𝑥(𝑡𝑖+𝜏) is an instance of𝑄.The average amount of information
gained from a specific value of 𝑆, named the entropy𝐻(𝑆), is
defined as the following:

𝐻(𝑆) = −∑
𝑖

𝑃𝑆 (𝑠𝑖) log𝑃𝑆 (𝑠𝑖) , (1)

where 𝑃𝑆(𝑠𝑖) is the probability that the observed value of the
random variable 𝑆 is 𝑠𝑖.

The entropy 𝐻(𝑄) is defined in the same way. Moreover,
the joint entropy of the couple [𝑆, 𝑄] can be defined as

𝐻(𝑆, 𝑄) = −∑
𝑖,𝑗

𝑃𝑆,𝑄 (𝑠𝑖, 𝑞𝑗) log𝑃𝑆,𝑄 (𝑠𝑖, 𝑞𝑗) , (2)

where 𝑃𝑆,𝑄(𝑠𝑖, 𝑞𝑗) is the probability that the observed values
of 𝑆 are 𝑠𝑖, and 𝑄 is 𝑞𝑗.

Then, the mutual information between 𝑆 and 𝑄 can be
defined as 𝐼(𝑆,𝑄):

𝐼 (𝑆, 𝑄) = 𝐻 (𝑆) + 𝐻 (𝑄) − 𝐻 (𝑆, 𝑄) , (3)

In recalling the definitions of the random variables 𝑆 and𝑄, it can be determined that 𝐼(𝑆,𝑄) is a function of 𝜏. The
research work of [25] demonstrated that the proper value of
the time delay 𝜏 corresponds with the first local minimum of𝐼(𝑆,𝑄).

The problem of determining the embedding dimension𝑚
was explored in depth in [26], in which an efficient method
for determining the embedding dimension 𝑚 was developed
based on the fact that a low embedding dimension results in
points that are far apart in the high dimensional phase space
being moved closer together in the reconstructed space [27].
This method was adopted in our AF detection algorithm, and
in the following part, we briefly review it.

Consider again the ECG data 𝑥(𝑡) ={𝑥(𝑡1) 𝑥(𝑡2) ⋅ ⋅ ⋅ 𝑥(𝑡𝑁)}. Suppose that the vectors
constructed with dimension 𝑑 are 𝑋𝑑(𝑡𝑖) =[𝑥(𝑡𝑖) 𝑥(𝑡𝑖+𝜏) ⋅ ⋅ ⋅ 𝑥(𝑡𝑖+(𝑑−1)𝜏)], where 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁−(𝑑−1)𝜏,
and the nearest neighbor of 𝑋𝑑(𝑡𝑖) in the phase space
is 𝑋𝑑(𝑡𝑛(𝑖,𝑑)). The vectors constructed with dimension𝑑 + 1 are 𝑋𝑑+1(𝑡𝑖) = [𝑥(𝑡𝑖) 𝑥(𝑡𝑖+𝜏) ⋅ ⋅ ⋅ 𝑥(𝑡𝑖+𝑑𝜏)], where𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁−𝑑𝜏.Then, a quantity measure of the difference
of the two phase spaces in view of the distances between the
adjacent vectors is defined as

𝑎 (𝑖, 𝑑) = 󵄩󵄩󵄩󵄩𝑋𝑑 (𝑡𝑖) − 𝑋𝑑 (𝑡𝑛(𝑖,𝑑))󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋𝑑+1 (𝑡𝑖) − 𝑋𝑑+1 (𝑡𝑛(𝑖,𝑑))󵄩󵄩󵄩󵄩 ,
𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁 − 𝑑𝜏

(4)

where ‖ ⋅ ‖ is a measurement of the Euclidian distance, such
as the maximum norm. According to Cao, etc. [26], the
parameter 𝑑 can be determined by the function:

𝐸1 (𝑑) = (𝑁 − 𝑑𝜏)∑𝑁−(𝑑+1)𝜏𝑖=1 𝑎 (𝑖, 𝑑 + 1)
(𝑁 − (𝑑 + 1) 𝜏)∑𝑁−𝑑𝜏𝑖=1 𝑎 (𝑖, 𝑑) (5)

