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In this paper, we proposed two new families of estimators using the supplementary information on the auxiliary variable and
exponential function for the population distribution functions in case of nonresponse under simple random sampling. )e
estimations are done in two nonresponse scenarios. )ese are nonresponse on study variable and nonresponse on both study and
auxiliary variables. As we have highlighted above that two new families of estimators are proposed, in the first family, themean was
used, while in the second family, ranks were used as auxiliary variables. Expression of biases and mean squared error of the
proposed and existing estimators are obtained up to the first order of approximation. )e performances of the proposed and
existing estimators are compared theoretically. On these theoretical comparisons, we demonstrate that the proposed families of
estimators are better in performance than the existing estimators available in the literature, under the obtained conditions.
Furthermore, these theoretical findings are braced numerically by an empirical study offering the proposed relative efficiencies of
the proposed families of estimators.

1. Introduction

It is a well-known phenomenon that the known auxiliary
information in the study of sample survey gives us an ef-
ficient estimate of population parameters, i.e., the pop-
ulation mean and population distribution function, under
some essential conditions. )is information (auxiliary) may
be used for drawing a random sample using SRSWR or
SRSWOR. Also, simple random sampling can be improved
using the following sampling methods.

Stratification, systematic, nonresponse sampling, and
probability proportional sampling schemes are used for
estimating the population parameter. Auxiliary information
gives us some sort of techniques by means of the ratio,
product, regression, and other methods. In a practical sit-
uation, one of the important issues in surveys is that it suffers

from nonresponse. Nonresponse is a common problem
which may crawl with sampling survey. Nonresponse has
many ways of occurrence. Examples are linguistic problems,
illness, nonresponse, nonacceptance, process of return ad-
dress misguided, and capture by another person. Research
has labelled that various types of nonresponse may have
different effects on estimators. A lot of work has been done
on the estimation of population mean under nonresponse to
control the nonresponse bias and to increase the efficiency of
the estimators by different authors. )e problem of non-
response in sample surveys is more common and more
prevalent in mail surveys than in special interview surveys.
Hansen and Hurwitz [1] assumed that a part of sample of
earlier nonrespondents to be recommunicated with a more
expensive system; they attempted the first effort by mail
questionnaire and performed the second attempt by a
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personal interview. However, Hansen and Hurwitz [1] have
not used any kind of supplementary information to increase
the efficiency of the estimator. For the first time, the author
of [2] used the auxiliary information for estimating the
population mean. Cochran [3] used the auxiliary informa-
tion for estimating the population mean under nonresponse.
)en, work on nonresponse extended by many authors (cf.,
[4–7]) recommends various types of estimators for esti-
mation of population mean and distribution function using
the secondary information under nonresponse. Okafor and
Lee [8] presented ratio and regression estimation with
partial sampling of the nonrespondents for estimating the
population mean. Furthermore, the authors of [9, 10]
proposed estimators for estimating population mean using
multiauxiliary information in different directions and Zhao
et al. [11] used the idea of robust estimation of the distri-
bution function and quantiles with nonignorance missing
data.

Also, for estimating population mean under the two-
phase sampling strategy in the presence of nonresponse, the
authors of [12–15] have made significant contributions.
Diana and Perri [16] suggested a class of estimators in two-
phase sampling with subsampling of nonrespondents in
estimating the finite population mean. In this paper, we
introduce the use of sample distribution functions of the
study variable and auxiliary variable along with the mean of
the auxiliary variable and also the ranks of the auxiliary
variable for estimating the population distribution function.

Extensive literature has been published on estimation of
population mean under nonresponse; however, no effort has
been dedicated to the development of efficient methods for
population cumulative distribution function. In survey
sampling, the statisticians are often interested in proportion
size of the study variable, i.e., proportion of units in pop-
ulation with values less than or equal to a specified value of y;
for instance, we may be interested to know the proportion of
the population in which 31% or more people are educated.

Motivated by F̂R,D(y), F̂S(y), and average of F̂BT,R(y)

and F̂BT,P(y), two new families of estimators are proposed
for estimating distribution function in the presence of
nonresponse. By numerical results, we will show that the
proposed family of estimators is more precise than the
existing estimators.

We planned the paper as follows: In Section 2, some
notations are introduced. In Section 3, the existing esti-
mators are reviewed briefly. Two new families of estimators
are introduced in Section 4, respectively. )e existing and
proposed estimators are compared (theoretically and nu-
merically) in Sections 5 and 6. In Section 7, the concluding
remarks of the paper are discussed.

2. Notations

Consider a finite population Ω � V1, V2, . . . , VN􏼈 􏼉 of N

distinct units, which is partitioned into respondents
Ω1 � V1, V2, . . . , VN1􏼈 􏼉 and nonrespondents Ω2 � V{

N1+1, VN1+2, . . . , VN} groups with sizes N1 and N2, re-
spectively, for estimating the CDF, where N � N1 + N2. A
sample of size n has been drawn from this population by

simple random sampling (SRSWOR), out of which n1
units respond and n2 � n − n1 do not respond. It is as-
sumed that the sample size n1 is drawn from the response
group of Ω1 and n2 is drawn from the nonresponse group
of Ω2. Moreover, a sample of size r � n2/k(k> 1) is drawn
by simple random sampling (SRSWOR) from n2, and this
time response is obtained from all r units. Let Y and X be
the study and auxiliary variables, respectively. Let Z be
used for the ranks of the X and I(Y≤y) and I(X≤ x) be
the indicator variables based on Y and X. Furthermore,
F(y) � 􏽐

N
i�1 I(Yi ≤y)/N and F̂(y) � 􏽐

n
i�1 I(Yi ≤y)/n and

F(x) � 􏽐
N
i�1 I(Xi ≤x)/N and F̂(x) � 􏽐

n
i�1 I(Xi ≤x)/n are

the population and sample distribution functions of Y

and X, respectively. Similarly, let �X � 􏽐
N
i�1 Xi/N and 􏽢�X �

􏽐
n
i�1 Xi/n and Z � 􏽐

N
i�1 Zi/N and 􏽢Z � 􏽐

n
i�1 Zi/n be the

population and sample means of X and
Z,respectively.Furthermore,F2(y) � 􏽐

N
i�N1+1 I(Yi ≤y)/N2

and F2(x) � 􏽐
N
i�N1+1 I(Xi ≤x)/N2 are the population

distribution functions of I(Y≤y) and I(X≤x) for the
nonresponse group and �X2 � 􏽐

N
i�N1+1 Xi/N2 and

Z2 � 􏽐
N
i�N1+1 Zi/N2 are the population means of X and Z

for the nonresponse group, respectively.
Here, (x � �X and Θ2(x)) and (y � Y and Θ2(y)), where

�X and Y are the population means of X(Y). Similarly,Θ2(x)

and Θ2(y) are the population second quartiles of X(Y),
respectively.

To obtain the bias and MSE of the proposed estimator,
we consider the following error terms. Let

e
∗
1 �

F̂
∗
H(y) − F(y)

F(y)
,

e
∗
2 �

F̂
∗
H(x) − F(x)

F(x)
,

e
∗
3 �

􏽢�X
∗
H − �X

�X
,

e
∗
4 �

􏽢Z
∗
H − Z

Z
,

e2 �
F̂H(x) − F(x)

F(x)
,

e3 �
􏽢�XH − �X

�X
,

e4 �
􏽢ZH − Z

Z
.

