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One of the easiest and fastest ways of building a healthy financial future is investing in the global market. However, the prices of the
global market are highly volatile due to the impact of economic crises.'erefore, future prediction and comparison lead traders to
make the low-risk decisions with price. 'e present study is based on time series modelling to forecast the daily close price values
of financial instruments in the global market.'e forecasting models were tested with two sample sizes, namely, 5-year close price
values for correlation analysis and 3-year close price values for model building from 2013 January to 2018 January.'e forecasting
capabilities were compared for both ARIMA and GARCH class models, namely, TGARCH, APARCH, and EGARCH. 'e best-
fitting model was selected based on the minimum value of the Akaike information criterion (AIC) and Bayesian information
criteria (BIC). Finally, the comparison was carried out between ARIMA and GARCH class models using the measurement of
forecast errors, based on the Root Mean Square Deviation (RMSE), Mean Absolute Error (MAE), and Mean absolute percentage
error (MAPE).'eGARCHmodel was the best-fittedmodel for Australian Dollar, Feeder cattle, and Coffee.'eAPARCHmodel
provides the best out-of-sample performance for Corn and Crude Oil. EGARCH and TGARCH were the better-fitted models for
Gold and Treasury bond, respectively. GARCH class models were selected as the better models for forecasting than the ARIMA
model for daily close price values in global financial market instruments.

1. Introduction

Recently, there are different methods for investing capital,
for instance, investing in gold, investing in foreign currency,
current savings, and fix deposits, when compared to the past
[1]. In the past, a lot of people were interested to save money
in commercial banks for making small interests [2].

In the modern world, lots of investors do not like to save
capital in their savings accounts.'ey are interested in investing
money in the global markets to get the maximum returns [2].

Investing in the global market is a simple and speedy
method of building a stronger financial investment. 'e
global economic markets are flattering increasingly sys-
tematic, and because of this, the competition between
computable and traditional investors is warming up and

developing modern research, models, and strategies to
forecast asset prices. 'e consignments of knowledge ac-
cessible and computers greedy to analyze it are exceptional.
Data, technology, and mathematics are now at the spearhead
of a financial coup [1].

Presently, the mass investors worldwide started investing
grand funds from their capitals.'emotivation for investing
in the global market is to gain return straightly. 'irty years
ago, many companies worldwide mastered exceptional ex-
tension and invested mass funds from their capital. It is a
durable outlay for companies and individuals. 'e number
of listed companies in the global market has been increased
continuously. 'e universal extension of the market prices
and trade volume rates has been modified with hugely
unstable oscillations [2].
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Investment trading is dominated by several economic
circumstances and components. 'ese constituents are
influenced by trading intramural and global trading. Some-
times, the market is unstable with enormous oscillations.
Variation of the market variance over time is the volatility,
and this changes from hugely high and low prices [3, 4].

'e time series usage in volatile research in finance and
econometrics is not limited to approximation matters, sta-
tistical abstractions, and pattern identification. Predomi-
nantly, portfolio selection, options trading, and risk
management matters in trading have been sort out by these
findings. Financial experts and business analysts are inter-
ested in taking solutions in an unpredictable situation, so they
extremely center of attention to the volatility because it works
as a debatablemeasurement. Recent tradingmarkets aremore
comparable and desegregated because of globalization growth
and technology evolution. 'e instruction encroachment
from each market is strengthening as a result of these evo-
lutions. Experimental works are activated in reactions to these
expansions, and guidance communication implements were
considered. 'e discoverers of that study path aimed at the
returns sluice consequence between futures and its futures
fundamental currency trades over trading’s [5, 6].

Pattern recognition and predicting markets are com-
monly used in financial trading to estimate the futures market
and commodity market. 'e major mission of financial
predicting is to forecast the returns of trading benefits or
prominent fluctuations. 'ere are various methods to build
models for factors that are affecting trading markets using
historical data such as applying recent systems, combining
statistical and mathematical hypotheses with economics, and
materializing artificial-intelligence techniques. Besides, an
association between the futures and futures fundamental
currency trading was designated, and primary rates are
mainly influenced by the futures prices. Moreover, experi-
mental results illustrate the remarkable telesales relation with
regards to pricing facts communication [1].

'e motivation in this study is that, in the global market,
the prices of instruments are highly fluctuating within a small
period. So, uncertainty is high. Since there are uncertain
unpredictable fluctuations, there is a high risk. Identifying the
factors affecting price changes can predict the habits of price
variations. 'e common computations for forecast cannot
used to the global market forecasting because of uncertainty.
'ese global market financial instruments have different
returns.'erefore, it should fit separate forecasting models for
each financial instrument. Identification of the future forecasts
and their behavior can drive to the risk minimization.