Having chosen appropriate parameters for the phase
space, the dynamic character of the original data can be
represented by the following 𝐿 × 𝐿 recurrence matrix 𝑅:

𝑅 (𝑖, 𝑗) = 󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖) − 𝑋 (𝑡𝑗)󵄩󵄩󵄩󵄩󵄩 , 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝐿 (6)

where 𝐿 = 𝑁 − (𝑚 − 1)𝜏. The matrix 𝑅 is a symmetric matrix
with the diagonal element of 0. In our algorithm, 𝑁=128, 𝜏 =4, and 𝑚 = 10 (see Section 4.1), such that 𝐿 = 92.

Traditionally, the recurrence matrix is binarilized, and
some numerical features are extracted through the manual
method. Then, the input samples can be classified with
algorithms such as fuzzy c-means (FCM). However, it is
difficult to manually define the appropriate features for the
ECG data. To solve this problem, we propose to extract
features from the recurrence matrix automatically by using
the convolution neural network (CNN). Firstly, we calculate
the eigenvalues of the recurrence matrix, and then, they
are sent into the CNN. The CNN extracts the features and
classifies the data. The eigenvalues of each data sample form
a 92-byte feature vector.

3.3. AF Detection Based on the Convolutional Neural Network

3.3.1. Architecture of the CNN. The convolutional neural net-
work (CNN) addresses the feature learning problem through
the calculation of multiple levels of data representations by
the operation involved in the multiple layers of the CNN.
Except for the first layer and the top layer, the main part of
theCNN is composed of alternating layers of convolution and
pooling.

As illustrated in Figure 2, the convolution layer adopted
in this study consists of a group of fully connected feature
maps 𝐶𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜) (assume𝑁𝑜 is the total number).
Each feature map 𝐶𝑗 is obtained by a summation of the
convolutions from all the input feature maps (assume 𝑁𝐼 is
the total number),𝑂𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐼), and a series of weight
vectors𝑊𝑖,𝑗, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐼, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑂, i.e.,

𝐶𝑗 = 𝜎(𝑁𝐼∑
𝑖=1

𝑂𝑖 ∗W𝑖,𝑗) , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜 (7)

where 𝜎(𝑥) is a nonlinear activation function, for example,𝜎(𝑥) = 1/(1 + exp(−𝑥)). The term feature map is borrowed
from image processing applications, in which the input and
output of each layer of the CNN are 2-dimensional arrays.
However, the input of the CNN is a 1-dimensional vector, and
as a result, all of the feature maps are 1-dimensional vectors
in our AF detection algorithm.

The weight vectors of the convolutional layer, 𝑊𝑖,𝑗, 𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑁𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑂, can be seen as trainable feature
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Figure 2: Illustration of a convolution layer and the subsequent
pooling layer.

extraction operators; each of which enhances one kind of
feature and weakens the others. When the CNN is trained
with sufficient training data, the feature maps, which are
obtained by using these weight vectors, will be turned into an
appropriate representation for recognition of the input data.

Each convolutional layer is followed by a pooling layer,
as shown in Figure 2. The pooling layer is also composed
of feature maps. Each feature map 𝑃𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜)
in the pooling layer is obtained by applying a pooling
operation to the units of a convolution layer feature maps𝐶𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜). There are usually two kinds of pooling
operations: maximization pooling and averaging pooling.
Here, averaging pooling was adopted, which is defined as

𝑝𝑗,𝑚 = 𝑟 𝐺∑
𝑛=1

𝑐𝑗,(𝑚−1)×𝑠+𝑛 (8)

where𝑝𝑗,𝑚 is the𝑚-th unit of𝑃𝑗; 𝑐𝑗,𝑘 is the 𝑘-th unit of𝐶𝑗;𝐺 is
the pooling size, which determines a pooling window; 𝑠 is the
shift size, which determines the overlap of adjacent pooling
windows; and 𝑟 is the scaling factor, which is selected as one
in 𝐺. By the pooling operation, the resolutions of the feature
maps are reduced so that the features learned by the CNN are
robust to small variations in location.