(1)

Here, F̂
∗
H(y), F̂

∗
H(x), and 􏽢�X

∗
and 􏽢Z

∗
are the notations

used for CDFs, mean, and mean of ranks when there are no
responses on both study and auxiliary variables. And,
F̂H(x), 􏽢�X, and 􏽢Z are the notations used for CDF, mean, and
mean of ranks when there are no responses on only auxiliary
variable, shown in Table 1.
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Let E(e ∗i ) � 0 for i∗ � 1, 2, 3, 4 and E(ei) � 0 for
i � 2, 3, 4, whereE(·) is themathematical expectation of (·). Let

Ψrstu � E e
r
1 e

s
2 e

t
3 e

u
4􏽨 􏽩,

ψrstu � E e
∗r
1 e
∗s
2 e
∗t
3 e
∗u
4􏽨 􏽩,

(2)

where r, s, t, u � 1, 2, 3, 4. Here,

E e
∗2
1􏼐 􏼑 � λC

2
1 + λ2C

2
1(2) � ψ2

2000,

E e
∗2
2􏼐 􏼑 � λC

2
2 + λ2C

2
2(2) � ψ2

0200,

E e
∗2
3􏼐 􏼑 � λC

2
3 + λ2C

2
3(2) � ψ2

0020,

E e
∗2
4􏼐 􏼑 � λC

2
4 + λ2C

2
4(2) � ψ2

0002,

E e
2
2􏼐 􏼑 � λC

2
2 � Ψ0200,

E e
2
3􏼐 􏼑 � λC

2
3 � Ψ0020,

E e
2
4􏼐 􏼑 � λC

2
4 � Ψ0002,

E e
∗
1 e
∗
2( 􏼁 � λρ12C1C2 + λ2ρ12(2)C1(2)C2(2) � ψ1100,

E e
∗
1 e
∗
3( 􏼁 � λρ13C1C3 + λ2ρ13(2)C1(2)C3(2) � ψ1010,

E e
∗
1 e
∗
4( 􏼁 � λρ14C1C4 + λ2ρ14(2)C1(2)C4(2) � ψ1001,

E e
∗
2 e
∗
3( 􏼁 � λρ23C2C3 + λ2ρ23(2)C2(2)C3(2) � ψ0110,

E e
∗
2 e
∗
4( 􏼁 � λρ24C2C4 + λ2ρ24(2)C2(2)C4(2) � ψ0101,

E e
∗
1 e2( 􏼁 � λρ12C1C2 � Ψ1100,

E e
∗
1 e3( 􏼁 � λρ13C1C3 � Ψ1010,

E e
∗
1 e4( 􏼁 � λρ14C1C4 � Ψ1001,

E e2e3( 􏼁 � λρ23C2C3 � Ψ0110,
E e2e4( 􏼁 � λρ24C2C4 � Ψ0101.

(3)

Here,

ϱ21.23 �
ψ2
1100ψ0020 + ψ2

1010ψ0200 − 2ψ1010ψ1100ψ0110

ψ2000 ψ0200ψ0020 − ψ2
0110􏼐 􏼑

⎛⎝ ⎞⎠.

(4)

where it is the coefficient of multiple determination of
I(Y≤ y) on I(X≤ x) and X with situation-I. Also,

ϱ21.23 �
Ψ21100Ψ0020 + Ψ21010Ψ0200 − 2Ψ1010Ψ1100Ψ0110

ψ2000 Ψ0200Ψ0020 − Ψ20110􏼐 􏼑
⎛⎝ ⎞⎠

(5)
is the coefficient of multiple determination of I(Y≤ y) on
I(X≤ x) and X with situation-II. And,

ϱ21.24 �
ψ2
1100ψ0002 + ψ2

1001ψ0200 − 2ψ1001ψ1100ψ0101

ψ2000 ψ0200ψ0002 − ψ2
0101􏼐 􏼑

⎛⎝ ⎞⎠ (6)

is the coefficient of multiple determination of I(Y≤ y) on
I(X≤ x) and Z with situation-I. Finally,

ϱ21.24 �
Ψ21100Ψ0002 + Ψ21001Ψ0200 − 2Ψ1001Ψ1100Ψ0101

ψ2000 Ψ0200Ψ0002 − Ψ20101􏼐 􏼑
⎛⎝ ⎞⎠

(7)

is the coefficient of multiple determination of I(Y≤ y) on
I(X≤ x) and Z with situation-II. Here, λ � (1/n1/N),
λ2 � W2(k − 1)/n, S21 � 􏽐

N
i�1 (I(Yi ≤y) − F(y))2/(N − 1),

S22 � 􏽐
N
i�1 (I(Xi ≤x) − F(x))2/(N − 1), S23 � 􏽐

N
i�1 (Xi − �X)2

/(N − 1), and S24 � 􏽐
N
i�1 (Zi − Z)2/(N − 1) are the pop-

ulation variances of I(Y≤y), I(X≤ x), X, and Z for the
response group, respectively.

Similarly, S21(2) � 􏽐
N
i�N1+1 (I(Yi ≤y) − F(y2))

2/(N2 −1),
S22(2) � 􏽐

N
i�N1+1 (I(Xi ≤x2) − F(x2))

2/(N2 − 1), S23(2) �

􏽐
N
i�N1+1 (Xi − X2)

2/(N2 − 1), and S24(2) � 􏽐
N
i�N1+1 (Zi− Z2)

2/
(N2 − 1) are the population variances of I(Y≤y), I(X≤x),
X, and Z for the nonresponse group, respectively.

C1 � S1/F(y), C2 � S2/F(x), C3 � S3/�X, and C4 � S4/Z
are the population coefficient of variations for the response
group, and C1(2) � S1(2)/F(y2), C2(2) � S2(2)/F(x2),
C3(2) � S3(2)/�X2, and C4(2) � S4(2)/Z2 are the population
coefficient of variations for the nonresponse group.

S12 � 􏽐
N
i�1 (I(Yi ≤y) − F(y))(I(Xi ≤x) − F(x))􏼈 􏼉/(N −

1), S13 � 􏽐
N
i�1 (I(Yi ≤y) − F(y))(Xi − �X)􏼈 􏼉/(N − 1), S23 �

􏽐
N
i�1 (I(Xi ≤x) − F(x))(Xi − �X)􏼈 􏼉/(N − 1), S14 � 􏽐

N
i�1 (I{

(Yi ≤y) − F(y))(Zi − Z)}/(N − 1), and S24 � 􏽐
N
i�1 (I{

(Xi ≤x) − F(x))(Zi − Z)}/(N − 1) are the population co-
variances for the response group.

S12(2) � 􏽐
N
i�N1+1 (I(Yi ≤y) − F(y2))(I(Xi ≤ x) − F􏼈

(x2))}/(N2 − 1), S13(2) � 􏽐
N
i�N1+1 (I(Yi ≤y) − F(y2))􏼈 (Xi−

X2)}/(N2 − 1), S23(2) � 􏽐
N
i�N1+1 (I(Xi ≤ x) − F(x2))􏼈 (Xi−

X2)}/(N2 − 1), S14(2) � 􏽐
N
i�N1+1 (I(Yi ≤y) − F(y2))􏼈 (Zi−

Z)}/(N2 − 1), and S24(2) � 􏽐
N
i�N1+1 (I(Xi ≤ x) − F􏼈 (x2))

(Zi − Z2)}/(N2 − 1) are the population covariances for the
nonresponse group.