'e global market financial sector has 51 futures in-
struments in 8 main sectors. 'ese main sectors are Cur-
rencies (CME), Agriculture (CBOT), Energies (NYMEX),
Index, Metals, Interest Rates (CBOT), Softs (ICE), and
Meats. 'e currencies sector has 10 futures instruments, the
Agriculture sector has 8 futures instruments, the Energies
sector has 8 futures instruments, the Index sector has 6
futures instruments, the Metals sector has 6 futures in-
struments, the Interest Rates sector has 5 futures instru-
ments, the Softs sector has 5 futures instruments, and the
Meat sector has 3 futures instruments.

'emain motivation of this work is to forecast the global
market prices of major financial instruments using Autor-
egressive IntegratedMoving Average (ARIMA), Generalized
Autoregressive Conditional Heteroscedasticity (GARCH),
'reshold GARCH (TGARCH), Asymmetric Power ARCH
(APARCH), and exponential GARCH (EGARCH) models
and recognize the relationship between each market [7].
Here, we test the forecasting models with two sample sizes,
namely, 5-year daily close price values for correlation
analysis and 3-year daily close price values for model
building for the past 5-year period from 2013 January to 2018
January. In the beginning, we test the correlations between
these 51 major financial instruments to check their behaviors
and their relationships. To check the correlations, we used
daily close values for the 5-years period from 2013 January to
2018 January. After checking the relationships between
markets, we select a few financial instruments and, then,
move to build models to predict their futures.

Various types of statistical methods have been domi-
nantly used to discuss the results. 'ey are correlation
analysis, descriptive statistical techniques, and time series
analysis. 'ese models will be used to build the model and to
predict the future market properties. 'e best model was
selected using the lowest AIC and BIC. 'en, the out-of-
sample, 30-day close price forecast was obtained and
compared to the actual close price. 'en, we calculate the
error values for both ARIMA and GARCH family models.
'e best model will be identified using accuracy measures,
namely, the Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE), and Mean absolute percentage error
(MAPE).

2. Materials and Methods

Historical daily close price values for 7 financial instruments
extracted from TradeStation WebAPI (https://www.
tradestation.com/platforms-and-tools/web-api/), which is
a portal that enables the use of third-party trading appli-
cations to access TradeStation’s real-time and historical
market data, fast order-execution capabilities, and account
and position information, were used in this study. 'e
variables, symbols, and their related sectors are shown in
Table 1. Open price, low price, high price, and close price
were the four elements of the data. 'e close price reflects all
the activities of the index on a trading day. Hence, the close
price was chosen to represent the price of the index to
predict.

First, the preliminary analysis was carried out to un-
derstand the patterns and trends of the data. Secondly, the
graphical presentation was used to identify the distribution
of the markets among each price value. 5-year daily close
price values were used for correlation analysis, and 3-year
daily close price values were used for model building for the
past 5-year period from 2013 January to 2018 January. For
one instrument, 1263 observations were used for correlation
analysis and 595 observations were used for model building.
'e correlations between those 51 major financial instru-
ments were tested to check their behaviors and their rela-
tionships. High correlations between instruments from the
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same sectors have appeared. 'erefore, one instrument was
selected from each sector for further analysis. 'en, ARIMA
and GARCH models were fitted using past 3-year data, and
30-day future close price values were predicted using fitted
models. 'e best model is identified using the minimum
Akaike Information Criterion (AIC) value.

2.1. ARIMA Model. Time series data consists of two basics
parts, namely, identifiable pattern, and random noise (er-
ror). 'ere are different models in time series including
autoregressive (AR), moving average (MA), autoregressive
moving average (ARMA), and autoregressive integrated
moving average (ARIMA). However, the most commonly
used model is the Box–Jenkins ARIMA model that has been
successfully applied in economic time series prediction [8].
Moreover, the seasonal time series data have seasonal
ARIMA models which are also known as SARIMA. 'e
ARIMA(p,d,q) model is given by the following equation:

1 − ϕ1B − · · · − ϕpB
p

􏼐 􏼑(1 − B)
d
Yt � δ + 1 − θ1B − · · · − θqB

q
􏼐 􏼑at,

(1)

where (1 − ϕ1B − · · · − ϕpBp) is the AR operator of order p,
(1 − θ1B − · · · − θqBq) is the MA operator of order q, δ is the
constant term, and at is the shock element at time t [9, 10].