The CNN used for AF detection has six layers (as
illustrated in Figure 3). It consists of one input layer; two
convolutional layers, which are denoted as C1 and C2,
respectively; two pooling layers which are denoted as S1 and
S2, respectively; and one output layer. The 92 eigenvalues of
the reconstructed recurrence matrix form the ECG sample of
a heartbeat and are mounted into the input layer. The output
layer has only two units 𝑜𝑛, where 𝑛 = 1, 2; 𝑜1 corresponds
with the normal heat beat class, and 𝑜2 corresponds with the
AF heart beat class. Suppose that the output units are denoted

as the units in the final pooling layer (assume𝑁𝐹 is the total
number) by 𝑝𝐹,𝑚, where 𝑚 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐹, and the weight
between 𝑝𝐹,𝑚 and 𝑜𝑛 is𝑤𝑚,𝑛, where𝑚 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐹, 𝑛 = 1, 2.
Then, the final outputs can be calculated as follows:

𝑜𝑛 = exp (∑𝑁𝐹𝑚=1 𝑝𝐹,𝑚𝑤𝑚,𝑛)
∑2𝑛󸀠=1 exp (∑𝑁𝐹𝑚=1 𝑝𝐹,𝑚𝑤𝑚,𝑛󸀠) (9)

The CNN can be trained with the back-propagation (BP)
algorithm with the loss function:

𝐸𝑥𝑖 (𝜃) = − 2∑
𝑛=1

𝑦𝑖,𝑛𝑜𝑛 (10)

where 𝜃 denotes all of the weights of the CNN, 𝑥𝑖 is an
input sample, and 𝑦𝑖 = [𝑦𝑖,1 𝑦𝑖,2] is the binary encoding
vector target label for 𝑥𝑖. Details of the training algorithm are
available in [28].

The number of feature maps in each convolutional layer
and the pooling parameters are chosen experimentally in
Section 4.

3.3.2. AF Detection. The input ECG data is preprocessed
and segmented into 128-bit samples, where each sample
corresponds to the atrial activity (AA) signal of one heartbeat.
Then, the recurrence matrix is calculated. The eigenvalues of
the recurrence matrix, which form a 92-byte feature vector,
are sent to a CNN. The details of the CNN are introduced in
the following.

C1 layer: The C1 layer is a convolution layer. It consists
of six feature maps with a vector of 1∗80. Each unit of one
feature map in this layer obtains the input from a local area.
The size of the convolution kernel determines the size of the
receptive field of neurons. Therefore, it is important to set
an appropriate convolution kernel size. Here, the convolution
kernel is set to be 13, and the size of the output feature map
is 80(92-13+1=80). The inner information of the input data is
extracted through different convolution kernels.

S2 layer: The S2 layer is a pooling layer. The obtained
feature from C1 is sampled according to the principle of
local image characteristics. The sampling is achieved by
using a pooling function to several units in a region of a
size determined by the pooling size parameter. After the
experiment, the size is set as 2. Therefore, the size of the
obtained feature map in this layer is 40 (80/2=40). The
further feature extraction will cause it to be invariant to small
variations in location. The resolution of the obtained feature
map is reduced, but most of the information is retained.

C3 layer: The C3 layer is similar to that of C1. The size of
the obtained feature map is 28 (40-13+1=28). As mentioned
above, the pooling layer increases the receptive field of
neurons. Therefore, a better feature structure is acquired for
the depth structure.

S4 layer: This layer is the same as the S2 layer. The size of
the feature maps is 14 (28/2=14).

Output layer: The output layer is fully connected to S4
layer. The number of S4 neurons is 12∗14=168. Each neuron
is connected to the output. There are 168∗2=336 connections
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Figure 3: Structure diagram of the CNN.

because the output layer consists of two neurons. The output
will be closer to the desired output after several times of
training through the BP algorithm to update the weights of
the network.

3.4. Majority Voting. Although the beat-wise AF detection
algorithm is important in exploring the underlying feature
of AF, its classification accuracy is relatively low. To improve
algorithm performance, the majority voting methodology
was adopted. Before AF detection, the ECG data is seg-
mented into beat-wise data samples. Each adjacent 𝐺 sample
is used as a collective candidate for AF detection. The
samples of one candidate are classified using the above
method, and then, the classification results are integrated
by majority voting to determine whether it is AF data. The
parameter 𝐺 will be determined experimentally in the next
section.