Table 1: Estimators, variances, covariances, and correlation under
nonresponse situations.

Estimator
Situation � I II
􏽢F(y) � 􏽢F

∗
H (y) 􏽢F

∗
H (y)

􏽢F(x) � 􏽢F
∗
H (x) 􏽢FH(x)

􏽢X � 􏽢X
∗
H

􏽢XH

􏽢Z � 􏽢Z
∗
H

􏽢ZH

Variance/covariance
Θrstu � ψrstu Ψrstu
Θ2000 � ψ2000 Ψ2000
Θ0200 � ψ0200 Ψ0200
Θ0020 � ψ0020 Ψ0020
Θ0002 � ψ0002 Ψ0002
Θ1100 � ψ1100 Ψ1100
Θ1010 � ψ1010 Ψ1010
Θ1001 � ψ1001 Ψ1001
Θ0110 � ψ0110 Ψ0110
Θ0101 � ψ0101 Ψ0101

Coefficient of correlation
ϱ12 � ρ12(2) ρ12
ϱ13 � ρ13(2) ρ13
ϱ23 � ρ23(2) ρ23
ϱ14 � ρ14(2) ρ14
ϱ24 � ρ24(2) ρ24

Coefficient of multiple determination
R2

1.23 � Φ21.23 Φ21.23
R2

1.24 � Φ21.24 Φ21.24
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Similarly, ρ12 � S12/S1S2, ρ13 � S13/S1S3, ρ23 � S23/S2S3,
ρ14 � S14/S1S4, and ρ24 � S24/S2S4 are the population cor-
relation coefficients for the response group, respectively.

ρ12(2) � S12(2)/S1(2)S2(2), ρ13(2) � S13(2)/S1(2)S3(2), ρ23(2) �

S23(2)/S2(2)S3(2), ρ14(2) � S14(2)/S1(2)S4(2), and ρ24(2) � S24(2)/
S2(2)S4(2) are the population correlation coefficients for the
nonresponse group.

Let F(y) � W1F1(y) + W2F2(y), where Wj � Nj/N
and Fj(y) � 􏽐

Nj

i�1 I(Yi ≤y)/Nj for j � 1, 2. Also, F̂1(y) �

􏽐
n1
i�1 I(Yi ≤y)/n1 denote the sample distribution function of

n1 responding units out of n units and
F̂2r(y) � 􏽐

r
i�1 I(Yi ≤y)/r denote the sample distribution

function of r responding units out of nonresponse units.
)e existing Hansen and Hurwitz [1] unbiased estimator

of F(y) with its variance is

F̂H(y) � w1F̂1(y) + w2F̂2r(y),

Var F̂H(y)􏼐 􏼑 � λS
2
1 + λ2S

2
1(2).

(8)

Similarly, the unbiased estimators for F̂H(x), 􏽢�XH, and
􏽢ZH and their corresponding variances are

F̂H(x) � w1F̂1(x) + w2F̂2r(x),

􏽢�XH � w1
􏽢�X1 + w2

􏽢�X2r,

􏽢ZH � w1
􏽢Z1 + w2

􏽢Z2r,

Var F̂H(x)􏼐 􏼑λS
2
1 + λ2S

2
1(2),

Var 􏽢�XH􏼒 􏼓 � λS
2
2 + λ2S

2
2(2),

Var 􏽢ZH􏼒 􏼓 � λS
2
3 + λ2S

2
3(2), respectively.

(9)

In practice, we use three situations, occurring under
nonresponse, but here, we use two situations which mostly
occur, namely, nonresponse on both the study variable and
the auxiliary variable (say situation-I) and nonresponse just
on study variable only (say situation-II). For notational
convenience, we follow the notations given in Table 1.

3. Existing Estimators

In this section, some estimators of finite population mean
exist for estimating the finite CDF under nonresponse; the
biases and MSEs of these existing estimators are derived
under the first order of approximation.

(1) Cochran’s [17] existing ratio estimator of F(y) is

F̂R(y) � F̂(y)
F(x)

F̂(x)
􏼠 􏼡. (10)

)e bias and MSE of F̂R(y), to the first order of ap-
proximation, are

bias F̂R(y)􏼐 􏼑 � F(y) Θ0200 −Θ1100( 􏼁,

MSE F̂R(y)􏼐 􏼑 � F
2
(y) Θ2000 + Θ0200 − 2Θ1100( 􏼁.

(11)

(2) Murthy’s [18] existing product estimator of F(y) is

F̂P(y) � F̂(y)
F̂(x)

F(x)
􏼠 􏼡. (12)

)e bias and MSE of F̂P(y), to the first order of ap-
proximation, are

bias F̂P(y)􏼐 􏼑 � F(y)Θ1100,

MSE F̂P(y)􏼐 􏼑 � F
2
(y) Θ2000 + Θ0200 + 2Θ1100( 􏼁.

(13)

(3) )e existing regression estimator of F(y) is

F̂Reg(y) � F̂(y) + k(F(x) − F̂(x)), (14)

where k is an unknown constant. Here, F̂Reg(y) is an
unbiased estimator of F̂(y). )e minimum variance of
F̂Reg(y) at the optimum value k(opt) � (F(y)

Θ1100)/(F(x)Θ0200) is

Varmin F̂Reg(y)􏼐 􏼑 �
F
2
(y) Θ2000Θ0200 − Θ21100􏼐 􏼑

Θ0200
. (15)

Here, (15) may be written as

Varmin F̂Reg(y)􏼐 􏼑 � F
2
(y)Θ2000 1 − ϱ212􏼐 􏼑. (16)

(4) Rao’s [19] existing difference-type estimator of F(y)

is

F̂R,D(y) � k1F̂(y) + k2(F(x) − F̂(x)), (17)

where k1 and k2 are unknown constants. )e bias and
MSE of F̂R,D(y), to the first order of approximation, are

bias F̂R,D(y)􏼐 􏼑 � F(y) k1 − 1( 􏼁,

MSE F̂R,D(y)􏼐 􏼑 � F
2
(y) − 2k1F

2
(y) + k

2
1F

2
(y)

+ k
2
1F

2
(y)Θ2000 − 2k1k2F(y)F(x)Θ1100

+ k
2
2F

2
(x)Θ0200.

(18)

)e optimum values of k1 and k2, determined by
minimizing (18), are

k1(opt) �
Θ0200

Θ0200Θ2000 −Θ21100 + Θ0200􏼐 􏼑
,

k2(opt) �
F(y)Θ1100

F(x) Θ2000Θ0200 −Θ21100 + Θ0200􏼐 􏼑
.

(19)
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)e minimum MSE of F̂R,D(y) at the optimum values
of k1 and k2 is

MSEmin F̂R,D(y)􏼐 􏼑 �
F
2
(y) Θ2000Θ0200 − Θ21100􏼐 􏼑

Θ2000Θ0200 − Θ21100 + Θ0200􏼐 􏼑
.

