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In this paper, we proposed two new families of estimators using the supplementary information on the auxiliary variable and
exponential function for the population distribution functions in case of nonresponse under simple random sampling. The
estimations are done in two nonresponse scenarios. These are nonresponse on study variable and nonresponse on both study and
auxiliary variables. As we have highlighted above that two new families of estimators are proposed, in the first family, the mean was
used, while in the second family, ranks were used as auxiliary variables. Expression of biases and mean squared error of the
proposed and existing estimators are obtained up to the first order of approximation. The performances of the proposed and
existing estimators are compared theoretically. On these theoretical comparisons, we demonstrate that the proposed families of
estimators are better in performance than the existing estimators available in the literature, under the obtained conditions.
Furthermore, these theoretical findings are braced numerically by an empirical study offering the proposed relative efficiencies of

the proposed families of estimators.

1. Introduction

It is a well-known phenomenon that the known auxiliary
information in the study of sample survey gives us an ef-
ficient estimate of population parameters, i.e., the pop-
ulation mean and population distribution function, under
some essential conditions. This information (auxiliary) may
be used for drawing a random sample using SRSWR or
SRSWOR. Also, simple random sampling can be improved
using the following sampling methods.

Stratification, systematic, nonresponse sampling, and
probability proportional sampling schemes are used for
estimating the population parameter. Auxiliary information
gives us some sort of techniques by means of the ratio,
product, regression, and other methods. In a practical sit-
uation, one of the important issues in surveys is that it suffers

from nonresponse. Nonresponse is a common problem
which may crawl with sampling survey. Nonresponse has
many ways of occurrence. Examples are linguistic problems,
illness, nonresponse, nonacceptance, process of return ad-
dress misguided, and capture by another person. Research
has labelled that various types of nonresponse may have
different effects on estimators. A lot of work has been done
on the estimation of population mean under nonresponse to
control the nonresponse bias and to increase the efficiency of
the estimators by different authors. The problem of non-
response in sample surveys is more common and more
prevalent in mail surveys than in special interview surveys.
Hansen and Hurwitz [1] assumed that a part of sample of
earlier nonrespondents to be recommunicated with a more
expensive system; they attempted the first effort by mail
questionnaire and performed the second attempt by a
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personal interview. However, Hansen and Hurwitz [1] have
not used any kind of supplementary information to increase
the efficiency of the estimator. For the first time, the author
of [2] used the auxiliary information for estimating the
population mean. Cochran [3] used the auxiliary informa-
tion for estimating the population mean under nonresponse.
Then, work on nonresponse extended by many authors (cf.,
[4-7]) recommends various types of estimators for esti-
mation of population mean and distribution function using
the secondary information under nonresponse. Okafor and
Lee [8] presented ratio and regression estimation with
partial sampling of the nonrespondents for estimating the
population mean. Furthermore, the authors of [9, 10]
proposed estimators for estimating population mean using
multiauxiliary information in different directions and Zhao
et al. [11] used the idea of robust estimation of the distri-
bution function and quantiles with nonignorance missing
data.

Also, for estimating population mean under the two-
phase sampling strategy in the presence of nonresponse, the
authors of [12-15] have made significant contributions.
Diana and Perri [16] suggested a class of estimators in two-
phase sampling with subsampling of nonrespondents in
estimating the finite population mean. In this paper, we
introduce the use of sample distribution functions of the
study variable and auxiliary variable along with the mean of
the auxiliary variable and also the ranks of the auxiliary
variable for estimating the population distribution function.

Extensive literature has been published on estimation of
population mean under nonresponse; however, no effort has
been dedicated to the development of efficient methods for
population cumulative distribution function. In survey
sampling, the statisticians are often interested in proportion
size of the study variable, i.e., proportion of units in pop-
ulation with values less than or equal to a specified value of y;
for instance, we may be interested to know the proportion of
the population in which 31% or more people are educated.

Motivated by FR’D (), Fs(y), and average of PBT’R (»
and I:"BT,P (»), two new families of estimators are proposed
for estimating distribution function in the presence of
nonresponse. By numerical results, we will show that the
proposed family of estimators is more precise than the
existing estimators.

We planned the paper as follows: In Section 2, some
notations are introduced. In Section 3, the existing esti-
mators are reviewed briefly. Two new families of estimators
are introduced in Section 4, respectively. The existing and
proposed estimators are compared (theoretically and nu-
merically) in Sections 5 and 6. In Section 7, the concluding
remarks of the paper are discussed.

2. Notations

Consider a finite population Q = {V,,V,,...,Vy} of N
distinct units, which is partitioned into respondents
Q,={V,,V,,...,Vy;} and nonrespondents Q,={V
Ni+1> VNis2s - - -» Vy} groups with sizes N, and N,, re-
spectively, for estimating the CDF, where N = N, + N,. A
sample of size n has been drawn from this population by
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simple random sampling (SRSWOR), out of which n,
units respond and n, =n—-mn; do not respond. It is as-
sumed that the sample size », is drawn from the response
group of Q; and n, is drawn from the nonresponse group
of Q,. Moreover, a sample of size r = n,/k (k> 1) is drawn
by simple random sampling (SRSWOR) from ,, and this
time response is obtained from all r units. Let Y and X be
the study and auxiliary variables, respectively. Let Z be
used for the ranks of the X and I(Y <y) and I(X <x) be
the indicator variables based on Y and X. Furthermore,
F(y)=YN 1(Y;<y)IN and F(y) =Y/’ I(Y;<y)/n and
F(x) = Zfil I(X,<x)/N and F(x)= Y, I(X;<x)/n are
the population and sample distribution functions of Y
and X, respectively. Similarly, let X = ¥ X,/N and X =

