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Background. Evaluation of diagnostic assays and predictive performance of biomarkers based on the receiver operating
characteristic (ROC) curve and the area under the ROC curve (AUC) are vital in diagnostic and targeted medicine.The partial area
under the curve (pAUC) is an alternative metric focusing on a range of practical and clinical relevance of the diagnostic assay. In
this article, we adopt and extend the min-maxmethod to the estimation of the pAUCwhenmultiple continuous scaled biomarkers
are available and compare the performances of our proposed approach with existing approaches via simulations. Methods. We
conducted extensive simulation studies to investigate the performance of different methods for the combination of biomarkers
based on their abilities to produce the largest pAUC estimates. Data were generated from different multivariate distributions with
equal and unequal variance-covariancematrices. Different shapes of the ROC curves, false positive fraction ranges, and sample size
configurations were considered. We obtained the mean and standard deviation of the pAUC estimates through re-substitution and
leave-one-pair-out cross-validation.Results. Our results demonstrate that the proposedmethodprovides the largest pAUCestimates
under the following three important practical scenarios: (1) multivariate normally distributed data for nondiseased and diseased
participants have unequal variance-covariance matrices; or (2) the ROC curves generated from individual biomarker are relative
close regardless of the latent normality distributional assumption; or (3) the ROC curves generated from individual biomarker
have straight-line shapes. Conclusions. The proposed method is robust and investigators are encouraged to use this approach in the
estimation of the pAUC for many practical scenarios.

1. Introduction

The area under the entire curve (AUC) is one of the most
commonly used summary indices in receiver operating
characteristic (ROC) analysis and can be interpreted as the
average value of sensitivity for all possible values of specificity
[1]. The empirical estimate of the AUC is closely related
to the Mann-Whitney U statistic for comparing ratings of
nondiseased and diseased participants [1]. Althoughmethods
based on the AUC have been well developed and widely
implemented [2, 3], one of the major limitations of the
AUC is that it summarizes the performance over the entire
curve, including regions that may not be clinically relevant
(e.g., the regions with low specificity levels). The partial area
under the ROC curve (pAUC) can be used as a summary

index of diagnostic/prognostic accuracy over a certain range
of specificity that is of clinical interest [4, 5]. In many
applications, tests with false positive rates outside of a
particular domain will be of no practical use and hence are
irrelevant for evaluating the accuracy of the test. In particular,
for a certain disease with low prevalence, the unnecessary
follow-up resulting from high false positive rate will burden
the health system. There are several proposed methods for
analyzing the pAUC [4, 6–10].

When multiple continuous-scaled biomarkers are avail-
able in the evaluation of prognostic accuracy, it may be
possible to improve the accuracy by combining several
biomarkers. The use of linear combination is popular due
to its ease of implementation and interpretation. Finding
optimal linear combination to maximize the area under
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the ROC curve has been extensively studied [11–14]. By
extending Fisher’s discriminant function, Su and Liu [11]
first proposed the best linear combination to maximize AUC
based on the multivariate normality assumption. Su and Liu’s
method relies on the strong distributional assumption, and
therefore pAUC may have unsatisfactory performance for
many practical scenarios when the distributional assumption
is not satisfied. Liu et al. [12] provided an approach to
construct the best linear combination that can produce the
ROC curve dominating any other ROC curves in some
particular specificity ranges. However, this approach depends
on the distributional assumption about the mean vectors and
the specificity range. Therefore, it may fail to be dominant
for a particular range of specificity and sensitivity that may
be of clinical interest. In addition, this approach involves
the calculation of the eigenvector corresponding to the
eigenvalue, and thus the stability of this approach depends
on the behavior of eigenvector under small perturbation of
the corresponding matrix [15].

Under the assumption of generalized linear model, Jin
and Lu [13] proved that the combination coefficients from
the estimates of logistic regression yielded ROC curve with
the highest sensitivity uniformly over the entire range of
specificity. Without distributional assumptions on the data,
Pepe and Thompson [16] considered maximizing AUC and
pAUC through rank-based estimate, i.e., the Mann-Whitney
U statistic [1]. They proposed an algorithm to search for
optimal linear combinations with number of biomarkers
equal to 2. This approach was computationally formidable
when the number of biomarkers is greater than or equal to
3 [17]. Hsu and Hsueh [18] and Yu and Park [19] proposed
methods to maximize the partial area under the ROC curve
based on the multivariate normality assumption.

Liu et al. [20] developed a nonparametric min-max
approach that reduces data into two dimensions to maximize
the Mann-Whitney statistic of the AUC. This approach is
robust against distributional assumptions due to its non-
parametric nature and is computationally efficient since the
min-max procedure involves searching for only one single
coefficient. Although useful, this approach was developed
based on the full range of specificity. In many medical areas,
the ROC curve is only clinically relevant and of interest when
the assay has high specificities. For example, high specificity
of an assay is required for screening any healthy population.
Similarly, in using diagnostic assay with multiple genes, only
high sensitivity and specificity classifiers have clinical utility
(Sparano 2015).