(20)

Here, (20) may be written as

MSEmin F̂R,D(y)􏼐 􏼑 �
F
2
(y)Θ2000 1 − ϱ212􏼐 􏼑

1 + Θ2000 1 − ϱ212􏼐 􏼑
. (21)

(5) Grover and Kaur’s [20] existing generalized class of
ratio-type exponential estimator of F(y) is

F̂G,K(y) � k3F̂(y) + k4(F(x) − F̂(x))􏽮 􏽯

· exp
a(F(x) − F̂(x))

a(F(x) + F̂(x)) + 2b
􏼠 􏼡,

(22)

where k3 and k4 are unknown constants. )e bias and
MSE of F̂G,K(y), to the first order of approximation, are

bias F̂G,K(y)􏼐 􏼑 � F(y) k3 − 1( 􏼁 +
3
8
θ2k3F(y) +

1
2
θk4F(x)Θ0200 −

1
2
θF(y)Θ1100,

MSE F̂G,K(y)􏼐 􏼑 � k
2
4F

2
(x)Θ0200 + k

2
3F

2
(y)Θ2000 + 2θk3k4F(y)F(x)Θ0200

− 2k3k4F(y)F(x)Θ1100 + F
2
(y) − 2k3F

2
(y) + θk

2
3F

2
(y)

+ k3F
2
(y)Θ1100 − θk4F(y)F(x)Θ0200 − 2θk

2
3F

2
(y)Θ1100

−
3
4
θ2k3F

2
(y)Θ0200 + θ2k2

3F
2
(y)Θ0200.

(23)

)e optimum values of k3 and k4, determined by
minimizing (15), are

k3(opt) �
Θ0200 θ2Θ0200 − 8􏼐 􏼑

8 −Θ2000Θ0200 + Θ21100 − Θ0200􏼐 􏼑
,

k4(opt) �
F(y) θ3Θ20200 − θ2Θ0200Θ1100 + 4θΘ2000Θ0200 − 4θΘ21100 − 4θΘ0200 + 8Θ1100􏼐 􏼑

8F(x) Θ2000Θ0200 − Θ21100 + Θ0200􏼐 􏼑
.

(24)

)e simplified minimum MSE of F̂G,K(y) at the opti-
mum values of k3 and k4 is

MSEmin F̂G,K(y)􏼐 􏼑 �
F
2
(y)

64
64 − 16θ2Θ0200 −

Θ0200 −8 + θ2Θ0200􏼐 􏼑
2

Θ0200 1 +Θ2000( 􏼁 − Q
2
1100

⎛⎝ ⎞⎠. (25)

Here, (25) may be written as

MSEmin F̂G,K(y)􏼐 􏼑 � Varmin F̂Reg(y)􏼐 􏼑 −
F
2
(y) θ2Θ20200 − 8Θ21100 + 8Θ0200Θ2000􏼐 􏼑

2

64Θ20200 1 + Θ2000 1 − ϱ212􏼐 􏼑􏽮 􏽯
, (26)

which shows that F̂G,K(y) is more precise than F̂4(y).
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4. Proposed Estimators

On the lines of F̂R,D(y), F̂S(y), and average of F̂BT,R(y) and
F̂BT,P(y), the first proposed family of estimators for esti-
mating F(y) is given by

F̂Pr1
(y) � ⎡⎣

F̂(y)

2
exp

F(x) − F̂(x)

F̂(x) + F(x)
􏼠 􏼡 + exp

F̂(x) − F(x)

F̂(x) + F(x)
􏼠 􏼡􏼨 􏼩 + m5

F(x) − F̂(x)

F(x)
􏼠 􏼡 + m6F̂(y)

+ m7
⎛⎝

�X − �̂X

�X
⎞⎠⎤⎦exp

a(F(x) − F̂(x))

a(F(x) + F̂(x)) + 2b
􏼠 􏼡,

(27)

where m5, m6, and m7 are unknown constants and a(≠0)

and b are either two real numbers or functions of known
population parameters of I(X≤x), such as ρ12, β2 (coeffi-
cient of kurtosis), and C2.

)e estimator F̂Pr1
(y) can also be written as

F̂Pr1
(y) � F(y) 1 + ξ0( 􏼁 1 + m6( 􏼁 − m5ξ1 − m7ξ2 +

1
8
θ2F(y)ξ21􏼚 􏼛 1 −

1
2
θξ1 +

3
8
θ2ξ21 + · · ·􏼒 􏼓. (28)

Simplifying (28) and keeping terms only up to the
second power of ξs, we can write

F̂Pr1
(y) − F(y)􏼐 􏼑 � m6F(y) + F(y)ξ0 + m6F(y)ξ0 −

1
2
θF(y)ξ1 +

1
2
θ2F(y)ξ21

−
1
2
θF(y)ξ0ξ1 − m5ξ1 +

1
2
θm5ξ

2
1 −

1
2
θm6F(y)ξ1

+
3
8
θ2m6F(y)ξ21 −

1
2
θm6F(y)ξ0ξ1 − m7ξ2 +

1
2
θm7ξ1ξ2.

(29)

)e bias and MSE of F̂Pr1
(y), to the first order of ap-

proximation, respectively, are

bias F̂Pr1
(y)􏼐 􏼑 �

1
2
θ2F(y)Θ0200 −

1
2
θF(y)Θ1100 +

1
2
m5θΘ0200 + m6F(y)

+
3
8
m6θ

2
F(y)Θ0200 −

1
2
m6θF(y)Θ1100 +

1
2
m7θΘ0110,

MSE F̂Pr1
(y)􏼐 􏼑 � −θF

2
(y)Θ1100 +

3
2
m6θ

2
F
2
(y)Θ0200 + m

2
6θ

2
F
2
(y)Θ0200 + m5θF(y)Θ0200

− 2m6m7F(y)Θ1010 +
1
4
θ2F2

(y)Θ0200 + 2m6F
2
(y)Θ2000 + m

2
5Θ0200

− 2m
2
6θF

2
(y)Θ1100 + F

2
(y)Θ2000 + m

2
6F

2
(y) + m7θF(y)Θ0110

+ 2m5m6θF(y)Θ0200 − 2m5m6F(y)Θ1100 + 2m5m7Θ0110

− 3m6θF
2
(y)Θ1100 − 2m5F(y)Θ1100 − 2m7F(y)Θ1010

+ m
2
6F

2
(y)Θ2000 + m

2
7Θ0020 + 2m6m7θF(y)Θ0110.

(30)
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)e optimum values of m5, m6, and m7, determined by
minimizing (29), are

m5(opt) �
F(y) θ3Θ3/20200 ϱ

2
23 − 1􏼐 􏼑 +Θ1/22000 −4 + θ2Θ0200􏼐 􏼑 ϱ12 − ϱ23ϱ13( 􏼁􏽨 􏽩 + 2θΘ1/20200 ϱ

2
23 − 1􏼐 􏼑 −1 + Θ2000 1 − ϱ21.23􏼐 􏼑􏽮 􏽯

8Θ1/20200 ϱ
2
23 − 1􏼐 􏼑 −1 +Θ2000 1 − R

2
1.23􏼐 􏼑􏽮 􏽯

,

m6(opt) �
4Θ2000 −2ϱ12ϱ13ϱ23 + ϱ212 + ϱ213 + ϱ223 − 1􏼐 􏼑 + θ2Θ0200 ϱ

2
23 − 1􏼐 􏼑􏽮 􏽯

−4 ϱ223 − 1􏼐 􏼑 1 + Θ2000 1 − R
2
1.23􏼐 􏼑􏽮 􏽯􏽨 􏽩

,

m7(opt) �
F(y)Θ1/22000 θ2Θ0200 −ϱ13 + ϱ12ϱ23( 􏼁 + 4 ϱ13 − ϱ12ϱ23( 􏼁􏽮 􏽯

−4Θ1/20020 ϱ
2
23 − 1􏼐 􏼑 1 + Θ2000 1 − R

2
1.23􏼐 􏼑􏽮 􏽯􏽨 􏽩

.