Y, X/n and Z=YY ZJ/N and Z =37 Z/n be the
population and sample means of X and
Z,respectively.Furthermore,F, (y) = Zf.\:]NlH I(Y;<y)IN,
and F,(x)= ZZN]H I(X;<x)/N, are the population
distribution functions of I(Y <y) and I(X <x) for the
nonresponse group and X, = Zf\:’NlH X;,/N, and
Z, = Zf\:IN1+1 Z,IN, are the population means of X and Z

for the nonresponse group, respectively.

Here, (x = X and ©, (x)) and (y = Y and @, (y)), where
X and Y are the population means of X (Y). Similarly, ®, (x)
and O, (y) are the population second quartiles of X (Y),
respectively.

To obtain the bias and MSE of the proposed estimator,
we consider the following error terms. Let

o ) -FQ)

' F(y)
. i) -F®)
2 F(x) ’
X, -X
e; = HX ,
e =212 (M
V4
_Fy(x)-F(x)
’ F(x)
Xy - X
e; = H)_( y
Zy-7
e, = HZ

Here, 1:";; (»), F:I (x), and X and Z* are the notations
used for CDFs, mean, and mean of ranks when there are no
responses on both study and auxiliary variables. And,
F & (x), X, and Z are the notations used for CDF, mean, and
mean of ranks when there are no responses on only auxiliary
variable, shown in Table 1.
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TaBLE 1: Estimators, variances, covariances, and correlation under
nonresponse situations.

Estimator
Situation = 1 1T
F(y) = Fg () Fy ()
F(x) = Fpy (%) Fpy(x)
X = Xy Xy
Z = Zy Zy
Variance/covariance

®rsm = Wr stu \Ijr tu
3000 = Y2000 Y2000

0200 = Y0200 Y0200

0020 = Y0020 Y0020
002 = Y0002 Y0002
O1100 = Y1100 Y1100
O1010 = Y1010 Y1010
01001 = Y1001 Y1001
Oo110 = Vo110 Yoo
101 = Yo101 Yo101

Coefficient of correlation
Q12 = P12(2) P12
013 = P13(2) P13
023 = P23(2) P23
Q14 = P14(2) P14
Q24 = P24(2) P24
Coeﬁczent of multiple determination

2 2 2
ER%.zs = ‘D%.zs q)% 23

1.24 = Q74 Dy

Let E(e)=0 for i*=1,2,3,4 and E(e;) =0 for
i =2, 3,4, where E (-) is the mathematical expectation of (-). Let

Y. =E [eg e el eZ],
(2)
Vistu = E[efrez*ses*te:u])
where 7,s,t,u = 1,2,3,4. Here,
E(el*z) ACT +L,Cl gy = Yoo
E(ez*z) AC; +4,Ca) = Yoror
E(e3*2) ACS + A2C3(2) = Voo
E(e4*2) AC, + Azci(z) = Yoo002>
E(eg) = AC; = Yoa005
E(eg) AC3 = o0
E(ei) )‘Ci = o025
E(eje;) = 4p1,CiCy + P Ci2Caw) = Vit (3)
E(eje;) = Ap;3C,Cs + APi32C12Cs0) = Viow
E(eye;) = Ap,C,Cy + AP112C12Ca2) = Vioors
E(eye3) = Ap33CoC5 + Aap23 ) Ca)Ci) = Vorios
E(ez €4 ) AppCCy + /12P24(2 Co2Ca2) = Yor010
E(ef ;) = Ap1,CiCy = Wiy,
E(ey e3) = Ap13CiCy = ¥yg10,
E(ey ;) = 2p14C1Cy = Y001
E(eye3) = Apy3CaCs = ¥onnos
E(eyes) = ApyuCiCy = Yo

Here,

Q 1l’noo‘/’oozo+‘/’1010‘/’0200 2¥1010¥1100Yo110
123 =
l/Qooo(‘/’ozoo‘l’oozo l/’0110)
(4)

where it is the coeflicient of multiple determination of
I(Y<y) on I(X<x) and X with situation-I. Also,

2 2
92 _ \PIIOO\POOZO + \IIIOIO\IIOZOO - 2\1’1010\1’1100\110110
1.23 — 2
ll/2000(\110200\110020 - \IJ()IIO)

(5)
is the coefficient of multiple determination of I(Y<y) on
I(X<x) and X with situation-II. And,

V’noo‘/’oooz + 1/’1001%200 291001 Y1100 Vo101
91 4= 5 (6)
1/’2000(‘/’02001/’0002 - I/’0101)

is the coefficient of multiple determination of I(Y<y) on
I(X <x) and Z with situation-I. Finally,

2 2
0% = 1100 Y0002 + 1001 o200 = 21001 1100 o101
124 = 2
1//2000(\1/0200\%002 - \II0101)

(7)

is the coefficient of multiple determination of I(Y<y) on
I(X<x) and Z with situation-II. Here, A = (1/n1/N)
2 =Wl%(k— Vin, Si=Yy~ L (I(Y;<y) - F(y)) /(N—l)
=Y. (I(X;<x) - F(x)) /(N— 1), =YY (X;-X)*
/(N—l) and $} =YY (Z,-Z)* /(N —1) are the pop-
ulation variances of I(YSy) I(X<x), X, and Z for the
response group, respectively.