We adapt and extend the min-max method to estimating
the pAUC when several markers are considered. This article
is organized as follows. In Section 2, we provide a thorough
review of existing methods that maximize the AUC and
pAUC. In Section 3, we extend the min-max combination
method to the optimization of the pAUC and discuss the
leave-one-pair-out (LOPO) cross-validation approach for
evaluation of the combination methods based on their accu-
racy for future observations. In Section 4, we then conduct
extensive simulations to investigate the performance of the
different combination methods based on their abilities to
yield the largest pAUC estimates. In Section 5, two real

life examples are presented. We then discuss the results in
Section 6 and provide guidelines for practical use of the
different approaches.

2. Existing Methods

2.1. Definition. Without loss of generality, we consider the
partial area under the ROC curve (pAUC) over the range of
high specificity values, i.e.,𝑝𝐴𝑈𝐶𝑡0 = ∫𝑡0

0
𝑅𝑂𝐶 (𝑡) 𝑑𝑡. (1)

In this article, 𝑡0 less than or equal to 0.2, i.e., specificity
greater than or equal to 0.8, were considered. This is due to
the fact that an assay is unlikely to be used if it has a lower
specificity rate.

Let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛1, and 𝑌𝑗, 𝑗 = 1, . . . , 𝑛2, be the
biomarker levels for nondiseased and diseased participants.
The corresponding empirical estimate of pAUC by utilizing
the Mann-Whitney U statistic is𝑝𝐴𝑈𝐶 = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖 < 𝑌𝑗 𝑎𝑛𝑑 𝑋𝑖 > 𝑄 (1 − 𝑡0)) (2)

where 𝑄(1 − 𝑡0) is the (1 − 𝑡0) quantile of the empirical
distribution of X.

Assume that we have p diagnostic tests or biomarkers on
each subject, n1 nondiseased participants with ratings

X𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑝)𝑇 , 𝑖 = 1, 2, . . . , 𝑛1, (3)

and n2 diseased participants with ratings

Y𝑖 = (𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑝)𝑇 , 𝑖 = 1, 2, . . . , 𝑛2. (4)

The best linear combination coefficient c = (𝑐1, 𝑐2, . . . , 𝑐𝑝)𝑇
which maximizes the pAUC can be estimated by maximizing
the empirical estimate of pAUC, i.e.,𝑝𝐴𝑈𝐶

= 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (X𝑇𝑖 ĉ < Y𝑇𝑗 ĉ 𝑎𝑛𝑑 X𝑇𝑖 ĉ > 𝑄 (1 − 𝑡0)) (5)

where 𝑄(1 − 𝑡0) is the (1 − 𝑡0) quantile of the empirical
distribution of XT

i ĉ.

2.2. Su and Liu’s Method for pAUC. Assume that X𝑖 and Y𝑗
follow multivariate normal distribution with mean vector
𝜇𝑥,𝜇𝑦 ∈ R𝑝 and 𝑝 × 𝑝 covariance matrices Σ𝑥 and Σ𝑦, i.e.,
X𝑖 ∼ 𝑀𝑉𝑁(𝜇𝑥,Σ𝑥) and Y𝑗 ∼ 𝑀𝑉𝑁(𝜇𝑦,Σ𝑦), respectively.
Su and Liu derived the best linear combination coefficient
c = (𝑐1, 𝑐2, . . . , 𝑐𝑝)𝑇 that can maximize AUC based on the
invariance property of ROC curve to scalar transformation
and Fisher’s discriminant coefficient [11]. When the two
covariance matrices are equal or proportional to each other,
the best linear coefficient based on Su and Liu’s method also
generates theROCcurve dominating all the otherswithin any
range of specificities.
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2.3. Liu et al.’s Method for pAUC. By realizing the unsatisfac-
tory performance from the use of Su and Liu’s best linear
combination coefficient, Liu et al. considered the scenario
where Σ𝑥 ̸= Σ𝑦 [12]. The authors provided an approach
to construct best linear combination that can maximize
sensitivity over a certain range of specificities. In particular,
if the high specificity region of an ROC curve is of interest,
then the best linear combination coefficient is proportional
to

Σ
−1/2
𝑦 𝛼𝑝 (6)

where 𝛼𝑝 is the eigenvector corresponding to the smallest
eigenvalue of matrix Σ−1/2𝑦 Σ𝑥Σ

−1/2
𝑦 . It has been showed that

this linear combination produces the ROC curve dominat-
ing any other ROC curves in some particular specificity
ranges.