2.2. GARCHModel. 'e standardized residuals can be used
for model checking. If the model fits well, the standardized
residuals of the GARCHmodels that fitted to the residuals of
ARIMAmodel data should be plotted.'e GARCHmodel is
known as a model of heteroscedasticity, which means it is
not constant in variance. 'e GARCH model is written as
the GARCH(q,p) model where q is the number of moving
average (MA) terms and p is the number of autoregressive
(AR) terms. 'e GARCH(q,p) model can be represented by
the following equation:
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where μt is the mean or constant term, ht is the conditional
variance, ht− i is the past conditional variance, ε2t− i is the past
squared residual return, and ∝ > 0, βi ≥ 0, ci ≥ 0 [11, 12].

2.3. TGARCH Model. 'e threshold GARCH (TGARCH)
model [13] is given by
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where ε+ �max(ε, 0) and ε− �min(ε, 0). α and c capture the
positive and negative effects, respectively.

2.4. APARCH Model. 'e Asymmetric Power ARCH
(APARCH) model [14] is as follows:
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where ω> 0, ϑ≥ 0, βj≥ 0, (j� 1, 2, . . ., q), αi≥ 0, and
− 1< ci< 1, i� 1, . . ., p. α and c recognize the good and bad
effects.

2.5. EGARCH. Nelson [15] proposed that exponential
GARCH (EGARCH) can be given as
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'e optimal forecasting model was formed by choosing
the combination of the forecasting model’s input parame-
ters. 'en, the 30-day close price forecast values were
compared with the actual close price values. 'e error values
for both models were calculated using the Root Mean Square
Deviation (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). 'e model which has
the lowest MAPE and lowest RMSE values was selected as
the best model out of these two models.

To find the best forecasting model for the data, a
comparison between fitted ARIMA and GARCH family
models was performed using the following steps:

(1) It is investigated whether the process is stationary
and its variance does not change over time

(2) In case that the data were not stationary, they must
be converted to stationary ones by taking the log or
the difference transformation

(3) 'en, the ACF, PACF, and EACF were checked for
model identification

(4) 'en, the best model was built, which has the lowest
AIC

(5) Diagnostic checking for the best model was con-
ducted by verifying the normality of the residuals
using the QQ-norm plot and running the Ljung–Box
tests [16]

(6) Finally, the results of the models (ARIMA and
GARCH family) were compared through a criterion
such as AIC and BIC, and the forecasting perfor-
mance was tested using RMSE, MASE, and MAE
criteria [17, 18]

Table 1: Description of the variables used for the study.

Symbol Instrument Sector
AD Australian Dollar Currency
C Corn Agriculture
CL Crude oil Energies
ES ES mini Index
FC Feeder cattle Meats
GC Gold Metals
KC Coffee Softs
US Treasury bond Interest rates
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In summary, ARIMA and linear GARCH class models
with three nonlinear GARCH family models, namely,
TGARCH, APARCH, and TGARCH, were used to identify
the model and forecast the daily close price values. 'e
difference between forecasting GARCH family and ARIMA
models was the behavior of the prediction intervals. In times
of high volatility, prediction intervals using a GARCH class
model widened to consider the higher amount of uncer-
tainty. Similarly, the prediction intervals were narrow in
times of lower volatility.

3. Results and Discussion

Figure 1 shows the global market sectors and their corre-
lation groups.'ere is a strong correlation between the same
sectors than the different markets. 'erefore, for the anal-
ysis, one futures instrument from one financial sector was
selected to get more accurate and unbiased results about the
global market.

'e normality test was applied for data mentioned in
Table 1, and all variables were nonnormal. 'e daily close
price data were taken for all financial instruments in the
global market during the 3 years from 2015 January to 2018
January.

Table 2 shows the descriptive statistics of daily close price
values for eight financial instruments from January 2015 to
January 2018. 'e Minimum value, 1st Quartile, Median,
Mean, 2nd Quartile, 3rd Quartile, and Maximum value were
checked for selected 8 futures instruments. 'e contract
sizes vary from those of financial instruments. Hence, the
relationship between instruments cannot be compared.

According to the summary statistics in Table 2, the
average daily close price for AD was 0.7463, while the av-
erage daily close value for ES was 2195. Furthermore, the
median daily close price value for CL was 54.57, while the
median daily close price value for GC was 1296.