Zl N, +1 (I(Y;<y)- F()’z))z/(Nz -1),
S o = Y n 1 (T(X;<x,) = F(x,))°/ (N, = 1), o=
Zl Ny +1 (X; - Xz) /(N;—1), and 34(2 Zi:N1+1 (Zi- Zz)z/
(N, — 1) are the population variances of I (Y <y), I (X <x),
X, and Z for the nonresponse group, respectively.

C, =S,/F(y), C, =S,/F(x), C;=85/X, and C, = S,/Z
are the population coefficient of variations for the response
group, and Cy5 =8,)/F(32), Cyu =S)/F(xy),
Cs(2) = S32)/ X, and Cyy) = 4(2)/2 are the population
coeflicient of variations for the nonresponse group.

Similarly, $},, =

S =YN {I(Y;<y) - F(y)I(X;<x) - F(x)}/(N -
1), 813 = Zizl{(I(Yz —J’) - F()/)) (Xi - X)}/(N -1), 323 =
SNAI(X;<x) - F(x)(X; - XV (N -1), Sy, =YN{UI
(Y;<y)-F))N(Z;=2)}(N-1), and S, =Y {UI

(X;<x)-F(x))(Z;,—Z)}/ (N -1) are the population co-
variances for the response group.

Sie) = Li- N+l{(I(Y <J’)_ F(y,)(I(X;<x)-F
(xz))}/(Nz 1), Sl3 2 = Zz NIH{(I(Y J’) F(J’z)) (Xi—
XM (Ny=1), Sy = Zz N, Al (X;<x) - F(x;) (X;-
XM (N, = 1), Sy = Yy ol (Y, <9) = F(3,))  (Zi-
2} (N, -1), and Sy = Zi:N1+1{(I(Xi <x)-F (x,))

(Z; = Z,)} (N, — 1) are the population covariances for the
nonresponse group.



Similarly, py, = 815/8,8,, p13 = $13/51S35 paz = $53/5,55
Pra = $14/8,Sy> and p,, = S,,/S,S, are the population cor-
relation coeflicients for the response group, respectively.

P122) = S2@/S12520 P132) = S13/S12S32 P23 o) =
S350 P14 = S14@/S12)542)» a0d Pay(z) = Sau ()
S1(2)S4(2) are the population correlation coefficients for the
nonresponse group.

Let F(y) NW F, (y) + W,F,(y), where W, =N,/N
andF (y)=Y,51(Y;< y)/N for j=1,2. Also, F (y)
Yo (Y y)/n, denote the sample distribution functlon of
n, responding units out of n units and
F, (y) =Y, I(Y;<y)/r denote the sample distribution
function of * responding units out of nonresponse units.

The existing Hansen and Hurwitz [1] unbiased estimator

of F(y) with its variance is
PH(J’) :w1F1 (y)+w21327(y), )
Var(l:"H (y)) = /\Sf + )‘zsf(z)

_ Similarly, the unbiased estimators for Fy; (x), Xy, and
Zy; and their corresponding variances are

Fyy (x) = w F, (x) + w,Fy, (x),
Xy = w X, + w, X,
Zyg = W, Zy + W, Zopy
Var(l:"H (x))ASf + /\ZST(Z),

Var(f(H> = AS: + )Lzsﬁ(z),

Var<§H> = Asﬁ + Azs§(2), respectively.
(9)

In practice, we use three situations, occurring under
nonresponse, but here, we use two situations which mostly
occur, namely, nonresponse on both the study variable and
the auxiliary variable (say situation-I) and nonresponse just
on study variable only (say situation-II). For notational
convenience, we follow the notations given in Table 1.

3. Existing Estimators

In this section, some estimators of finite population mean
exist for estimating the finite CDF under nonresponse; the
biases and MSEs of these existing estimators are derived
under the first order of approximation.

(1) Cochran’s [17] existing ratio estimator of F(y) is

Fy(y) = B( )(FE ;) (10)

The bias and MSE of Fg (), to the first order of ap-
proximation, are

Journal of Probability and Statistics

bias(l:"R (J’)) = F () (®g200 = ©1100)>

. (11)
MSE(FR (J’)) = F* (3) (@300 + g0 — 201109).