(31)

)e simplifiedminimumMSE of F̂Pr1
(y) at the optimum

values of m5, m6, and m7 is

MSEmin F̂Pr1
(y)􏼐 􏼑 �

F
2
(y) 16Θ2000 1 − R

2
1.23􏼐 􏼑 − θ4Θ20200 − 8θ2Θ0200Θ2000 1 − R

2
1.23􏼐 􏼑􏽮 􏽯

16 1 + Θ2000 1 − R
2
1.23􏼐 􏼑􏽮 􏽯

, (32)

where R2
1.23 � ((Θ21100Θ0020 + Θ21010 Θ0200 − 2Θ1010Θ1100

Θ0110)/(Θ2000(Θ0200Θ0020 − Θ20110))).
It can be seen that F̂Pr1

(y) is more precise than F̂Reg(y).

On similar lines, the second proposed family of esti-
mators for estimating F(y) is given by

F̂Pr2
(y) �

F̂(y)

2
exp

F(x) − F̂(x)

F̂(x) + F(x)
􏼠 􏼡 + exp

F̂(x) − F(x)

F̂(x) + F(x)
􏼠 􏼡􏼨 􏼩 + m8

F(x) − F̂(x)

F(x)
􏼠 􏼡 + m9F̂(y)􏼢

+ m10
Z − 􏽢Z

Z
⎛⎝ ⎞⎠⎤⎥⎥⎦exp

a(F(x) − F̂(x))

a(F(x) + F̂(x)) + 2b
􏼠 􏼡,

(33)

where m8, m9, and m10 are unknown constants and a(≠0)

and b are either two real numbers or functions of known
population parameters of I(X≤x), such as ρ12, β2 (coeffi-
cient of kurtosis), and C2.

)e estimator F̂Pr2
(y) can also be written as

F̂Pr2
(y) � m8F(y) 1 + e1( 􏼁 − m9e2 − m10e4􏼈 􏼉 1 −

1
2
θe2 +

3
8
θ2e22 + · · ·􏼒 􏼓. (34)

Simplifying (34) and keeping terms only up to the
second power of eis, we can write

F̂Pr2
(y) − F(y)􏼐 􏼑 � −F(y) + m8F(y) + m8F(y)e1 −

1
2
θm8F(y)e2 − m9e2 − m10e4

+
3
8
θ2m8F(y)e

2
1 +

1
2
θm9e

2
1 −

1
2
θm8F(y)e1e2 +

1
2
θm10e2e4.

(35)
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)e bias and MSE of F̂9(y), to the first order of ap-
proximation, are

bias F̂Pr2
(y)􏼐 􏼑 �

1
2
θ2F(y)Θ0200 −

1
2
θF(y)Θ1100 +

1
2
m8θΘ0200 + m9F(y)

+
3
8
m9θ

2
F(y)Θ0200 −

1
2
m9θF(y)Θ1100 +

1
2
m10θΘ0101,

MSE F̂Pr2
(y)􏼐 􏼑 � −θF

2
(y)Θ1100 +

3
2
m9θ

2
F
2
(y)Θ0200 + m

2
9θ

2
F
2
(y)Θ0200 + m8θF(y)Θ0200

− 2m9m10F(y)Θ1001 +
1
4
θ2F2

(y)Θ0200 + 2m9F
2
(y)Θ2000 + m

2
8Θ0200

− 2m
2
9θF

2
(y)Θ1100 + F

2
(y)Θ2000 + m

2
9F

2
(y) + m10θF(y)Θ0101

+ 2m8m9θF(y)Θ0200 − 2m8m9F(y)Θ1100 + 2m8m10Θ0101

− 3m9θF
2
(y)Θ1100 − 2m8F(y)Θ1100 − 2m10F(y)Θ1001

+ m
2
9F

2
(y)Θ2000 + m

2
10Θ0002 + 2m9m10θF(y)Θ0101.

(36)

)e optimum values of k8, k9, and k10, determined by
minimizing (36), are

m8(opt) �
F(y) θ3Θ3/20200 ϱ

2
24 − 1􏼐 􏼑 + Θ1/22000 −4 + θ2Θ0200􏼐 􏼑 ϱ12 − ϱ24ϱ14( 􏼁 + 2θΘ1/20200 ϱ

2
24 − 1􏼐 􏼑 −1 + Θ2000 1 − ϱ21.24􏼐 􏼑􏽮 􏽯􏽨 􏽩

8Θ1/20200 ϱ
2
24 − 1􏼐 􏼑 −1 + Θ2000 1 − R

2
1.24􏼐 􏼑􏽮 􏽯

,

m9(opt) �
4Θ2000 −2ϱ12ϱ14ϱ24 + ϱ212 + ϱ214 + ϱ224 − 1􏼐 􏼑 + θ2Θ0200 ϱ

2
24 − 1􏼐 􏼑􏽮 􏽯

−4 ϱ224 − 1􏼐 􏼑 1 + Θ2000 1 − R
2
1.24􏼐 􏼑􏽮 􏽯􏽨 􏽩

,

m10(opt) �
F(y)Θ1/22000 θ2Θ0200 −ϱ14 + ϱ12ϱ24( 􏼁 + 4 ϱ14 − ϱ12ϱ24( 􏼁􏽮 􏽯

−4Θ1/20020 ϱ
2
24 − 1􏼐 􏼑 1 + Θ2000 1 − R

2
1.24􏼐 􏼑􏽮 􏽯􏽨 􏽩

.

(37)

)e simplifiedminimumMSE of F̂Pr2
(y) at the optimum

values of k8, k9, and k10 is

MSEmin F̂Pr2
(y)􏼐 􏼑 �

F
2
(y) 16Θ2000 1 − R

2
1.24􏼐 􏼑 − θ4Θ20200 − 8θΘ0200Θ2000 1 − R

2
1.24􏼐 􏼑􏽮 􏽯

16 1 + Θ2000 1 − R
2
1.24􏼐 􏼑􏽮 􏽯

, (38)

where R2
1.24 � (Θ21100Θ0002 +Θ21001Θ0200 − 2 Θ1001Θ1100

Θ0101/Θ2000(Θ0200Θ0002 − Θ20101)).
It can be seen that F̂Pr2

(y) is more precise than F̂Reg(y).
In Table 2, we put somemembers of the Grover and Kaur

[20] and proposed families of estimators with selected
choices of a and b.

5. Efficiency Comparisons

In this section, the adapted and proposed estimators of F(y)

are compared in terms of the minimum MSEs.

(i) From (8) and (32),
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MSEmin F̂Pr1
(y)􏼐 􏼑<Var(F̂(y)), if Var(F̂(y))

− MSEmin F̂Pr1
(y)􏼐 􏼑> 0.