2.4. Logistic Regression for pAUC. The logistic regression has
been widely used to predict binary outcomes by considering
linear combination of multiple predictors [13]. It models the
probability of disease for a given subject with covariates X𝑖 by
using the logit link function, i.e.,

Pr (𝐷𝑖 = 1) = exp (𝛽0 + X𝑇𝑖 c)1 + exp (𝛽0 + X𝑇𝑖 c) , (7)

where 𝛽0 is the intercept and X𝑖 and c are defined as
before. Under the assumption of generalized linear model,
the estimate of c followed by the logistic regression can
maximize the likelihood function of binary outcomes. Jin
and Lu proved that this estimate also provides the highest
sensitivity uniformly over the entire range of specificity. This
implies that the best linear combination equals ĉ resulting in
an ROC curve which not only has the maximum full AUC,
but also dominates any other ROC curves within any range
of potential interest and therefore leads to the maximum
pAUC.

2.5. Pepe andThompon’sMethod for pAUC. Without distribu-
tional assumptions on the data X and Y, Pepe andThompson
[16] considered maximizing AUC and pAUC through rank-
based estimate, i.e., the Mann-Whitney U statistics [1]. For
simplicity, they proposed an algorithm to search for optimal
linear combinations with number of biomarkers equal to 2
(p=2), i.e., X𝑖 = (𝑋𝑖1, 𝑋𝑖2)𝑇 for 𝑖 = 1, 2, . . . , 𝑛1 and Y𝑖 =(𝑌𝑖1, 𝑌𝑖2)𝑇 for 𝑖 = 1, 2, . . . , 𝑛2. Based on the fact that the ROC
curve is variant to scale transformation, in order tomaximize
AUC or pAUC, finding the best combination coefficient c =(𝑐1, 𝑐2)𝑇, where 𝑐1, 𝑐2 ∈ (−∞,+∞) is equivalent to finding c =(1, 𝛼)𝑇, where 𝛼 ∈ (−∞,+∞). Let [0, 𝑓𝑝𝑓0] denote the range
of false positive of potential interest. The estimate of AUC
based on the Mann-Whitney U statistics and the estimate of
pAUC can be obtained as

𝐴�̂�𝐶 (𝛼) = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖1 + 𝛼𝑋𝑖2 < 𝑌𝑗1 + 𝛼𝑌𝑗2) (8)

and 𝑝𝐴�̂�𝐶 (𝛼) = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖1 + 𝛼𝑋𝑖2 < 𝑌𝑗1
+ 𝛼𝑌𝑗2 𝑎𝑛𝑑 𝑋𝑖1 + 𝛼𝑋𝑖2 > 𝑄 (1 − 𝑓𝑝𝑓0, 𝛼)) , (9)

respectively, where𝑄(1−𝑓𝑝𝑓0, 𝛼) is the (1−𝑓𝑝𝑓0) quantile of𝑋𝑖1+𝛼𝑋𝑖2.The authors chose to implement a semiparametric
method based on Heagerty and Pepe [21] to estimate 𝑄(1 −𝑓𝑝𝑓0, 𝛼), while they also pointed out that other quantile
estimation methods may be applied.

2.6.Min-MaxMethod for AUC. Liu et al. considered themin-
max combination of biomarkers [20]. Let𝑋𝑖,max = max

1≤𝑘≤𝑝
𝑋𝑖𝑘,𝑌𝑖,max = max

1≤𝑘≤𝑝
𝑌𝑖𝑘 (10)

be the maximum value of p biomarkers for nondiseased and
diseased participants, respectively. Similarly, let𝑋𝑖,min = min

1≤𝑘≤𝑝
𝑋𝑖𝑘,𝑌𝑖,min = min

1≤𝑘≤𝑝
𝑌𝑖𝑘 (11)

be the minimum value of p biomarkers for nondiseased and
diseased participants, respectively.

The nonparametric estimate of AUC based on the Mann-
Whitney U statistics by linearly combining the minimum and
maximum values of p biomarkers for each subject can be
obtained as𝐴�̂�𝐶 (𝛼)

= 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖,max + 𝛼𝑋𝑖,min < 𝑌𝑗,max + 𝛼𝑌𝑗,min) . (12)

Since this is not a continuous function of 𝛼, a search
rather than a derivative-based method is required for the
maximization. The searching method for the best value of 𝛼
is exactly the same as Pepe andThompson’s method.

3. Methodology Extension: Min-Max Method
for pAUC

We extend the min-max method to maximize the pAUC.
Let [0, 𝑓𝑝𝑓0] denote the range of false positive of potential
interest. By considering only the minimum and maximum
values of p biomarkers for each individual, it follows that the
nonparametric estimate of pAUC can be obtained as

𝑝𝐴𝑈𝐶 (𝛼) = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖,max + 𝛼𝑋𝑖,min < 𝑌𝑗,max

+ 𝛼𝑌𝑗,min 𝑎𝑛𝑑 𝑋𝑖,max + 𝛼𝑋𝑖,min > 𝑄 (1 − 𝑓𝑝𝑓0, 𝛼)) (13)
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where 𝑄(1 − 𝑓𝑝𝑓0, 𝛼) is the (1 − 𝑓𝑝𝑓0) quantile of 𝑋𝑖,max +𝛼𝑋𝑖,min. For simplicity, the (1−𝑓𝑝𝑓0) quantile of the empirical
distribution of𝑋𝑖,max +𝛼𝑋𝑖,min can be used to estimate 𝑄(1 −𝑓𝑝𝑓0, 𝛼). Then the Pepe and Thompson’s [16] algorithm can
be applied to search for the optimal value of 𝛼 to maximize
the estimate of the pAUC.