(2) Murthy’s [18] existing product estimator of F(y) is

B = FO) (122, (12

The bias and MSE of Fp, (), to the first order of ap-
proximation, are

bias(ﬁp (y)) = F(y)0100>

. (13)
MSE(FP (J’)) = F? (1) (@000 + Oga00 +2@119)-
(3) The existing regression estimator of F(y) is
Freg(7) = F(y) + k(F (x) - F (x)), (14)

where k is an unknown constant. Here, FReg (y) is an
unbiased estimator of F( y). The minimum variance of
FRe (y) at the optimum value k= (F(y)
®1100)/(F(x)®ozoo) is

Vaty (P (1) = Q00O = Oi)

(15)
© 200

Here, (15) may be written as
Varmin(ﬁReg(y)) =F ()’)®2ooo(l - 9%2)- (16)
(4) Rao’s [19] existing difference-type estimator of F(y)
is

Frp(») = k,E(y) + ky (F(x) - F(x)), (17)

where k, and k, are unknown constants. The bias and
MSE of Fy p, (), to the first order of approximation, are

bias(Fy () = F(y) (k, - 1),
MSE(Frp (1)) = F*(y) = 2k, F* (y) + K1 F* ()
+ KT F? (1)®y000 — 2k Ky F (1)F (%) 100
+ K (%)@ 00-
(18)

The optimum values of k; and k,, determined by
minimizing (18), are

k ot = Op200
1(opt) — 2 >
) (®ozoo®2ooo — O + ®0200)
(19)
k _ F ()09
2(opt) —

! .
F(x)(®zooo®ozoo = Oy + ®0200)
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The minimum MSE of Fy p, (y) at the optimum values
of k, and k, is

F? ()’)(®2000®0200 - ®f100)

> .
®2000®0200 - ®1100 + ®0200)

MSEmin(FR,D(}’)) = (

(5) Grover and Kaur’s [20] existing generalized class of
ratio-type exponential estimator of F(y) is

Fox () = {ksF () + ky (F (x) = F (x))}
(22)

F(x)-F
(20) y < a(F (x) - F (x) )
a(F(x)+F(x))+2b
Here, (20) may be written as .
, , where ky and k, are unknown constants. The bias and
. F*(¥)®00( 1 = MSE of F , to the first order of imation,
MSEmm(FR,D(J’)) _ (y) 2000( @12) (21) of F x (), to the first order of approximation, are

1+ ®2ooo(1 - Q?z) .

. 3 1 1
bias(Fox (1)) = F(y) (ks = 1) + SOk F () + 5 0k4F ()20 = 5 OF ()81 10,
MSE(ﬁG,K (J’)) = Ky F? (%)@p200 + K3 (7)@ 000 + 26k3k4F (7)F (x)@pn0
— 2k;k,F (9)F (%)@ 100 + F* () = 2k; F* (y) + OK3F (3) (23)

+ k3F2 (3)01190 — Ok, F (y)F (x)®p09 — Zengz (71100

3
- 192k3F2 (»)®py90 + ezkéFz ()@ 00-

The optimum values of k; and k,, determined by
minimizing (15), are

®ozoo(92®0200 - 8)

k3(0 t) = >
’ 8(_6200060200 + 6%100 - ®ozoo)
(24)
B F(J’)(93®§200 - 92@0200®1100 + 400009990 — 496%100 =400 + 8®1100)
4(opt) — .
) 8F(x)(®2000®0200 - ®f100 + ®ozoo)
The simplified minimum MSE of IA:G,K (») at the opti-
mum values of k; and k, is
2
. F? Opa00(~8 + 6°®
MSE i (Fgx () = % 64 — 166700 — o0 "2"02 . (25)
Op200 (1 + ®2900) = Qu1o
Here, (25) may be written as
. ) F2(3)(6°0%,00 — 80200 + 800200O2000 )
MSEmin(FG,K (y)) - Varmin(FReg (y)) Y4 ( 0200 1100 0200 zooo) ’ (26)

64@3200{1 + ®2000(1 - 9f2)}

which shows that PG’K (y) is more precise than F, (y).
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4. Proposed Estimators

On the lines of I:“R)D (), Fs(y), and average of FBT)R (y) and
Fyrp(y), the first proposed family of estimators for esti-
mating F(y) is given by

. _[Fy) F(x) - F(x) F(x)-F(x) F(x) - F(x) .
Fp”(y)_[ 2 {exp(i:(x)+F<x>)+exp(ﬁ<x>+1:<x>)}+m5< F(x) )m"’F(”

. X-X eX( a(F(x) - F(x)) >
"\ Tx P\ aF +F(x)+2b)

where m;, mg, and m, are unknown constants and a(#0)  population parameters of I (X < x), such as p,,, 8, (coeffi-
and b are either two real numbers or functions of known  cient of kurtosis), and C,.

The estimator F pr, () can also be written as

Fon, ) = {FOY (1 +80) (1 mg) = sy =ty 4 SOOI} (1 =506, + 2008 + ). (28)

Simplifying (28) and keeping terms only up to the
second power of s, we can write

(For, 0) = FOI) = meF )+ FGEo + mgF )y = 5 0F O, +56°F (8]
—%HF(y)Eofl -mgé, +%9m5ff —%GméF(y)f1 (29)

3 1 1
+ §92m6F e - > OmgF ()&oE, —m &, + > Om,& &,

The bias and MSE of Fprl (), to the first order of ap-
proximation, respectively, are

1 1
o’F (7)Bg00 — EGF()/)@uoo + 5"’159@0200 +mgF(y)

NS

bias(Fp,, (y)) =
3 1 1
+ gmae F(y)®g00 — 57”691:()’)@1100 + 5’”76@0110»
. 2 3 oo 222
MSE(FPr1 ()’)) = —0F (y)Oy90 + EmGG F~(y)®ga00 + ms0"F (¥)Og00 + m50F (¥)O09