3.1. Time Series Analysis. 'e time series plots of the time
series of the daily closing price variables indicate that all
values of the autocorrelation function are significantly far
from zero and the trend’s ACF is slowly decaying. 'is
implies that there are strong correlations from past values.
'e stationarity of the time series should be verified. To
obtain stationarity data, to remove correlations, and to
obtain independent data, a transformation should be applied
to the time series [19].

After taking the first differences in the time series of daily
close price, the KPSS [20] test was performed. 'e p value of
the test was 0.1, which is greater than the significance level of
0.05. Hence, it can be rejected, and it can be concluded that
the series is stationary.

3.2. Model Identification. 'e autocorrelation function
(ACF) plot of the first differences for daily close price values

was constructed for a variety of lags k� 1, 2, that is, among
(Y1, Y1 + k), (Y2, Y2 + k), (Y3, Y3 + k), . . ., and (Yn − k, Yn),
which can identify the order of the ARMA model [21].

'e ACF plot of the first difference of daily close price
data values was measured for all AD, C, CL, ES, FC, GC, KC,
and the US. 'e trend of the plot was tail-off and cut-off at
lag 1, which indicates that the ACF was MA (1).

'e plot of the partial autocorrelation function (PACF)
of the first difference of daily close price values for the global
market estimated the correlation between Yt and Yt − k after
removing the effect of the intervening variablesYt − 1, Yt − 2,
Yt − 3, . . ., Yt − k+ 1 [21, 22].

3.3. Determining the ARIMAModel Order. 'e trend of the
PACF plot tends to cut off at lag 3 or lag 4 for AD and CL,
which implies that the order or the parameters of the partial
autocorrelation function were AR (4) or AR (4). 'e PACF
plot tends to cut off at lag 2 or lag 3 for C and FC, which
implies that the order or the parameters of the partial
autocorrelation function were AR (2) or AR (3). 'e PACF
plot tends to cut off at lag 5 or lag 7 for ES, which implies
that the order of the parameters of the partial autocor-
relation function were AR (5) or AR (7). 'e PACF plot
tends to cut off at lag 2 or lag 4 for GC, which implies that
the order or the parameters of the partial autocorrelation
function were AR (2) or AR (4).'e PACF plot tends to cut
off at lag 3 or lag 11 for KC, which implies that the order or
the parameters of the partial autocorrelation function were
AR (3) or AR (11), and finally, the PACF plot tends to cut
off at lag 2 or lag 6 for US which implies that the order or
the parameters of the partial autocorrelation function were
AR (2) or AR (6). Mixed compounds of AR and MA
models can be used to build many models. 'e composite
models were initially acceptable according to the results of
ACF and PACF plots; however, there were criteria to
compare fitted models, in the prelude to choosing the best
model.

'e extended autocorrelation function (EACF)
method [23] is an easy graphical tool to identify the orders
of the ARMA model. 'e EACF method uses the fact that
if the AR part of a mixed ARMA model is known, the
output of the EACF is a two-way table, where the rows
correspond to AR order p and the columns to MA order q.
Table 3 shows the AIC values of the selected ARIMA
models for variables according to the ACF, PACF, and
EACF method.

Table 3 exhibits the AIC values of suggested model
variables. 'e best ARIMAmodel has the minimum value of
AIC.'erefore, for AD, the ARIMA (0,1,1) model, for C, the
ARIMA (0,1,1) model, for CL, the ARIMA (0,1,2) model, for
ES, the ARIMA (1,1,1) model, for FC, the ARIMA (0,1,1)
model, for GC, the ARIMA (0,1,1) model, for KC, the
ARIMA (1,1,1) model, and for the US, the ARIMA (0,1,1)
model were selected.
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3.4. Model Estimation. Table 4 shows the estimated pa-
rameters for ARIMA models using the maximum likelihood
method.

According to the parameter estimation results in Table 4,
the MA parameter for AD was − 0.0311 with 0.0417 standard
error. 'e AR and MA parameters for CL were − 0.0263 and
− 0.1298, respectively.

3.5. Diagnostic Checking of the Best ARIMAModel. 'e next
step was to conduct the diagnostic checking for the residuals

of the ARIMA models. Model diagnostics were performed
by testing the goodness of fit of a model. In this study, the
selected ARIMA models were the best model from the
suggested models.'erefore, the Box–Pierce and Ljung–Box
tests were applied to determine the potential of the model in
forecasting the global market’s close price values.

Table 5 shows that the p value is higher than 0.05 for all
ARIMA models. Hence, it can be concluded that the au-
tocorrelation is different from zero. 'erefore, the selected
models are appropriate.