The new marker (𝑋𝑖,max, 𝑌𝑖,max) has larger sensitivity and
smaller specificity for any given threshold c than any other
individual marker, given that

Pr {𝑌𝑖,max > 𝑐} = 1 − Pr {𝑌𝑖,max ≤ 𝑐}= 1 − Pr {𝑌𝑖𝑗 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≥ 1 − Pr {𝑌𝑖𝑘 ≤ 𝑐} = Pr {𝑌𝑖𝑘 > 𝑐} (14)

and

Pr {𝑋𝑖,max ≤ 𝑐} = Pr {𝑋𝑖𝑗 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≤ Pr {𝑋𝑖𝑘 ≤ 𝑐} (15)

for all 1 ≤ 𝑘 ≤ 𝑝; similarly, the new marker (𝑋𝑖,min, 𝑌𝑖,min)
has smaller sensitivity and larger specificity for any given
threshold c than any other individual marker, given that

Pr {𝑌𝑖,min > 𝑐} = Pr {𝑌𝑖𝑗 > 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≤ Pr {𝑌𝑖𝑘 > 𝑐} (16)

and

Pr {𝑋𝑖,min ≤ 𝑐} = 1 − Pr {𝑋𝑖,min > 𝑐}= 1 − Pr {𝑋𝑖𝑗 > 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≥ 1 − Pr {𝑋𝑖𝑘 > 𝑐} = Pr {𝑋𝑖𝑘 ≤ 𝑐} (17)

for all 1 ≤ 𝑘 ≤ 𝑝. Therefore, we expect that the linear
combination of the min-max biomarkers may provide larger
partial area under the ROC curve than other methods. We
employ simulation study to investigate howwell the proposed
method performs compared to other established methods.

The cross-validation has been widely used to evaluate
the generalizability of the statistical results. Huang et al. [22]
proposed a LOPO approach to evaluating the performance of
the linear combination coefficient to estimate AUC for future
observations. The estimate of AUC based on LOPO cross-
validation is as follows:𝑝𝐴𝑈𝐶𝐶𝑉 = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (X𝑇𝑖 ĉ(−𝑖𝑗) < Y𝑇𝑗 ĉ

(−𝑖𝑗)) (18)

where ĉ(−𝑖𝑗) is the best linear combination coefficient based
on the observed data without both the ith observation from
nondiseased subject and the jth observation from diseased
subject. They also demonstrated that the 5-fold and 10-fold
cross-validation can be computationally efficient and the
resulting estimate can be asymptotically unbiased for the
future observations.

We implement the LOPO cross-validation on the pAUC
to evaluate the generalizability of the statistical results. The
estimate of the pAUC based on the LOPO cross-validation
can be obtained as

𝑝𝐴𝑈𝐶𝐶𝑉 = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (X𝑇𝑖 ĉ(−𝑖𝑗)< Y𝑇𝑗 ĉ
(−𝑖𝑗) 𝑎𝑛𝑑 X𝑇𝑖 ĉ

(−𝑖𝑗) > 𝑄 (1 − 𝑓𝑝𝑓0, 𝛼)) (19)

where𝑄(1−𝑓𝑝𝑓0, 𝛼) is the (1−𝑓𝑝𝑓0) quantile of X𝑇𝑖 ĉ(−𝑖𝑗). For
simplicity, in our simulation study the (1 − 𝑓𝑝𝑓0) quantile of
the empirical distribution of X𝑇𝑖 ĉ

(−𝑖𝑗) will be used to estimate
of 𝑄(1 − 𝑓𝑝𝑓0, 𝛼).
4. Simulation

4.1. Description of Simulations. We conducted extensive
simulation studies to investigate the performance of our
proposed method with established combination methods
based on the partial area under the ROC curves. Ratings
of participants were simulated from different multivariate
distributions with equal and unequal variance-covariance
matrices. We examined false positive fraction ranges 0 – 0.1
and 0 – 0.2 and we considered different samples sizes: 50:50,
50:100, 100:50, and 100:100 for nondiseased and diseased
participants, respectively.