1
= 2mgm;F (y)® ;0 + ZQZFZ (7)®z00 + 2m6F2 (7)®2000 + m§®ozoo (30)

- 2m§0F2 (7)B1190 + F? (7)O5900 + méFz (y) + m;0F ()@,
+2msmgOF ()@ gy — 2msmgE (y)®1199 + 2msm; Oy
- 3m69F2 (7)®1190 = 2msF (¥)O119 — 2m;F ()09

+ méFz (7)O5900 + ”"%@0020 +2mem;0F (1)®g1o-
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The optimum values of ms, m,, and m,, determined by
minimizing (29), are

F(J’)[93®g/2%o(9§3 - 1) + 6;&0(_4 + 92@0200) (012 — 923913)] + 29@5?00(953 - 1){_1 + ®2000(1 - 9%.23)}

mS(opt) = 8@5%0(953 — 1){—1 + @2000(1 - mfzg,)} )

m, - {4®2000<_2912913923 + 9?2 + 9%3 + 923 - 1) + 92@0200(9%3 - 1)} (31)
6(opt) ~4[(035 = 1)1+ Oy00(1 - R 5)}H ’

" _ F(y)@%%o{ﬂzé)ozoo (—015 + 012023) + 4 (015 — 912923)}
7(opt) —40, [(933 - 1){1 + ®2000(1 - miﬁ)}]

The simplified minimum MSE of F pr, () at the optimum
values of ms, my, and m; is

F ()’){1662000(1 - mizs) - 94@?)200 - 892@02006)2000(1 - mim)}

3 32
161+ @pp(1 - R2,0)] (32)

IVISEmin(IA:Pr1 (y)) =

where  R2,. = ((0%,0090020 + 010 @0200 = 2©1010®@1100 On similar lines, the second proposed family of esti-
®0110)/ (O2000 (Pp200@0020 — O110)))- mators for estimating F (y) is given by

It can be seen that F pr, () is more precise than F Reg ()

B )z[fw(y){ex (F(x>—ﬁ(x))+ex (P(x)—F(x))}m (F(x)—i:(x))mﬁ( |
pr, Y 2 P F(x)+ F(x) P F(x)+ F(x) s F(x) o

o 7-7 ex( a(F(x) - F(x)) )
| 77 P eF +F(x)+2b)

where myg, m,, and m,, are unknown constants and a(#0)  population parameters of I (X < x), such as p,,, 8, (coeffi-
and b are either two real numbers or functions of known  cient of kurtosis), and C,.
The estimator Fp, (y) can also be written as

(33)

. 1 3
Fp, (y) ={mgF(y) (1 +e;) —mge, — m10e4}<1 - zeez + geze§ +oe > (34)

Simplifying (34) and keeping terms only up to the
second power of e;s, we can write

. 1
(Fpr2 (y) - F(y)) =-F(y) + mgF(y) + mgF(y)e, — EOMSF()/)e2 — Mge, — M€,

3 1 1 1
+ gezmsF (y)el + 3 Omye’ — 3 OmgF (y)e e, + 5 Omy e, e,.
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The bias and MSE of Fy(y), to the first order of ap-
proximation, are

. 1 1
biaS(FPr2 (J’)) = ~0°F (y)O 00 — EHF(;V)@noo + Ems;e@ozoo +mgF (y)

1
2
3 1 1
+ §m90 F(y)®g00 — 7”99}7 (»)O1190 + 5”1109@0101)
T ~ 6 2 3 92 2 202 2 9
MSE(FPr2 ()’)) = —0F" (¥)O 1190 +§m9 F2 ()90 + my0"F~ ()@599 + mgOF ()09

= 2mgm o F (y)® 401 + }IQZFZ (¥)Og200 + 2mgF2 (905000 + mé@ozoo
— 2mg0F (3)@1100 + F* (9)@s000 + MF> () + my,0F (1)@,

+ 2mgmyOF (y)® 09 — 2mgimyF (y)® 199 + 21 4Oq,,

— 3my0F ()@ 100 — 2msF ()O1 100 — 210 F (1)@ 00

2.2 2
+moF” (1)@ 5000 + M7@pgoz + 2yt oOF (1)1

The optimum values of kg, ky, and k,,, determined by
minimizing (36), are

F(y) [03@)(3)/2%)0(9%4 - 1) + 6;{)%0(‘4 + 92@0200) (012 = 024014) + 26@(1)%0(934 - 1){‘1 + ®2ooo(1 - 9?.24)}]

Mg (opt) = 8@%0(954 - 1){—1 + ®2ooo(1 - ER%.M)}
m _ {462000(_2912914924 + 9%2 + 9%4 + 954 B 1) + 62@0200(954 B 1)}
o) ~4f(e2 = V{1 + @201 - R124 )} ’
m _ F()’)®¥)%)0{62®0200 (—014 + 012024) T4 (014 — 912924)}
10 (opt) _4@(1){)220 [(954 - 1){1 + @2000(1 - 91?,24)}]

The simplified minimum MSE of F pr, (¥) at the optimum
values of kg, kg, and ky is

Fz ()’){1662000(1 - min) - 94@3200 - 89@)02006)2000(1 - mf.zz;)}
16{1 + ®2000(1 - mizzx)}

>

l\/ISEmin(IE‘Pr2 ()/)) =

where  R7,, = (®%100®00022 + 030019000 2 ©100@no0 5. Efficiency Comparisons
©0101/03000 (@200 @002, = Of101))-

(36)

>

(37)

(38)

It can be seen that Fj, (y) is more precise than FReg (). In this section, the adapted and proposed estimators of F ( y)

In Table 2, we put some members of the Grover and Kaur are compared in terms of the minimum MSEs.