(39)

(ii) From (11) and (32)

MSEmin F̂Pr1
(y)􏼐 􏼑<MSE F̂R(y)􏼐 􏼑, if MSE F̂R(y)􏼐 􏼑

− MSEmin F̂Pr1
(y)􏼐 􏼑> 0.

(40)

(iii) From (13) and (32),

MSEmin F̂Pr1
(y)􏼐 􏼑<MSE F̂P(y)􏼐 􏼑, if MSE F̂P(y)􏼐 􏼑

− MSEmin F̂Pr1
(y)􏼐 􏼑> 0.

(41)

(iv) From (16) and (32),

MSEmin F̂Pr1
(y)􏼐 􏼑<Varmin F̂Reg(y)􏼐 􏼑, if Varmin

· F̂Reg(y)􏼐 􏼑 − MSEmin F̂Pr1
(y)􏼐 􏼑> 0.

(42)

(v) From (21) and (32),

MSEmin F̂Pr1
(y)􏼐 􏼑<MSEmin F̂R,D(y)􏼐 􏼑, if MSEmin

· F̂R,D(y)􏼐 􏼑 − MSEmin F̂Pr1
(y)􏼐 􏼑> 0.

(43)

(vi) From (26) and (32),

MSEmin F̂Pr1
(y)􏼐 􏼑<MSEmin F̂G,K(y)􏼐 􏼑, if MSEmin

· F̂G,K(y)􏼐 􏼑 − MSEmin F̂Pr1
(y)􏼐 􏼑> 0.

(44)

(vii) From (8) and (38),

MSEmin F̂Pr2
(y)􏼐 􏼑<Var(F̂(y)), if Var(F̂

− MSEmin F̂Pr2
(y)􏼐 􏼑> 0.

(45)

(viii) From (11) and (38),

MSEmin F̂Pr2
(y)􏼐 􏼑<MSE F̂R(y)􏼐 􏼑, if MSE F̂R(y)􏼐 􏼑

− MSEmin F̂Pr2
(y)􏼐 􏼑> 0.

(46)

(ix) From (13) and (38),

MSEmin F̂Pr2
(y)􏼐 􏼑<MSE F̂P(y)􏼐 􏼑, if MSE F̂P(y)􏼐 􏼑

− MSEmin F̂Pr2
(y)􏼐 􏼑> 0.

(47)

(x) From (16) and (38),

MSEmin F̂Pr2
(y)􏼐 􏼑<Varmin F̂Reg(y)􏼐 􏼑, if Varmin

· F̂Reg(y)􏼐 􏼑 − MSEmin F̂Pr2
(y)􏼐 􏼑> 0.

(48)

(xi) From (21) and (38),

MSEmin F̂Pr2
(y)􏼐 􏼑<MSEmin F̂R,D(y)􏼐 􏼑, if MSEmin

· F̂R,D(y)􏼐 􏼑 − MSEmin F̂Pr2
(y)􏼐 􏼑> 0.

(49)

(xii) From (26) and (38),

MSEmin F̂Pr2
(y)􏼐 􏼑<MSEmin F̂G,K(y)􏼐 􏼑, if MSEmin

· F̂G,K(y)􏼐 􏼑 − MSEmin F̂Pr2
(y)􏼐 􏼑> 0.

(50)

)e proposed families of estimators are always more
precise than the adapted estimators as conditions (i)–(xii)
are always true.

6. Empirical Study

In this section, we conduct a numerical study to see the
performance of the existing and proposed distribution
function estimators. For this purpose, three populations are
considered. )e summary statistics of these populations are
reported in Tables 3–5. )e percentage relative efficiency
PRE of an estimator F̂i(y) with respect to F̂H(y) is where
i � R, P,Reg, R, D, . . . , Pr2.

PRE F̂i(y), F̂H(y)􏼐 􏼑 �
Var F̂H(y)􏼐 􏼑

MSEmin F̂i(y)􏼐 􏼑
× 100, (51)

)e PREs of distribution function estimators, computed
from three populations, are given in Tables 6 and 7.

Table 2: Some members of the adapted and proposed distribution
function estimators.

a b 􏽢FG,K(y) 􏽢F8(y) 􏽢F9(y)

1 C2 􏽢F
(1)

GK(y) 􏽢F
(1)

Pr1
(y) 􏽢F

(1)

Pr2
(y)

1 β2 􏽢F
(2)

GK(y) 􏽢F
(2)

Pr1
(y) 􏽢F

(2)

Pr2
(y)

β2 C2 􏽢F
(3)

GK(y) 􏽢F
(3)

Pr1
(y) 􏽢F

(3)

Pr2
(y)

C2 β2 􏽢F
(4)

GK(y) 􏽢F
(4)

Pr1
(y) 􏽢F

(4)

Pr2
(y)

1 ρ12 􏽢F
(5)

GK(y) 􏽢F
(5)

Pr1
(y) 􏽢F

(5)

Pr2
(y)

C2 ρ12 􏽢F
(6)

GK(y) 􏽢F
(6)

Pr1
(y) 􏽢F

(6)

Pr2
(y)

ρ12 C2 􏽢F
(7)

GK(y) 􏽢F
(7)

Pr1
(y) 􏽢F

(7)

Pr2
(y)

β2 ρ12 􏽢F
(8)

GK(y) 􏽢F
(8)

Pr1
(y) 􏽢F

(8)

Pr2
(y)

ρ12 β2 􏽢F
(9)

GK(y) 􏽢F
(9)

Pr1
(y) 􏽢F

(9)

Pr2
(y)

1 NF(x) 􏽢F
(10)

GK (y) 􏽢F
(10)

Pr1
(y) 􏽢F

(10)

Pr2
(y)
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Table 3: Summary statistics for population I.

Parameter Value Parameter Value
N 30 Z 15.5000
n 8 S3 9.23238
λ 0.09167 S4 8.79557
X 67.2667 ρ34 0.98899
Parameter X, Y Θ2(y), Θ2(x)

F(y) — 0.60630 0.16535
F(x) — 0.76923 0.20513
S1 — 0.50855 0.50855
S2 — 0.50855 0.50742
ρ12 — −0.73333 −0.80178
ρ13 — 0.71975 0.71975
ρ23 — −0.83726 −0.84109
ρ14 — 0.73622 0.73622
ρ24 — −0.86728 −0.86535

Nonresponse
Parameter Value Parameter Value
N2 8 S3(2) 9.38749
W2 0.26667 S4(2) 2.44949
λ2 0.03333 ρ34(2) 0.91015
Parameter X, Y Θ2(y), Θ2(x)

S1(2) — 0.51755 0.51755
S2(2) — 0.51755 0.51755
ρ12(2) — −0.60000 −0.60000
ρ13(2) — 0.36387 0.36387
ρ23(2) — −0.81228 −0.81228
ρ14(2) — 0.28172 0.28172
ρ24(2) — −0.84515 −0.84515

Table 4: Summary statistics for population II.