For each simulated dataset, we computed the pAUCbased
on four different approaches: (1)min-max, denoted as MIN-
MAX; (2) Su and Liu’s [11], denoted as SULIU; (3) Liu et
al.’s (2006), denoted as LIU; and the (4) logistic regression,
denoted as LOGISTIC. In addition, we utilized two esti-
mation methods: the re-substitution (denoted as Re-Sub)
and 10-fold leave-one-pair-out cross-validation (denoted as
LOPO) in computing the pAUC.The re-substitution method
estimated the pAUC based on the linear combination of the
coefficients derived using all the data for eachmethod.The re-
substitution method is usually overoptimistic for estimating
the diagnostic/prognostic accuracy for future observations
due to the reason between training set and validation set
in the discipline of machine learning [22]. We obtained the
mean of the pAUC by averaging over the 1,000 simulations,
and standard deviation was the square root of the estimated
sample variance of the estimated pAUC from 1,000 simulated
datasets.

4.2. Multivariate Normal Distributions with Equal Variance-
Covariance. We first compared the performance of the min-
max approach on the pAUC with the other methods by
generating dataset consisting of ratings from multivariate
normal distributions (p=4) with different mean vectors and
equal variance-covariance matrices (scenario #1). Exploiting
the invariance property of the ROC curve to monotonically
increasing transformation of the ratings, the distributions
of ratings of nondiseased participants were set to be a
multivariate normal distribution with mean 𝜇𝑥 = (0, 0, 0, 0)𝑇
and variance-covariance matrix
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Σ𝑥 = ( 1 0.5 0.5 0.50.5 1 0.5 0.50.5 0.5 1 0.50.5 0.5 0.5 1 ) . (20)

Under this scenario, ratings of diseased participants
were generated from multivariate normal distributions with
variance-covariance matrix Σ𝑦 equal to Σ𝑥, and the mean
vectors were selected to generate the AUC equal to 0.70, 0.73,
0.76, and 0.80 for markers # 1, 2, 3, and 4, respectively (Case
#1), and the AUC equal to 0.6, 0.7, 0.8, and 0.9 for markers #
1, 2, 3, and 4, respectively (Case #2).

4.3. Multivariate Normal Distributions with Unequal Vari-
ance-Covariance. We also considered multivariate normal
distributions with different mean and unequal variance-
covariance matrices for nondiseased and diseased partici-
pants (scenario #2).The mean settings are the same as Case 1
andCase 2 as discussed in scenario 1.The variance-covariance
matrices were

Σ𝑥 = ( 1 0.2 0.2 0.20.2 1 0.2 0.20.2 0.2 1 0.20.2 0.2 0.2 1 ),
and Σ𝑦 = ( 1 0.8 0.8 0.80.8 1 0.8 0.80.8 0.8 1 0.80.8 0.8 0.8 1 ).

(21)

4.4. Multivariate Log-Normal Distributions with Unequal
Variance-Covariance. We investigated the performance of
the different combination methods by generating dataset
consisting of ratings from multivariate log-normal distribu-
tions (scenario #3). Ratings were first generated similarly to
scenario #2 and then exponentiated to obtain themultivariate
log-normal marker values.

4.5. Multivariate Gamma Distributions. We further exam-
ined the performance of the different combination methods
by generating gamma ROC curves with the AUC settings in
Case 1 and Case 2 (scenario #4). The gamma family is one of
the well-known families of ROC curves [9, 10, 23–26]. Due
to the concavity and flexibility in the shape, Ma et al. [9] and
Ma et al. [10] demonstrated that the families of gamma ROC
curves provided practically reasonable straight-line shaped
concave ROC curves, where the statistical inference based on
pAUCs is preferable.

The probability density function of the underlying rating
model of the gamma ROC curve has the following form:𝑓 (𝑥; 𝜅, 𝜃) = 1𝜃𝜅 1𝜏 (𝜅)𝑥𝜅−1𝑒−𝑥/𝜃. (22)

When 𝜅 approaches 0, the gammaROC curve approaches
the shape of a straight-line and when 𝜅 > 1 the shape of

the gamma ROC curve resembles an ROC curve with latent
normality assumptions. When 𝜅=1 the gamma ROC curve is
equivalent to the power-law ROC curve [23, 27]. Here we are
interested in the investigation of a scenario with straight-line
shaped gammaROCcurves (𝜅=1/3), because this type of ROC
curves cannot be generated by the previous scenarios.

Each simulated dataset consisted of ratings generated
from multivariate gamma distributions with 𝜅=1/3. Due
to the invariance property of the ROC curves, without
any loss of generality, we set 𝜃=1 for latent ratings of
nondiseased participants. We then selected 𝜃 for the latent
diseased ratings to reflect the targeted area under the ROC
curve in Case #1 and Case #2. The between-modality cor-
relation of 0.5 was established using a Gaussian copula
model [28]. All the programs were written by the first
author in R version 2.15.3 and are available: https://duke
.box.com/s/u32h7aayxd9bjo41b619xpb21sj1nm67.