Currencies (CME)

Agriculture (CBOT)

Energies (NYMEX)

Index

Metals

Interest rates (CBOT)

Softs (ICE)

Meats (CME)

(a) (b)

(c) (d)

Figure 1: 'e global market sectors and correlation groups in the 2013–2017 daily close value. (a) All 51 futures instruments in the global
market and the sectors belong to those instruments. (b)'e highly correlated instruments group (σ < − 0.75 and 0.75< σ). (c)'emoderately
correlated instruments group (− 0.75< σ < − 0.5 and 0.5< σ < 0.75). (d) 'e low correlated group (− 0.5< σ < − 0.25 and 0.25< σ < 0.5).
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3.6. Summary of Diagnostic Plots. 'e standardized residuals,
the sample ACF of the residuals, andp values for the Ljung–Box
test statistic were used to check the assumption of independence
of error terms. Randomized, nonpattern residuals implied in-
dependent errors. 'e residual plot, ACF, and PACF did not
have any significant autocorrelation of any lag, whichmeans that
the ARIMA models were appropriated models for variables.

3.7.?eFinalModel. According to the parameter estimation
results in Table 4, the final ARIMA models can be expressed
as the following equations.

'e final models were ARIMA (0,1,1) for AD, C, FC, GC,
and the US. 'is model can be expressed in the following
form:

(1 − B)yt � 1 + θ1B( 􏼁e
t
. (6)

'e final models were ARIMA (1,1,1) for ES and KC.
'is model can be expressed as follows:

1 − ϕ1B( 􏼁(1 − B)yt � 1 + θ1B( 􏼁e
t
. (7)

'e final model was ARIMA (0,1,2) for CL. 'is model
can be expressed in the following form:

1 − ϕ2B( 􏼁 1 − ϕ1B( 􏼁(1 − B)yt � 1 + θ1B( 􏼁e
t
. (8)

3.8. Forecasting. 'e main objective of building a model for a
time series is forecasting the values for that series at future
points of time. 'e best ARIMA models to represent the series
for AD, C, FC, GC, and the US were ARIMA (0,1,1), for ES and
KC ARIMA (1,1,1) and, finally, for CL ARIMA (0,1,2).

Figure 2 shows the forecasts for 30 days of close price
values for selected instruments. 30-day prediction values
were plotted in the blue line, the 80% prediction interval was

Table 2: Descriptive statistics of major financial instruments.

Variable Min Q1 Median Mean Q3 Max
AD 0.6786 0.7249 0.7522 0.7463 0.7633 0.8048
C 410.5 463.8 492.9 495.6 530.7 598.0
CL 39.52 49.80 54.57 56.83 61.98 80.57
ES 1814 2042 2104 2195 2383 2718
FC 110.3 132.6 147.4 149.7 162.6 193.3
GC 1123 1247 1296 1287 1330 1436
KC 134.3 160.0 169.2 171.6 181.9 237.9
US 130.9 141.6 146.0 146.4 150.3 164.8

Table 3: AIC values of suggested ARIMA models.

Variable Model AIC

AD
ARIMA (3,1,1) − 4453.01
ARIMA (4,1,1) − 4452.11
ARIMA (0,1,1) − 4456.04

C
ARIMA (2,1,1) 3737
ARIMA (3,1,1) 3737.85
ARIMA (0,1,1) 3734.41

CL

ARIMA (3,1,1) 1987.9
ARIMA (4,1,1) 1989.6
ARIMA (0,1,2) 1984.58
ARIMA (1,1,2) 1985.91

ES

ARIMA (5,1,1) 5134.99
ARIMA (7,1,1) 5135.28
ARIMA (1,1,1) 5130.34
ARIMA (2,1,1) 5130.55

FC

ARIMA (2,1,1) 2694.63
ARIMA (3,1,1) 2696.58
ARIMA (0,1,1) 2691.71
ARIMA (2,1,1) 2694.63

GC

ARIMA (2,1,1) 4631.41
ARIMA (4,1,1) 4631.11
ARIMA (0,1,1) 4629.98
ARIMA (2,1,2) 4633.53

KC
ARIMA (3,1,1) 2920.22
ARIMA (1,1,1) 2919.97
ARIMA (1,1,0) 2918.05

US
ARIMA (2,1,1) 1774.47
ARIMA (6,1,1) 1781.38
ARIMA (0,1,1) 1770.78

Table 4: Parameters estimation ML method for ARIMA models.