4. Experiments and Discussion

All programs and graphs were created in Matlab (R2015b
version 8.6.0.267246, Mathworks). The 23 recordings in the
database were divided into two groups. The first group
contains 15 recordings, and the second group contains 8
recordings. The recordings of the two groups were obtained
from different subjects. From the first group, 120,000 NSR
(Normal sinus rhythm) heartbeat AA data samples and
120,000 AF samples, respectively, were obtained with the
preprocessing method detailed in Section 3.1. All of the
240,000 sampleswere used to construct the training set. From
the second group, 40,000 NSR heartbeat AA data samples
and 40,000 AF samples, respectively, were obtained with the
same preprocessing method.These 80,000 samples were used
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Figure 4: Selection of the delay time.

to construct the testing set. The goal of such an arrangement
is to test whether the AF detection algorithms can be adapted
to different individuals.

4.1. Choice of Time Delay and Embedding Dimension. There
are two parameters of the reconstructed phase space that
need to be determined: the delay time and the embedding
dimension. Figure 4 plots the MI versus the delay time 𝜏.
The delay time corresponding to the first local minimum of
MI (𝜏 = 4) is selected for the phase space. Figure 5 plots
the function 𝐸1(𝑑). It can be seen that when the dimension
exceeds 9, the 𝐸1 value is close to 1 and does not significantly
change with an increased embedding dimension. Based on
Cao’s method,𝑚 is set as 10.
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Table 1: Classification rates of CNN under different lengths of the convolution kernel.

length of convolution kernel 5 9 13 17
training set 75.68% 77.17% 82.37% 78.3%
testing set 74.39% 73.5% 80.77% 71.2%

Table 2: Classification rates of CNN under different number of feature maps.

𝑁𝑐1
𝑁𝑐3 3 6 9 12

train test train test train test train test
3 74.28% 77.29% 76.95% 75.29% 80.13% 74.94% 76.87% 79.75%
6 73.23% 76.96% 82.19% 77.42% 82.45% 74.95% 73.92% 59.95%
9 71.71% 74.74% 78.08% 79.89% 80.91% 75.65% 82.59% 79.65%
12 74.66% 71.1% 82.37% 80.77% 79.94% 71.11% 82.2% 76.31%
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Figure 5: Selection of the embedding dimension.

4.2.The Effects of Varying CNN Parameters. In order to select
the best parameters for the CNN, the performance of the
CNN is evaluated using different parameters.

(1) Effects of Different Convolution Kernel Lengths. There are
four parameters that need to be determined: the pooling size,
the length of the convolution kernels, the number of feature
maps in theC1 layer, and the number of featuremaps in theC3
layer. In the present algorithm, the length of the input vector
of the CNN is not too large; thus, the big pooling size may
result in information loss. Therefore, the pooling size is fixed
at 2.

As an initiation, the number of feature maps in the
C1 layer and C2 layer is set as 6 and 12, respectively,
according to ref. [18], and the effects of different lengths of
convolution kernels are observed. Table 1 shows the classifi-
cation rates of the CNN under different convolution kernel
lengths. A length of 13 produced the maximal classification
rate.

(2) Effects of Various Number of Feature Maps. Table 2
illustrates the accuracy of different feature maps in C1 layer
(𝑁𝑐1) and C3 layer (𝑁𝑐3). The results reveal that the CNN
performs best when𝑁𝑐1 = 6 and𝑁𝑐3 = 12.

4.3. Experimental Results of Beat-Wise AF Detection. To illus-
trate the effectiveness of the CNN, the CNN is compared with
other popular classification methods. Three measurements
are used to evaluate the methods: accuracy (AC), sensitivity
(SE), and specificity (SP). The inputs of all three classifiers
are the low level features obtained by the method detailed
in Section 3.2. Table 3 demonstrates that the CNN greatly
outperforms the others.