4.6. Simulation Results. We compared the performance of
the min-max method in estimating the pAUC with three
established methods assuming the ratings are from multi-
variate normal distributions with equal variance-covariance
matrices (Table 1). The SULIU and LOGISTIC almost always
performed better than the min-max and LIU based on
the pAUCs estimated from both the re-substitution and
the LOPO cross-validation. In addition, the performances
of SULIU and LOGISTIC approaches were similar when
the AUCs were either close or further apart. The min-max
approach produced slightly smaller pAUC estimates than that
of SULIU and LOGISTIC when the AUCs among biomarkers
were relatively close (i.e., Case #1), while this approach
became worse when the AUCs were far apart (i.e., Case #2).

Moreover, we examined the performance of the four
methods, i.e., MIN-MAX, SULIU, LIU, and LOGISTIC,
assuming ratings are from multivariate normal distributions
with unequal variance-covariance matrices (Table 2). When
the AUCs were close (Case #1), the min-max method was
superior to the other methods in terms of its ability to
produce the largest pAUCs based on both the re-substitution
and the LOPO cross-validation. When the AUCs were far
apart (i.e., Case #2), the SULIU and LOGISTIC methods
had similar performances superior to the other two methods.
The SULIU method was slightly better than the LOGIS-
TIC based on the LOPO cross-validation since this takes
into account the normality of data with unequal variance-
covariance matrices. It should be noted that the difference
in the estimates of the pAUCs between the re-substitution
and the LOPO cross-validation was very small under this
scenario.

Furthermore, we studied the performance of the differ-
ent combination methods assuming multivariate log-normal
distributions. From Table 3, under this scenario where data
are highly skewed, the min-max approach dominated the
other approaches when the AUCs were close (Case #1).
On the other hand, the LOGISTIC approach performed
better when the AUCs are far apart. It is interesting to
observe that the LIU method was suboptimal under both
cases in terms of its ability to estimate the pAUC through
the LOPO cross-validation whereas the SULIU method had

https://duke.box.com/s/u32h7aayxd9bjo41b619xpb21sj1nm67
https://duke.box.com/s/u32h7aayxd9bjo41b619xpb21sj1nm67
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the worst performance since the normality assumption was
violated.

Lastly, we considered the performance of different com-
bination methods by generating gamma ROC curves. From
Table 4, (Scenario #4) where data suggest a straight-line
shape ROC curve, when the AUCs were close, the min-max
approach performed better than the other three approaches
in obtaining the largest pAUCs through both the re-
substitution and the LOPO cross-validation. When the AUCs
were far apart (Case #2), the min-max approach yielded the
best pAUC estimates through LOPO cross-validation. The
LOGITIC approach was best based on the re-substitution.

5. Example

5.1. Example 1. We used data from Cancer and Leukemia
Group B study 90206, a Phase III clinical trial of metastatic
renal-cell carcinoma [29, 30], to provide an example of our
proposed method. The study randomized 732 patients, 369
to anti-VEGF treatment and 363 to a control group [29, 30].
The trial was designed with 588 deaths so that the log-rank
statistic would have 86% power to detect a hazard ratio
of 0.76 for deaths assuming a two-sided significance level
of 0.05. The trial collected plasma from patients in order
to study the relationship of angiogenic and inflammatory
markers with clinical outcomes. A primary objective of the
correlative science study was to associate the anti-VEGF
biomarkers from the angioma assay with overall survival and
build a prognostic model that predicts the clinical outcome
[31, 32]. Another objective was to correlate the anti-VEGF
biomarkers with the best objective response rate (defined as
either partial or complete response). The angioma multiplex
array has gone through a rigorous evaluation to ensure
data quality [31, 32]. Markers performed include Ang-2,
bFGF, BMP-9, CRP, Endoglin, Gro-a, HGF, ICAM-1, IGFBP-
1, IGFBP-2, IGFBP-3, IL-6, IL-8, MCP-1, OPN, P-selectin,
Pai-1-active, Pai-1-total, PDGF-AA, PDGF-BB, PEDF, PlGF,
SDF-1, TGF𝛽1, TGF𝛽2, TGF𝛽3-R3, TSP-2, VCAM-1, VEGF,
VEGF-C, VEGF-D, VEGF-R1, and VEGF-R2.

We used the random forest, LASSO, and adaptive LASSO
to select the top three biomarkers of the 33 biomarkers for
best objective response. The top three genes (HGF, IL 6, and
VEGF R2) with highest full AUC (0.576, 0.610, and 0.563)
were chosen as an example to demonstrate the scenariowhere
the AUCs were close to each other as a potential advantage
of the use of the proposed method. The empirical estimates
for the pAUC for these three biomarkers are 0.012, 0.012,
and 0.028. The correlation matrices for nonresponders and
responders are

𝐶𝑜𝑟𝑟𝑥 = ( 1 0.530 0.3190.530 1 0.2730.319 0.273 1 )
and 𝐶𝑜𝑟𝑟𝑦 = ( 1 0.453 0.2190.453 1 0.2250.219 0.225 1 ) . (23)

The proposed method provided the following combina-
tion:

max {𝐻𝐺𝐹, 𝐼𝐿 6, 𝑎𝑛𝑑 𝑉𝐸𝐺𝐹 𝑅2}−min {𝐻𝐺𝐹, 𝐼𝐿 6, 𝑎𝑛𝑑 𝑉𝐸𝐺𝐹 𝑅2} (24)

with the estimated pAUC of 0.0427 and the estimated stan-
dard deviation of 0.0080 based on 1,000 bootstrap sampling.