Parameter Value Parameter Value
N 50 Z 25.5000
n 15 S3 21.3175
λ 0.04667 S4 14.5756
X 78.2900 ρ34 0.94677
Parameter X, Y Θ2(y), Θ2(x)

F(y) — 0.50000 0.16535
F(x) — 0.50000 0.20513
S1 — 0.50508 0.47121
S2 — 0.50508 0.49856
ρ12 — −0.12000 −0.14941
ρ13 — 0.22925 0.28411
ρ23 — −0.78936 −0.80938
ρ14 — 0.18435 0.25257
ρ24 — −0.86630 −0.85514

Nonresponse
Parameter Value Parameter Value
N2 12 S3(2) 18.2593
W2 0.24000 S4(2) 3.60555
λ2 0.01600 ρ34(2) 0.97952
Parameter X, Y Θ2(y), Θ2(x)

S1(2) — 0.51493 0.38924
S2(2) — 0.52223 0.51493
ρ12(2) — −0.16903 −0.37796
ρ13(2) — 0.25695 0.13750
ρ23(2) — −0.81370 −0.84530
ρ14(2) — 0.22034 0.12955
ρ24(2) — −0.86905 −0.85689

Table 5: Summary statistics for population III.

Parameter Value Parameter Value
N 50 Z 25.5000
n 15 S3 22.18052
λ 0.04667 S4 14.57598
X 75.8720 ρ34 0.95742
Parameter X, Y Θ2(y), Θ2(x)

F(y) 0.50000 0.66000
F(x) — 0.50000 0.58000
S1 — 0.50508 0.50508
S2 — 0.50508 0.50508
ρ12 — −0.20000 −0.18306
ρ13 — 0.30094 0.34288
ρ23 — −0.79517 −0.81844
ρ14 — 0.25781 0.33356
ρ24 — −0.86628 −0.85512

Nonresponse
Parameter Value Parameter Value
N2 12 S3(2) 19.5392
W2 0.24000 S4(2) 3.60555
λ2 0.01600 ρ34(2) 0.98710
Parameter X, Y Θ2(y), Θ2(x)

S2(2) — 0.52223 0.52223
ρ12(2) — −0.50709 −0.44721
ρ13(2) — 0.35848 0.18467
ρ23(2) — −0.82900 −0.82900
ρ14(2) — 0.36724 0.19433
ρ24(2) — −0.86905 −0.86905
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Population I (source: [21]).
Y: duration of sleep of persons with age more than 50
years
X: the age of persons in years. )e proportion of the
non-response units in the given population is con-
sidered to be the last 25% units
Population II (source: [22]).
Y: the eggs produced in 1990 (millions)
X: the price per dozen (cents) in 1990. )e proportion
of the non-response units in the given population is
considered to be the last 25% units

Population III (source: [22]).
Y: the eggs produced in 1990 (millions)
X: the price per dozen (cents) in 1991. )e proportion
of the non-response units in the given population is
considered to be the last 25% units

From the numerical results, presented in Tables 6 and 7, it
is observed that the PREs of all families of estimators change
with the choices of a and b. It is further noted that the
proposed families of estimators are more precise than the
existing distribution function estimators of Hansen and
Hurwitz [1]; Cochran [17]; Murthy [18]; Rao [19]; and Grover
and Kaur [20], in terms of PRE under both situations.

Table 6: PREs of distribution function estimators using populations I, II and III with situation-I and situation-II, when
x, y � Θ2(x),Θ2(y)􏼈 􏼉.

Estimators
Population I Population II Population III

􏽢FGK(y) 􏽢FPr1
(y) 􏽢FPr2

(y) 􏽢FGK(y) 􏽢FPr1
(y) 􏽢FPr2

(y) 􏽢FGK(y) 􏽢FPr1
(y) 􏽢FPr2

(y)

􏽢F
(1)

GK(y) 􏽢F
(1)

Pr1
(y) 􏽢F

(1)

Pr2
(y) 208.21 211.36 216.86 108.45 113.58 109.94 115.27 118.13 115.63

􏽢F
(2)

GK(y) 􏽢F
(2)

Pr1
(y) 􏽢F

(2)

Pr2
(y) 208.22 211.39 216.90 108.46 113.58 109.95 115.28 118.13 115.64

􏽢F
(3)

GK(y) 􏽢F
(3)

Pr1
(y) 􏽢F

(3)

Pr2
(y) 208.21 211.36 216.86 108.45 113.58 109.94 115.27 118.13 115.63

􏽢F
(4)

GK(y) 􏽢F
(4)

Pr1
(y) 􏽢F

(4)

Pr2
(y) 208.24 211.43 216.93 108.46 113.59 109.95 115.28 118.14 115.65

􏽢F
(5)

GK(y) 􏽢F
(5)

Pr1
(y) 􏽢F

(5)

Pr2
(y) 270.64 579.94 610.90 111.76 121.61 117.66 121.61 134.60 131.64

􏽢F
(6)

GK(y) 􏽢F
(6)

Pr1
(y) 􏽢F

(6)

Pr2
(y) 284.55 855.14 921.21 111.73 121.54 117.60 121.50 134.27 131.32

􏽢F
(7)

GK(y) 􏽢F
(7)

Pr1
(y) 􏽢F

(7)

Pr2
(y) 209.72 214.62 220.21 108.27 113.18 109.56 115.09 117.74 115.26

􏽢F
(8)

GK(y) 􏽢F
(8)

Pr1
(y) 􏽢F

(8)

Pr2
(y) 270.64 579.94 610.90 111.76 121.61 117.66 121.61 134.60 131.64

􏽢F
(9)

GK(y) 􏽢F
(9)

Pr1
(y) 􏽢F

(9)

Pr2
(y) 209.85 579.94 220.51 108.27 113.18 109.56 115.09 117.75 115.26

􏽢F
(10)

GK (y) 􏽢F
(10)

Pr1
(y) 􏽢F

(10)

Pr2
(y) 207.47 209.83 215.29 108.26 113.17 109.55 115.07 117.70 115.22

􏽢F(y) 100.00 100 100
􏽢FR(y) 29.47 43.97 38.87
􏽢FP(y) 164.94 57.46 69.33

􏽢FReg(y) 194.40 101.8 108.61
􏽢FR,D(y) 207.46 108.26 115.07

􏽢F
(1)

GK(y) 􏽢F
(1)

Pr1
(y) 􏽢F

(1)

Pr2
(y) 177.62 185.80 186.47 107.67 111.58 109.81 109.64 114.27 112.09

􏽢F
(2)

GK(y) 􏽢F
(2)

Pr1
(y) 􏽢F

(2)

Pr2
(y) 177.63 185.82 186.49 107.68 111.58 109.81 109.64 114.28 112.09

􏽢F
(3)

GK(y) 􏽢F
(3)

Pr1
(y) 􏽢F

(3)

Pr2
(y) 177.62 185.80 186.47 107.67 111.58 109.81 109.64 114.27 112.09

􏽢F
(4)

GK(y) 􏽢F
(4)

Pr1
(y) 􏽢F

(4)

Pr2
(y) 177.65 185.84 186.52 107.68 111.59 109.82 109.65 114.28 112.09

􏽢F
(5)

GK(y) 􏽢F
(5)

Pr1
(y) 􏽢F

(5)

Pr2
(y) 207.48 295.08 296.44 109.98 116.91 115.04 113.76 124.47 122.04

􏽢F
(6)

GK(y) 􏽢F
(6)

Pr1
(y) 􏽢F

(6)

Pr2
(y) 212.84 327.94 329.57 109.96 116.87 115.00 113.69 124.28 121.86

􏽢F
(7)

GK(y) 􏽢F
(7)

Pr1
(y) 􏽢F

(7)