Most of the rate-independent AF detection algorithms
are unable to solve the problem of individual variation.
According to our investigation, only the Magnitude-squared
coherence (MSC) algorithm [15] and the Recurrence Com-
plex Network (RCN) algorithm [16] can recognize the sam-
ples of different individuals based on beat-wise AA samples.
Table 4 presents a comparison of the proposed beat-wised
AF detection algorithm (BWAD) with these two algorithms.
For the contrast experiments, all of the ECG recordings are
preprocessed with the method described in Section 3.1, and,
the training and testing sets are constructed as previously
described. In the BWAD algorithm, the low level features are
first extracted and then, the CNN is used to extract the high-
level features and classify them. As for the MSC algorithm,
the feature vectors are calculated between each data sample
and the previous sample, and the samples are classified based
on a hand measurement that is detailed in [15]. For the
RCN algorithm, the recurrence matrix is calculated the same
as that in the proposed algorithm, and, the samples are
classified based on two hand measurements that are detailed
in [16].

It can be seen that the proposed BWAD algorithm
outperforms the traditional algorithms. Traditional algo-
rithms perform poorly in beat-wise rate-independent AF
detection because they rely on manually obtained features.
In contrast, the BWAD algorithm effectively solves this
problem by using CNN to extract high-level features for
classification.

4.4. Experimental Results of Majority Voting. The perfor-
mance of the proposed algorithm can be improved by
majority voting, in which the outputs of𝐺 adjacent heartbeat
samples are integrated to obtain an accurate result. Table 5
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Table 3: Comparison of CNN with typical classification methods.

method AC SE SP
SVM 61.34% 56.25% 66.37%
KNN 70.95% 88.97% 52.93%
CNN 80.77% 89.18% 72.37%

Table 4: Comparison with traditional rate-independent AF detection algorithms.

methods AC SE SP
MSC 66.31% 71.54% 61.09%
RCN 60.03% 66.16% 53.91%
BWAD 80.77% 89.18% 72.37%

Table 5: Results of majority voting under different parameters.

𝐺 AC SE SP
13 92.92% 94.81% 90.99%
15 92.97% 96.06% 89.87%
17 94.09% 94.30% 93.88%
19 94.12% 95.72% 92.52%
21 94.59% 94.28% 94.91%

Table 6: Comparison of the time spent in each process.

Remove QRS wave and
noise reduction The interpolation process RCN extracting feature

process
Testing
process

0.11 seconds 0.00023 seconds 0.0075 seconds 0.00092 seconds

lists the classification rates of the voting algorithm under
different parameters (𝐺). It can be seen that a larger 𝐺 value
usually leads to a better performance.

4.5. The Calculation of the Complexity. The configuration of
the computer used for the program is an Intel Pentium Dual-
Core with a processor speed of 2.2GHz and a memory size
of 3.18GB. For the proposed algorithm, training the CNN is a
time-consuming process. However, the training process can
be carried out off-line. The training process (i.e., the whole
data preprocessing process and the CNN training process
(10 times)) requires approximately 9.65 hours for the 24,000
samples. Table 6 lists the results.

As for the testing process, it was determined that the
process of removing theQRSwave and reducing the noisewas
themost time-consuming process. After several experiments,
the time spent in each process for one sample was obtained,
and it was revealed that the testing process is about 0.1186
seconds for a sample. Therefore, this method can be used in
real-time signal processing.

5. Conclusion

In this paper, a novel rate-independent AF detection algo-
rithm that combines RCN and CNN based on AA features
is presented. Firstly, the recurrence matrix is calculated with
RCN, and the eigenvalues of the matrix are extracted to

characterize atrial activity. Then, CNN is employed, which
leverages the multilayer structures and presents an increas-
ingly abstract representation of the input. These signals are
distinguished through the optimization of the network so as
to extract high-level features and classify the input sample.
Finally, majority voting is utilized to improve algorithm
performance.

In the experiments, the training set and testing set are
constructed with a special arrangement so that the data
samples of each set are obtained from different subjects. The
proposed algorithm achieves an accuracy of 94.59%, which
is comparable to popular RRI-based methods. Moreover,
the proposed rate-independent algorithm is applicable to
patients with rate-controlled drugs or pacemakers. Further-
more, the developedmethod solves the problem of individual
variation. Therefore, it is evident that the proposed method
can detect AF with superior performance.
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