Variable Model Parameter SE
AD ARIMA (0,1,1) Θ1 − 0.0311 0.0417
C ARIMA (0,1,1) Θ1 − 0.0054 0.0394

CL ARIMA (0,1,2) Θ1 − 0.0263 0.0409
Θ2 − 0.1298 0.0406

ES ARIMA (1,1,1) Φ1 0.6646 0.1718
Θ1 − 0.7243 0.1566

FC ARIMA (0,1,1) Θ1 0.0830 0.0427
GC ARIMA (0,1,1) Θ1 − 0.0138 0.0388

KC ARIMA (1,1,1) Φ1 0.3661 0.7755
Θ1 − 0.3540 0.7865

US ARIMA (0,1,1) Θ1 − 0.0430 0.0402

Table 5: Results of the Box–Pierce and Ljung–Box tests.

Variable χ2 Df p value
AD 0.00019998 1 0.9887
C 0.0060869 1 0.9378
CL 0.017877 1 0.8936
ES 0.24851 1 0.6181
FC 0.0085805 1 0.9262
GC 0.00024216 1 0.9876
KC 0.05749 1 0.8105
US 0.00027009 1 0.9869

6 Journal of Probability and Statistics



indicated in the dark gray color area, and the 95% prediction
interval was shown in the light gray color area.

3.9.Model Identification. 'e time series was produced from a
white noise series (residual of the ARIMA). 'erefore, ACF
plots could not be applied to select the orders p and q of the
ARIMAmodel. Akaike InformationCriteria (AIC) was used for
various combinations of p and q.'en, themodel which had the
minimum AIC was chosen as the best candidate model. EACF
was guided to reduce the options of the best models.

Table 6 indicates the suggested GARCH models from
EACF and AIC for variables. Final models were estimated
using minimum AIC and BIC values. GARCH (1,1) for AD,
GARCH (1,1) for C, GARCH (1,2) for CL, GARCH (1,2) for
ES, GARCH (1,1) for FC, GARCH (3,4) for GC, GARCH
(1,1) for KC, and GARCH (1,1) for the US were selected
using minimum AIC and BIC values.

3.10. Lagrange Multiplier (ARCH-LM) Test. 'e test results
presented in Table 7 reject the null hypothesis of no ARCH
effect for daily close price values.'e tests implied that therewas
significant volatility clustering in the residual series. 'erefore,
there was an ARCH effect in the series which indicates that the
time series was heteroscedasticitic and volatile [24].

3.11. Parameter Estimation. Table 8 displays the results of
the Box–Ljung test. 'e p values indicated that the models
are statistically significant.

'e parameter estimation of GARCH models is dis-
played in Table 9. All the parameters were significant for AD,
exclude β1 nonsignificant value. 'erefore, it was removed
from the model. For C, all the parameters were significant.
For CL, β1 and β2 nonsignificant were removed from the

model. For ES, β1 and β1 nonsignificant were removed from
the model. For GC, α2, α3, β1, β2, β3, and β4 nonsignificant
were removed from the model. For KC, β1 nonsignificant
was removed from the model. For the US, β1 nonsignificant
was removed from the model.
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Figure 2: Forecast for 30 daily close price values. (a) Forecasts from ARIMA (0,1,1) for AD. (b) Forecasts from ARIMA (0,1,1) for C. (c)
Forecasts fromARIMA (0,1,2) for CL. (d) Forecasts fromARIMA (1,1,1) for ES. (e) Forecasts fromARIMA (0,1,1) for FC. (f ) Forecasts from
ARIMA (0,1,1) for GC. (g) Forecasts from ARIMA (1,1,1) for KC. (h) Forecasts from ARIMA (0,1,1) for US.

Table 6: Suggested GARCH models from EACF and AIC for
variables.

Variable Model AIC BIC

AD
GARCH (1,0) − 5.287483 − 5.257941
GARCH (1,1) − 5.287718 − 5.250792
GARCH (2,1) − 5.284379 − 5.240067

C
GARCH (1,0) 9.598306 9.627847
GARCH (1,1) 9.582416 9.619342
GARCH (2,1) 9.588508 9.632819

CL
GARCH (1,2) 6.152950 6.197262
GARCH (2,2) 6.156085 6.207782
GARCH (3,2) 6.161463 6.220546

ES
GARCH (2,1) 12.13357 12.17789
GARCH (1,2) 12.13347 12.17778
GARCH (1,3) 12.13857 12.19026

FC
GARCH (1,0) 7.936671 7.966212
GARCH (1,1) 7.929158 7.966084
GARCH (2,1) 7.933221 7.977533

GC
GARCH (3,4) 10.36803 10.44188
GARCH (6,4) 10.38533 10.48134
GARCH (3,5) 10.37408 10.45532

KC
GARCH (1,0) 7.673029 7.702570
GARCH (1,1) 7.664752 7.701679
GARCH (2,1) 7.675658 7.719969

US
GARCH (1,0) 5.850009 5.879550
GARCH (1,1) 5.846725 5.883651
GARCH (2,1) 5.853085 5.897397

Journal of Probability and Statistics 7



Table 7: LM test for autoregressive conditional heteroscedasticity.