In contrast, the SULIU method provided the following
combination:𝐻𝐺𝐹 + 1.36 ∗ 𝐼𝐿 6 − 1.81 ∗ 𝑉𝐸𝐺𝐹 𝑅2 (25)

with the estimated pAUC of 0.0426 and the estimated
standard deviation of 0.0084.

The LIU method provided the following combination:𝐻𝐺𝐹 − 1.21 ∗ 𝐼𝐿 6 − 0.06 ∗ 𝑉𝐸𝐺𝐹 𝑅2 (26)

with the estimated pAUC of 0.0254 and the estimated stan-
dard deviation of 0.0099, whereas the LOGISTIC’s method
had the following combination:𝐻𝐺𝐹 + 1.52 ∗ 𝐼𝐿 6 − 1.88 ∗ 𝑉𝐸𝐺𝐹 𝑅2 (27)

with the estimated pAUC of 0.0422 and the estimated
standard deviation of 0.0084.

5.2. Example 2. In this section, the proposed method MIN-
MAX as well as the SULIU, LIU, and the LOGISTIC is
applied to a real dataset of 125 females onDuchenneMuscular
Dystrophy (DMD) dataset. This biomedical data originally
containing 209 observations (134 for “normals” and 75 for
“carriers”) has been studied by Cox et al. [33] in order to
develop screening methods to identify carriers of a rare
genetic disorder based on fourmeasurements made on blood
samples. This dataset has been widely studied in the literature
for improving the classification accuracy by using ROC
analysis. The main objective is to combine four markers
to increase the diagnostic accuracy of screening females as
potential DMD carriers. For example, Kang et al. [14] applied
the stepwise methods to combine four makers in this data
to improve AUC; Hsu and Hsueh [18] and Yu and Park [19]
applied their proposed algorithm to pAUC in this data.

Since four different variables M1–M4 were measured in
each blood sample, we processed the data by taking average
values for each measurement if one had blood drawn at
several different time points. Among the 125 females, there
are 87 normals and 38 carriers.

Similarly, we investigated the performance of the four
different methods on the pAUC over the range 0–0.2. Since
the four measurements are in different scales, we applied
the standardization method by dividing each value by the
range of that variable before the use of MIN-MAX approach.
M1∗- M4∗ denote the standardized marker values. The
empirical estimates for the pAUC for these four biomark-
ers are 0.1472, 0.0436, 0.1086, and 0.1229 for the M1–M4,
respectively. The empirical estimates for the full AUC are
0.9034, 0.6057, 0.8232, and 0.8814. The correlation matrices
for nonrespondents and respondents are
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Table 5: The coefficients of the optimal linear combination and the corresponding estimated pAUC.

Method M1 M2 M3 M4 pAUC
MIN-MAX - - - - 0.161
SULIU 1 12.6333 7.7165 13.6415 0.137
LIU 1 0.5248 0.7805 -0.1087 0.151
LOGISTIC 1 0.6950 1.3806 0.2545 0.156

𝐶𝑜𝑟𝑟𝑥 = ( 1 −0.380 0.012 0.236−0.380 1 0.130 0.1550.012 0.130 1 0.2810.236 0.155 0.281 1 )
and 𝐶𝑜𝑟𝑟𝑦 = ( 1 −0.037 0.688 0.625−0.037 1 −0.222 −0.0980.688 −0.222 1 0.6120.625 −0.098 0.612 1 )

(28)

The proposed method provided the following combina-
tion (Table 5):

max {𝑀1∗,𝑀2∗,𝑀3∗,𝑀4} + 6.6667∗min {𝑀1∗,𝑀2∗,𝑀3∗,𝑀4∗} (29)

with the estimated pAUC of 0.161 and the estimated standard
deviation of 0.0119 based on 1,000 bootstrap sampling.

In contrast, the SULIU method provided the following
combination (Table 5):𝑀1 + 12.6333 ∗ 𝑀2 + 7.7165 ∗𝑀3 + 13.6415 ∗𝑀4 (30)

with the estimated pAUC of 0.137 and the estimated standard
deviation of 0.0157.