[20] and proposed families of estimators with selected

choices of a and b. (i) From (8) and (32),
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TaBLE 2: Some members of the adapted and proposed distribution
function estimators.

a b Fox () Fy(y) Fy(y)

1 c, F () Ep (7) Fp (9)
1 B 2 () Fpp () 7Y ()
B, C ES) () Fpy (9) 2 ()
c, By Y () Fyy () Fpr (7)
1 Pis 79 (y) i () B ()
¢, oo 0 o B9
P12 G, ?g& (y) Fg)l » ﬁgr)z ()
B, P £ () Fyy () Ey (7)
P B, 72 () Fyy (7) 2 ()
1 NF(x) 19y o () Fp ()

MSE o (Fpy, () < Var (F(y),  if Var (F())
- 1\/ISEmin(ﬁPr1 ()/)) >0.

(ii) From (11) and (32)

MSE i (Fpy, () < MSE(Fg (3)),  if MSE(Fp (1))

— MSE 0 (Fpy, () > 0.
(40)

(iii) From (13) and (32),

MSE i (Fpy, () <MSE(Fp(y)), if MSE(Fp ()

= MSE 0 (Fp,, () >0.
(41)

(iv) From (16) and (32),

l\/ISEmin(ﬁPr1 (y)) < Varmin(ﬁReg ()’))’ if Varmin

: (ﬁReg (y)) - 1v[SEmin(ﬁPrl (y)) >0.

(42)
(v) From (21) and (32),

l\/ISEmin(ﬁPr1 (J’)) < MSEmin(ﬁR,D (y))’ lf MSEmin

: (FR,D (J’)) - MSEmin(FPr] ()’)) > 0.

(43)
(vi) From (26) and (32),

MSE i (Fpy, (1)) <MSE,in(Fo i (30)),  if MSE,,

: (FG,K ()’)) - MSEmin(FPrl ()’)) >0.

(44)

9
(vii) From (8) and (38),
MSE, 0 (Fp,, (1)) < Var (F (), if Var (F s
45
- MSEmin (IA:‘Pr2 (J’)) > 0.
(viii) From (11) and (38),
MSE, i, (Fp,, () <MSE(Fg (), if MSE(Fr (»))
= MSE i (Fpy, () > 0.
(46)
(ix) From (13) and (38),
MSE in (Fpr, (7)) <MSE(Fp (), if MSE(Fp ()
- I\/ISEmin(ﬁPr2 ()’)) > 0.
(47)

(x) From (16) and (38),
l\/ISEmin(IA:Pr2 (J’)) < Varmin(ﬁReg ()’))’ if Varmin

: (ﬁReg (y)) - MSEmin(ﬁPrz (y)) >0.
(48)

(xi) From (21) and (38),
1\/ISEmin(IA:‘Pr2 (J’)) < MSEmin(ﬁR,D (y))’ lf MSEmin

: (PR,D (J’)) - MSEmin(ﬁPrz (,'V)) >0.
(49)

(xii) From (26) and (38),
1\/ISEmin(ﬁPr2 (J’)) < MSEmin(FG)K ()/))’ lf MSEmin

' (FG,K (y)) - NISEmin(pPr2 (y)) >0.
(50)

The proposed families of estimators are always more
precise than the adapted estimators as conditions (i)-(xii)
are always true.

6. Empirical Study

In this section, we conduct a numerical study to see the
performance of the existing and proposed distribution
function estimators. For this purpose, three populations are
considered. The summary statistics of these populations are
reported in Tables 3-5. The percentage relative efficiency
PRE of an estimator F, (y) with respect to Fy; (y) is where
i=R,P,Reg,R,D,...,Pr,.

Var(l:"H (y))

m x 100, (51)

PRE(F; (y), Fyy (7)) =

The PRE:s of distribution function estimators, computed
from three populations, are given in Tables 6 and 7.
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TABLE 3: Summary statistics for population I.

Parameter Value Parameter Value
N 30 Z 15.5000
n 8 S3 9.23238
A 0.09167 S, 8.79557
X 67.2667 Pia 0.98899
Parameter X, Y 0, (), 9, (x)
F(y) — 0.60630 0.16535
F(x) — 0.76923 0.20513
S, — 0.50855 0.50855
S, — 0.50855 0.50742
Pia — -0.73333 ~0.80178
Pis — 0.71975 0.71975
Prs — ~0.83726 ~0.84109
Pia — 0.73622 0.73622
Pos — ~0.86728 ~0.86535
Nonresponse

Parameter Value Parameter Value
N, 8 Ss2) 9.38749
w, 0.26667 S 2.44949
1 0.03333 Pra2) 0.91015
Parameter XY 0, (), O, (x)
Si) — 0.51755 0.51755
S, — 0.51755 0.51755
P2 — ~0.60000 ~0.60000
Py — 0.36387 0.36387
P — -0.81228 -0.81228
Pracy — 0.28172 0.28172
Pracy — ~0.84515 ~0.84515

TABLE 4: Summary statistics for population II.