Variable Model LM-ARCH p value
AD GARCH (1,1) 8.509965 0.7441175
C GARCH (1,1) 62.78456 <0.001
CL GARCH (1,2) 12.72092 0.3896475
ES GARCH (1,2) 53.91283 <0.001
FC GARCH (1,1) 50.21859 <0.001
GC GARCH (3,4) 15.0366 0.2394412
KC GARCH (1,1) 17.25444 0.140274
US GARCH (1,1) 13.53744 0.3312158

Table 8: Box-Ljung test for GARCH models.

Variable Model χ2 p value
AD GARCH (1,1) 2034 <0.001
C GARCH (1,1) 2942.5 <0.001
CL GARCH (1,2) 2814.2 <0.001
ES GARCH (1,2) 2664.8 <0.001
FC GARCH (1,1) 3801.4 <0.001
GC GARCH (3,4) 2723.7 <0.001
KC GARCH (1,1) 2936.2 <0.001
US GARCH (1,1) 2936.2 <0.001

Table 9: Parameter estimation of GARCH (1,1).

Variable Model Parameters S.E. p value

AD GARCH (1,1)

μ 7.553e − 01 5.748e − 04 <0.001
α0 1.893e − 05 4.816e − 06 <0.001
α1 1.000e+ 00 1.368e − 01 <0.001
β1 8.723e − 02 1.025e+ 00 0.395

C GARCH (1,1)

μ 470.35570 0.57851 <0.001
α0 9.41034 3.50690 0.00729
α1 0.94295 0.13596 <0.001
β1 0.23805 0.08988 0.00808

CL GARCH (1,2)

μ 51.25441 0.23806 <0.001
α0 0.86055 0.31380 0.0061
α1 1.00000 0.23861 <0.001
β1 0.06070 0.33109 0.8545
β2 0.05016 0.16690 0.7638

ES GARCH (1,2)

μ 2.061e+ 03 1.844e+ 00 <0.001
α0 1.379e+ 02 3.458e+ 01 <0.001
α1 1.000e+ 00 1.332e − 01 <0.001
β1 1.290e − 01 1.622e − 01 0.426
β2 2.367e − 02 9.275e − 02 0.799

FC GARCH (1,1)

μ 146.1326 0.3324 <0.001
α0 2.0045 0.8187 0.0144
α1 1.0000 0.1376 <0.001
β1 0.1315 0.1103 0.2333

GC GARCH (3,4)

μ 1.310e+ 03 2.798e+ 00 <0.001
α0 9.636e+ 01 2.554e+ 01 0.000162
α1 1.000e+ 00 1.319e − 01 <0.001
α2 7.743e − 02 1.384e − 01 0.575965
α3 1.000e − 08 6531e − 02 1.000000
β1 1.000e − 08 8.419e − 02 1.000000
β2 1.000e − 08 NA NA
β3 1.000e − 08 NA NA
β4 1.676e − 02 2.036e − 02 0.410364

KC GARCH (1,1)

μ 166.6749 0.4603 <0.001
α0 4.1971 1.4602 0.00405
α1 1.0000 0.1371 <0.001
β1 0.1475 0.1025 0.15036

US GARCH (1,1)

μ 146.2089 0.3625 <0.001
α0 0.7346 0.2514 0.00347
α1 1.0000 0.1761 <0.001
β1 0.1274 0.1403 0.36393
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3.12. Conditional Variance and Standardized Residuals.
Some high values of residuals were recorded. Besides, the
model was valid for volatility. 'e extreme value of the
GARCH model was cleared (strong volatility). 'e increase
of conditional variances has corresponded to the rise of
volatility in the original series. 'e standardized residuals of
the fitted model were larger values with respect to condi-
tional variances and had a constant mean.

3.13. Model Diagnostics. To check the adequacy of a given
time series model, it is common practice to test the sig-
nificance of the residual autocorrelations. In the GARCH
framework, this method is not relevant because the process
is always white noise. However, to check the adequacy of a
volatility model, the squared residual auto covariance should
be invested.