Pr2
(y) 178.54 187.79 188.48 107.54 111.29 109.53 109.51 114.00 111.82

􏽢F
(8)

GK(y) 􏽢F
(8)

Pr1
(y) 􏽢F

(8)

Pr2
(y) 207.48 295.08 296.44 109.98 116.91 115.04 113.76 124.47 122.04

􏽢F
(9)

GK(y) 􏽢F
(9)

Pr1
(y) 􏽢F

(9)

Pr2
(y) 178.62 187.97 188.65 107.54 111.29 109.53 109.51 114.00 111.82

􏽢F
(10)

GK (y) 􏽢F
(10)

Pr1
(y) 􏽢F

(10)

Pr2
(y) 177.17 184.83 185.50 107.53 111.28 109.52 109.50 113.97 111.79

􏽢F(y) 100.00 100.00 100.00
􏽢FR(y) 35.82 52.24 49.21
􏽢FP(y) 151.28 64.09 69.33

􏽢FReg(y) 164.11 101.07 103.04
􏽢FR,D(y) 177.16 107.53 109.50
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7. Concluding Remarks

In this paper, we have proposed two new families of es-
timators for estimating the finite population distribution
function. )e proposed estimators needed supplementary
data on the sample mean and ranks of the auxiliary
variable. )e biases and mean squared error of the pro-
posed families of estimators were derived using the first
order of approximation. Based on theoretical as well as
numerical comparative studies, it is concluded that the
proposed families of estimators are more precise than
their existing counterparts under situation-I and situa-
tion-II. So, we recommend using the sample mean and
ranks of the auxiliary variable with the proposed families

of estimators for estimating the finite population distri-
bution function.

Data Availability

)e data used to support the numerical findings of this
study are available from the corresponding author upon
request. )e data can also be obtained upon searching the
given sources of data.
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Table 7: PREs of distribution function estimators using populations I, II, and III with situation-I and situation-II, when x, y � X, Y,􏼈 􏼉.

Estimators
Population I Population II Population III

􏽢FGK(y) 􏽢FPr1
(y) 􏽢FPr2

(y) 􏽢FGK(y) 􏽢FPr1
(y) 􏽢FPr2

(y) 􏽢FGK(y) 􏽢FPr1
(y) 􏽢FPr2

(y)

􏽢F
(1)

GK(y) 􏽢F
(1)

Pr1
(y) 􏽢F

(1)

Pr2
(y) 239.81 240.75 243.79 107.15 110.21 109.02 109.41 114.28 114.10

􏽢F
(2)

GK(y) 􏽢F
(2)

Pr1
(y) 􏽢F

(2)

Pr2
(y) 239.73 240.59 243.63 107.09 110.08 108.90 109.35 114.16 113.97

􏽢F
(3)

GK(y) 􏽢F
(3)

Pr1
(y) 􏽢F

(3)

Pr2
(y) 239.83 240.79 243.84 107.18 110.26 109.08 109.44 114.34 114.16

􏽢F
(4)

GK(y) 􏽢F
(4)

Pr1
(y) 􏽢F

(4)

Pr2
(y) 239.68 240.48 243.52 107.07 110.02 108.85 109.33 114.09 113.91

􏽢F
(5)

GK(y) 􏽢F
(5)

Pr1
(y) 􏽢F

(5)

Pr2
(y) 287.13 431.28 439.07 109.76 116.82 115.55 112.69 122.96 122.76

􏽢F
(6)

GK(y) 􏽢F
(6)

Pr1
(y) 􏽢F

(6)

Pr2
(y) 270.32 338.77 343.87 110.19 118.07 116.77 113.44 125.30 125.09

􏽢F
(7)

GK(y) 􏽢F
(7)

Pr1
(y) 􏽢F

(7)

Pr2
(y) 243.94 250.01 253.20 106.96 109.80 108.63 109.22 113.88 113.70

􏽢F
(8)

GK(y) 􏽢F
(8)

Pr1
(y) 􏽢F

(8)

Pr2
(y) 296.41 502.56 512.87 109.55 116.22 114.96 112.35 121.92 121.72

􏽢F
(9)

GK(y) 􏽢F
(9)

Pr1
(y) 􏽢F

(9)

Pr2
(y) 242.79 247.30 250.44 106.95 109.79 108.61 109.21 113.86 113.67

􏽢F
(10)

GK (y) 􏽢F
(10)

Pr1
(y) 􏽢F

(10)

Pr2
(y) 238.92 238.93 241.95 106.94 109.77 108.59 109.20 113.83 113.65

􏽢F(y) 100.00 100.00 100.00
􏽢FR(y) 30.55 31.00 31.42
􏽢FP(y) 208.91 45.86 50.75

􏽢FReg(y) 225.86 104.18 106.19
􏽢FR,D(y) 238.91 106.94 109.20

􏽢F
(1)

GK(y) 􏽢F
(1)

Pr1
(y) 􏽢F

(1)

Pr2
(y) 201.21 203.59 203.62 104.76 111.86 110.04 105.97 116.90 117.29

􏽢F
(2)

GK(y) 􏽢F
(2)

Pr1
(y) 􏽢F

(2)

Pr2
(y) 201.16 203.50 203.53 104.72 111.77 109.95 105.93 116.80 117.19

􏽢F
(3)

GK(y) 􏽢F
(3)

Pr1
(y) 􏽢F

(3)

Pr2
(y) 201.22 203.62 203.65 104.77 111.90 110.08 105.99 116.94 117.33

􏽢F
(4)

GK(y) 􏽢F
(4)

Pr1
(y) 􏽢F

(4)

Pr2
(y) 201.13 203.43 203.46 104.70 111.73 109.91 105.91 116.76 117.15

􏽢F
(5)

GK(y) 􏽢F
(5)

Pr1
(y) 􏽢F

(5)

Pr2
(y) 224.45 274.00 274.05 106.51 116.30 114.38 108.12 122.64 123.06

􏽢F
(6)

GK(y) 􏽢F
(6)

Pr1
(y) 􏽢F

(6)

Pr2
(y) 217.00 246.45 246.49 106.79 117.08 115.15 108.58 124.07 124.49

􏽢F
(7)

GK(y) 􏽢F
(7)

Pr1
(y) 􏽢F

(7)

Pr2
(y) 203.62 208.84 208.87 104.62 111.56 109.75 105.84 116.60 116.99

􏽢F
(8)

GK(y) 􏽢F
(8)

Pr1
(y) 􏽢F

(8)

Pr2
(y) 228.30 290.50 290.56 106.38 115.92 114.01 107.90 121.99 122.41

􏽢F
(9)

GK(y) 􏽢F
(9)

Pr1
(y) 􏽢F

(9)

Pr2
(y) 202.96 207.35 207.39 104.61 111.55 109.74 105.83 116.58 116.97

􏽢F
(10)

GK (y) 􏽢F
(10)

Pr1
(y) 􏽢F

(10)

Pr2
(y) 200.67 202.49 202.52 104.61 111.54 109.72 105.82 116.56 116.95

􏽢F(y) 100.00 100.00 100.00
􏽢FR(y) 36.69 39.25 40.01
􏽢FP(y) 183.15 51.37 55.81

􏽢FReg(y) 187.61 101.84 102.81
􏽢FR,D(y) 200.66 104.61 105.82
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