TABLE 5: Summary statistics for population IIL

Parameter Value Parameter Value
N 50 7 25.5000 Parameter Value Parameter Value
n 15 S, 21.3175 N 50 Z 25.5000
A 0.04667 S, 14.5756 n 15 S 22.18052
X 78.2900 P 0.94677 A 0.04667 Sy 14.57598
Parameter XY ®, (), ©,(x) 75.8720 P 0.95742
F(y) — 0.50000 016535 Parameter XY 8,(»), ©,(x)
F(x) — 0.50000 0.20513 F(y) 0.50000 0.66000
S — 0.50508 0.47121 F(x) — 0.50000 0.58000
S, — 0.50508 0.49856 S — 0.50508 0.50508
P12 — —0.12000 —0.14941 S, — 0.50508 0.50508
Pz — 0.22925 0.28411 Pia — ~0.20000 -0.18306
P23 — -0.78936 -0.80938 P13 — 0.30094 0.34288
P1a — 0.18435 0.25257 P23 — -0.79517 -0.81844
Poa — ~0.86630 —0.85514 Pis — 0.25781 0.33356
Nonresponse P — -0.86628 —0.85512
Parameter Value Parameter Value Nonresponse
N, 12 S50 18.2593 Parameter Value Parameter Value
W, 0.24000 Sy 3.60555 N, 12 S302) 19.5392
A, 0.01600 P3a2) 0.97952 W, 0.24000 S402) 3.60555
Parameter X, Y 0, (y), ©,(x) ) 0.01600 P 0.98710
Si) — 0.51493 0.38924 Parameter X, Y 9,(y), 8, (x)
S22 — 0.52223 0.51493 S22 — 0.52223 0.52223
P12 — -0.16903 -0.37796 P12(2) — -0.50709 -0.44721
P132) — 0.25695 0.13750 P13(2) — 0.35848 0.18467
P23 2) — -0.81370 -0.84530 P23(2) — -0.82900 -0.82900
Pra) — 0.22034 0.12955 P14(2) — 0.36724 0.19433

Paa(2) — ~0.86905 ~0.85689 P2 — —0.86905 —0.86905
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TaBLe 6: PREs of distribution function estimators using populations I, II and III with situation-I and situation-II, when

{x.y

=0,(x),0,(»}.

Population I

Estimat - b _
Smaer Fex () Fp (9)  Fp ()

Population II Population III
Fox ()  Fp () Fp () Fex()  Fp (3)  Fp (9)

=)
=2
=)
=4)
=5
+(6)
=)
=(8)
=09

7(10)
Fex

=)

Fee(») B () Fpl(y) 20821 21136 216386
Foe») By (p)  Fpl(y) 20822 21139 21690
Faey)  Fo(y)  Fa(y 20821 21136 21686
Fau(y)  Fp(y)  Fp(y) 20824 21143 21693
Fe(y) B () Fp(y) 27064 57994 61090
S (y) 1‘:;?1 ) F;ﬁi (y) 28455 85514 92121
2 (y) p;?l ) ﬁgi (y) 20972 21462 22021
Fee() By (p)  Fpl(y) 27064 57994 61090
OV () ﬁ;fr)l () ﬁgi (y) 20985 57994 22051

108.45 113.58 109.94 115.27 118.13 115.63
108.46 113.58 109.95 115.28 118.13 115.64
108.45 113.58 109.94 115.27 118.13 115.63
108.46 113.59 109.95 115.28 118.14 115.65
111.76 121.61 117.66 121.61 134.60 131.64
111.73 121.54 117.60 121.50 134.27 131.32
108.27 113.18 109.56 115.09 117.74 115.26
111.76 121.61 117.66 121.61 134.60 131.64
108.27 113.18 109.56 115.09 117.75 115.26
108.26 113.17 109.55 115.07 117.70 115.22

(y) ’F"Sr(l’) (y) ﬁlglr:)) () 207.47 209.83 215.29
E(y) 100.00
Ex(») 29.47
Fp(y) 164.94
Freg () 194.40
Frp (y) 207.46

100 100
43.97 38.87
57.46 69.33
101.8 108.61
108.26 115.07

=1
=2
=0)
=)
=(5)
#(6)
=)
=(8)
=)

+(10)
Fex

R By EW(p) 17762 18580 18647
Q) FPG) BY() 17763 18582 18649
FO) By FR () 17762 18580 18647
FG) By By 17765 18584 18652
B BS(y)  EY () 20748 29508 29644
Faa(y)  Em(y)  Ew(y 21284 32794 32957

=)

()
Fex () FPr, () FPrz () 178.54 187.79 188.48

=(8)

Far(y)  Fm () Fa(y) 20748 29508 29644

79

79
Fex () FPrl () FPrz () 178.62 187.97 188.65

107.67 111.58 109.81 109.64 114.27 112.09
107.68 111.58 109.81 109.64 114.28 112.09
107.67 111.58 109.81 109.64 114.27 112.09
107.68 111.59 109.82 109.65 114.28 112.09
109.98 116.91 115.04 113.76 124.47 122.04
109.96 116.87 115.00 113.69 124.28 121.86
107.54 111.29 109.53 109.51 114.00 111.82
109.98 116.91 115.04 113.76 124.47 122.04
107.54 111.29 109.53 109.51 114.00 111.82
107.53 111.28 109.52 109.50 113.97 111.79

(» ) B 17717 18483 18550
F(y) 100.00
Fo(y) 35.82
Fp(y) 151.28
Freg () 164.11
Frp () 177.16

100.00 100.00
52.24 49.21
64.09 69.33
101.07 103.04
107.53 109.50

Population I (source: [21]).