The LIU method provided the following combination
(Table 5):𝑀1 + 0.5248 ∗𝑀2 + 0.7805 ∗ 𝑀3 − 0.1087 ∗𝑀4 (31)

with the estimated pAUC of 0.151 and the estimated standard
deviation of 0.0135, whereas the LOGISTIC’s method had the
following combination (Table 5):𝑀1 + 0.6950 ∗𝑀2 + 1.3806 ∗ 𝑀3 + 0.2545 ∗𝑀4 (32)

with the estimated pAUC of 0.156 and the estimated standard
deviation of 0.0138.

Figure 1 presents the performance for each method.

6. Discussion

In this article, we extend the min-max method to the
estimation of the pAUC and compare its performances to
three commonly utilized methods. The proposed method
has the advantage of both the min-max method and Pepe
and Thompson’s method [16]. The expected advantages of
this approach are threefold. First, it may yield larger partial
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area under the ROC curves. Second, it is a nonparametric
approach and therefore it is robust against distributional
assumptions. Lastly, it is computationally feasible and effi-
cient since the min-max procedure involves searching for
only one single coefficient. Our works [9, 10] have shown
that the use of pAUC not only is clinically useful but also is
statistically more efficient than the use of the full AUC in the
families of area under theROCcurves that are nearly straight-
line shaped. Another advantage of this method demonstrated
through our simulation study is that in the scenario of
straight-line shaped gamma ROC curves the estimate of
pAUC based on re-substitution is close to the estimate based
on the LOPO cross-validation. This implies that the min-max
method on pAUC leads to good generalizability.

As pointed out by several authors [14, 22, 34], the use
of the re-substitution to estimate the area under the ROC
curve could usually lead to the overoptimistic result, or
upward biased estimates for independent dataset, or future
observations. Huang et al. [22] proposed to use the LOPO
cross-validation to obtain less biased estimates. Kang et al.
[14] applied the LOPO cross-validation to compare different
combination methods to maximize the AUC. Because the
estimates through cross-validation lead to more reliable
results in terms of its ability to generalize to an indepen-
dent dataset, we recommend using cross-validation which
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performs better when decisions based on the re-substitution
and the cross-validation approaches are different. Based on
our simulation results, it is not surprising to observe that
the standard deviation of the estimated pAUC decreased as
the sample size increased and that the estimate of the pAUC
based on the re-substitution approachwas becoming closer to
the estimate of the pAUCbased on the LOPOcross-validation
as the sample size increased.

Evaluation of diagnostic assays and prognostic perfor-
mance of biomarkers will continue to remain an important
research topic in several medical areas. This is especially
true in oncology where diagnostic assays based on several
combinations of biomarkers are developed and validated.
For example, a 22-gene model was developed and validated
to predict prostate cancer risk [35]. In addition, identifying
predictive markers of clinical outcomes is a hot area of
research as finding the optimal treatment to tailor patients
is attractive not only to patients but also to physicians,
insurance company, and society as a whole. Currently, several
predictors or signatures of outcomes are being used to guide
therapies in clinical trials [35]. For example OncotypeDx, a
21-gene expression signature, is being used to select treatment
in patients with breast cancer based on the recurrence
score [36]. Recognizing the fact that more predictors will
continue to be applied in the clinic, it is critical that when a
combination of biomarkers is developed this would result in
the highest pAUC.

Based on our extensive simulations, our recommenda-
tions are the following:

(1) Use the SULIU or LOGISTIC approach to estimate
the pAUC with approximately equal variance multivariate
normal data regardless whether the AUCs among biomarkers
are relatively close or far apart. The LIU’s approach underes-
timated the pAUC approximately by 1/3. This is partly due to
the instability of the eigenvector of the identity matrix, since
LIU’s approach involves the calculation of the eigenvector
corresponding to the smallest eigenvalue of Σ−1/2𝑦 Σ𝑥Σ

−1/2
𝑦

which is an identitymatrix under this scenariowhenΣ𝑥 = Σ𝑦,
and the eigenvector corresponding to the smallest eigenvalue
is not stable under small perturbation of the identity matrix
[15].

(2) Utilize the min-max approach to estimate the pAUC
with unequal variance multivariate normal data when the
AUCs are relatively close and use the SULIU’s approach when
the AUCs are far apart.

(3) Employ the min-max approach to estimate the pAUC
with highly skewed data when the AUCs are relatively close,
but use the LOGISTIC method when the AUCs are far apart.

(4) Use the min-max approach to estimate the pAUC
with straight-line shaped ROC curves regardless whether the
AUCs are close or far apart.

In summary, the min-max approach seems to be robust
and investigators are encouraged to use it in the estima-
tion of the pAUC. It is simple to implement and is com-
putationally feasible. In an era of personalized medicine,
it is anticipated that the evaluation of diagnostic assays
and the performance of the combination of biomarkers
will remain an important area of research not only in

diagnosing patients but also in treating patients with the
disease.

Data Availability

The data from the simulation are available from the first
author.The data fromCALGB 90206 can be accessed through
the Alliance in Clinical trials in Oncology.
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