Diagnostic of the adequacy of GARCHmodels was checked
using the plot of the standardized squared residuals. Most
values of ACF at successive lags were significantly close to zero
which indicates that themodels of GARCHwere adequate [25].

'e p value of the Box–Ljung test exceeded 0.05.
'erefore, the hypothesis in which the autocorrelation of
residuals is different from 0 cannot be rejected, and it im-
plied that the GARCHmodels were adequate. In Table 9 also,
the p value of coefficient(s) was significant compared to few
that were not significantly greater than 0.05.

3.14. Forecasting. 'e Ljung–Box statistics and corre-
sponding p values were obtained. 'at indicated no sig-
nificant correlation at lags 10, 15, and 20 in a squared
residual. 'e p value was greater than 0.05, and that implied
the model adequately represents the residuals.

Table 10: Comparison of forecast errors of ARIMA and GARCH models.

Var Model RMSE MAE MAPE

AD

ARIMA 0.04212392 0.04095 0.051284
GARCH 0.0172119 0.0140733 0.017524
TGARCH 0.01727751 0.01415 0.01762
APARCH 0.0172308 0.0140967 0.017553
EGARCH 0.0173292 0.01421 0.017695

C

ARIMA 51.75245 51.37237 0.122862
GARCH 8.127884 6.27 0.014797
TGARCH 4.837027 4.03 0.009562
APARCH 4.587574 3.86 0.009168
EGARCH 4.915537 4.08 0.009677

CL

ARIMA 11.17219 10.99426 0.175763
GARCH 4.433551 3.954667 0.062562
TGARCH 3.809162 3.417 0.054092
APARCH 3.638178 3.283667 0.052027
EGARCH 3.736444 3.361333 0.05323

ES

ARIMA 34.4467 31.3007 0.257851
GARCH 22.56083 21.91637 0.023232
TGARCH 22.56083 21.91637 0.023232
APARCH 22.56083 21.91637 0.023232
EGARCH 22.56083 21.91637 0.023232

FC

ARIMA 5.555951 4.9999 0.032833
GARCH 3.06689 2.6325 0.017276
TGARCH 3.687815 3.179167 0.020851
APARCH 3.086121 2.6525 0.017407
EGARCH 3.645199 3.145833 0.020634

GC

ARIMA 59.91122 58.428 0.042608
GARCH 49.77807 47.07333 0.034301
TGARCH 41.07177 38.57333 0.028094
APARCH 40.27832 37.80667 0.027535
EGARCH 35.46411 32.87333 0.023931

KC

ARIMA 27.52059 27.39157 0.197089
GARCH 3.875392 3.603333 0.026005
TGARCH 9.795952 8.923333 0.064539
APARCH 10.33573 9.393333 0.067943
EGARCH 4.665083 4.36 0.031484

US

ARIMA 5.048745 4.32146 0.030222
GARCH 4.201997 3.549167 0.024834
TGARCH 4.160593 3.515833 0.0246
APARCH 4.245958 3.589167 0.025113
EGARCH 4.184399 3.535833 0.024741
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3.15. Comparison betweenARIMAandGARCHClassModels.
'e smaller value of the accuracy measurements of forecast
errors, that were actual vs. predicted errors RMSE, MAE,
and MAPE, were used in choosing the best model among
ARIMA and GARCH class models, and results are shown in
Table 10.

Table 10 reports the results for an out-of-sample analysis of
all models by comparing under three different criteria for four
GARCH class models. For the AD, FC, and KC futures, the
results support the use of the GARCH model. 'e APARCH
model was the best fit model for the daily close price values of C
and CL. 'e EGARCH and TGARCH were the appropriate
models for the GC and US futures, respectively.

3.16. Future Predictions. Table 11 shows the next 30-day
average prediction for daily close price values for financial
instruments. 'e next 30-day average for AD was predicted
as 0.755.

4. Conclusions

Futures price values are fluctuating due to the impact of
many factors. Hence, the traders are interested in forecasting
futures price values to obtain optimum marketing decisions
and to manage price risk. In this study, ARIMA andGARCH
models were used to forecast daily close price values.
GARCH models performed better than ARIMA models
because of their ability to handle the volatility by the con-
ditional variance. 'erefore, the GARCH class models
(TGARCH, APARCH, and EGARCH) were used to forecast
the daily close price values. For the AD, FC, and KC futures,
the results support the use of the GARCH model. 'e
APARCH model was the best fit model for the daily close
price values of C and CL.'e EGARCH and TGARCH were
the appropriate models for the GC and US futures,
respectively.
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