Y: duration of sleep of persons with age more than 50
years

X: the age of persons in years. The proportion of the
non-response units in the given population is con-
sidered to be the last 25% units

Population II (source: [22]).

Y: the eggs produced in 1990 (millions)

X: the price per dozen (cents) in 1990. The proportion

of the non-response units in the given population is
considered to be the last 25% units

Population III (source: [22]).
Y: the eggs produced in 1990 (millions)

X: the price per dozen (cents) in 1991. The proportion
of the non-response units in the given population is
considered to be the last 25% units

From the numerical results, presented in Tables 6 and 7, it
is observed that the PREs of all families of estimators change
with the choices of a and b. It is further noted that the
proposed families of estimators are more precise than the
existing distribution function estimators of Hansen and
Hurwitz [1]; Cochran [17]; Murthy [18]; Rao [19]; and Grover
and Kaur [20], in terms of PRE under both situations.
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TaBLE 7: PREs of distribution function estimators using populations I, II, and III with situation-I and situation-II, when {x, y= X, 7,}.

. Population I
Estimators

Population II Population III

Fae ()  Fp (1) Fp, () Fex() Fp () Fp () Fox()  Fp(»)  Fp ()

Fae(y)  Fm(y)  Fu(p 23981 24075 24379 10715 11021 109.02 10941 11428 11410
F2 (y) ;:;}r) ) fzgi (y) 23973 24059 24363 10709 11008 10890 10935 11416  113.97
O (y) ;:;f) () p§> (y) 23983 24079 24384 10718 11026  109.08 10944 11434 11416
FS (y) pgfl () plg‘fz (y) 23968 24048 24352  107.07  110.02 10885 10933 11409 11391
FE)(y) p}g?l () ﬁ}(fz (y) 28713 43128  439.07 10976 11682 11555 11269 12296 12276
S (y) [:;f;)l () ﬁ}(fi (y) 27032 33877 34387 11019 11807 11677 11344 12530  125.09
Fe(y)  Ep(n)  Epl(y 24394 25001 25320 10696  109.80 10863 10922 11388 11370
Fae(y)  En(y)  Fy(y 29641 50256 51287 10955 11622 11496 11235 12192 12172
FO (y) p;fr) () Fz(’ii (y) 24279 24730 25044 10695  109.79 10861 10921 11386  113.67
FG5) BV(n BV 23892 23893 24195 10694 10977 10859 10920 11383 11365
E(y) 100.00 100.00 100.00

Fr(y) 30.55 31.00 31.42

Fp(y) 208.91 45.86 50.75

Freg () 225.86 104.18 106.19

Frp () 238.91 106.94 109.20

B (y) pg)l () 13;2 (y) 20121 20359 20362 10476  111.86  110.04 10597 11690  117.29
2 (y) pgr)l () Fﬁi (y) 20116 20350 20353 10472 11177 10995 10593 11680  117.19
Foe(y)  En () Ep(y 20122 20362 20365 10477 11190 11008 10599 11694  117.33
B (y) j:}gfl ) ﬁ;‘z (y) 20113 20343 20346 10470 11173 10991 10591 11676  117.15
FE (y) pg)l () ng (y) 22445 27400 27405 10651 11630 11438 10812 12264  123.06
FO () ;:;f) () I:ﬂ;f) (y) 21700 24645 24649 10679  117.08 11515 10858 12407 12449
D (y) 1‘:1()?1 () Ff(v?z (y) 20362 20884 20887 10462 11156  109.75 10584 11660  116.99
B (y) p}@l ) 15;52 (y) 22830 29050 29056 10638 11592 11401  107.90 12199  122.41
Fqe(y)  Fp() Fpl(y 20296 20735 20739 10461 11155 10974 10583 11658 11697
) B BWV(y) 20067 20249 20252 10461 11154 10972 10582 11656 11695
F(y) 100.00 100.00 100.00

Fr(y) 36.69 39.25 40.01

Fp(y) 183.15 51.37 55.81

Freg () 187.61 101.84 102.81

Fep () 200.66 104.61 105.82

7. Concluding Remarks

In this paper, we have proposed two new families of es-
timators for estimating the finite population distribution
function. The proposed estimators needed supplementary
data on the sample mean and ranks of the auxiliary
variable. The biases and mean squared error of the pro-
posed families of estimators were derived using the first
order of approximation. Based on theoretical as well as
numerical comparative studies, it is concluded that the
proposed families of estimators are more precise than
their existing counterparts under situation-I and situa-
tion-II. So, we recommend using the sample mean and
ranks of the auxiliary variable with the proposed families

of estimators for estimating the finite population distri-
bution function.
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