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'is study compared a ridge maximum likelihood estimator to Yuan and Chan (2008) ridge maximum likelihood, maximum
likelihood, unweighted least squares, generalized least squares, and asymptotic distribution-free estimators in fitting six models
that show relationships in some noncommunicable diseases. Uncontrolled hypertension has been shown to be a leading cause of
coronary heart disease, kidney dysfunction, and other negative health outcomes. It poses equal danger when asymptomatic and
undetected. Research has also shown that it tends to coexist with diabetes mellitus (DM), with the presence of DM doubling the
risk of hypertension. 'e study assessed the effect of obesity, type II diabetes, and hypertension on coronary risk and also the
existence of converse relationship with structural equation modelling (SEM).'e results showed that the two ridge estimators did
better than other estimators. Nonconvergence occurred for most of the models for asymptotic distribution-free estimator and
unweighted least squares estimator whilst generalized least squares estimator had one nonconvergence of results. Other estimators
provided competing outputs, but unweighted least squares estimator reported unreliable parameter estimates such as large chi-
square test statistic and root mean square error of approximation for Model 3. 'e maximum likelihood family of estimators did
better than others like asymptotic distribution-free estimator in terms of overall model fit and parameter estimation. Also, the
study found that increase in obesity could result in a significant increase in both hypertension and coronary risk. Diastolic blood
pressure and diabetes have significant converse effects on each other.'is implies those who are hypertensive can develop diabetes
and vice versa.

1. Introduction

Structural equation modelling (SEM) reduces several
manifest variables to few related latent factors by explaining
the covariance structure in the observed manifest variables
using a combination of confirmatory factor analysis and
path modelling in which the manifest relationships are
hypothesized [1]. Comparative analysis of SEM estimation
methods in applications is not commonplace because
methods such as the traditional maximum likelihood esti-
mator (MLE) and generalized least squares estimator (GLSE)

have proven robust and high performing [2]. However, they
are constrained by normality assumption unlike asymptotic
distribution-free estimator (ADFE) and unweighted least
squares estimator (ULSE) which do not require normality
assumption, whilst ADFE is considered robust [3]. 'eMLE
was shown to perform better than ADFE, GLSE, and ULSE
although ADFE was developed as a robust estimator [4, 5].
In preventing matrix singularity leading to nonconvergence
due to small sample sizes in SEM, the ridge maximum
likelihood estimators have shown to perform better than
MLE [6]. Yuan and Chan [6] developed the ridge estimator
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(RMLEa) which adds the ratio of the number of manifest
variables and sample size to the diagonals of the covariance
matrix. 'is method did better than the traditional MLE but
lacks much information from data. A follow-up to this
estimator is a proposed ridge maximum likelihood estimator
(RMLEh) in a companion paper, which includes much
information from the data by adding a constant to the di-
agonals of the covariance matrix. 'ese estimators will be
compared based on fit indices from a modelled real-life data
on the relationship between hypertension, diabetes, obesity,
and coronary risk.

'e study also assessed the effect of obesity, type II
diabetes, and hypertension on coronary risk and the con-
verse effect of diabetes on hypertension. Hypertension is a
silent killer due to its ability to cause heart failure, stroke,
kidney dysfunction, and others without showing symptoms
[7]. Hypertension and diabetes studies showed that they
frequently coexist, and people with diabetes are twice higher
at risk of hypertension than those without it, and both
conditions have similar causes [8, 9]. Most studies showed
that hypertension results in diabetes, but limited studies
considered the converse effect. Obesity is the outcome when
a person accumulates extra weights greater or equal to 20%
of total body fat [10], which could be harmful to the person’s
well-being. Obesity or body fat measures such as body mass
index (BMI), waist circumference (WC), and waist-to-hip
ratio (WHR) were proven risk factors of type II diabetes and
cardiovascular diseases [11–13]. BMI is usually used as the
major measure of obesity and overweight. However,
according to Jacobsen and Aars [14], WC, as abdominal
obesity measure, could be used to measure obesity as it is
able to give more information regarding diseases that result
from excess weight [15]. In a study by Dagan et al. [16], it was
stated that although BMI is commonly used, it does not
reflect the body shape, and in addition, even though both
measures were endorsed by the American Heart Association,
BMI is still mostly used for adiposity. According to Kur-
niawan et al. [17], visceral fat (VF), body fat percentage, WC,
BMI, and body weight measures have been used in mea-
suring obesity. Using these measures could help to measure
obesity as a theoretical variable and could be studied to
better assess obesity in humans.

'e SEM approach involving model representation and
estimation methods of model parameters are presented in
Section 2. Section 3 discusses the theoretical background to
the relationships in the dataset and results of SEM appli-
cation to the data whilst Section 4 presents the results and
discussion and Section 5 concludes the study with a rec-
ommendation for policy implementation.

2. Methodology

2.1. Structural Equation Model. 'e SEM has a structural
part represented in equation (1) as follows:

η � (I − β)
− 1Γξ +(I − β)

− 1ζ � (I − β)
− 1

(Γξ + ζ). (1)

'e manifest variables are used to measure the exoge-
nous (ξ) and endogenous (η) theoretical variables in

equation (1) which are represented, respectively, in mea-
surement models 2 and 3 as follows:

X � Λxξ + δ, (2)

Y � Λyη + ε, (3)

where η contains the endogenous latent variables, ξ contains
the exogenous latent variables, β contains the coefficients of
η variables, ζ contains the random disturbances or errors
associated with the structural model, Γ is the matrix of the
coefficients of exogenous latent variables, ε and δ are the
random errors associated with the measurement models for
determining, respectively, endogenous and exogenous latent
variables, and X and Y are the independent and dependent
manifest variables [3].

2.2. Estimation of Model Parameters. Estimating the model
parameters (θ) in equations (1)–(3), we seek to minimize
S − Σ(θ) using a function F(θ) [3, 18]. Using the MLE by
Jöreskog [19], we have

FMLE � ln|Σ(θ)| + tr SΣ− 1
(θ)􏼐 􏼑 − ln|S| − k, (4)

where k is the number of manifest variables in the structural
equation model, S and Σ(θ) are sample and implied co-
variance matrices, respectively [20]. Equation (4) is non-
linear, so iterative processes are employed in the
minimization [2]. 'e MLE performs well when data follow
normal distribution, but breaks down with varying degrees
of outliers. Nonconvergence of results does occur with MLE
when the sample size is small. Yuan and Chan [6] proposed a
ridge maximum likelihood estimator which models S + aI

instead of S, where a is a constant derived as (a � k/N). Since
a does not take much information from data [21], another
constant was suggested in RMLEh. 'erefore, instead of
modelling Sa in RMLEa, Sh � S + hI was modelled in
RMLEh, where h � k((1 + 􏽢α)/N), 􏽢α � (1/(1 + d

2
)), and

di (i � 1, 2, . . . , k) are the eigenvalues with mean (d).
'e other estimators, namely, ULSE, GLSE, and ADFE,

are computed by equations (5)–(7). 'e ULSE is not based
on the normality assumption but requires similar scales of
measurement for all manifest variables. 'e ULSE is com-
puted by the following equation:

FULSE �
1
2
tr (S − Σ(θ))

2
􏽨 􏽩, (5)

whilst GLSE is given by

FGLSE �
1
2
tr (S − Σ(θ))S

− 1
􏽨 􏽩

2
, (6)

where tr(·) is the trace of the matrix.'eGLSE computes the
discrepancy function by minimizing the weighted difference
of the sample covariance matrix (S) and model implied
covariance matrix Σ(θ), using the same assumptions un-
derlying the MLE.

'e ADFE which is in the family of weighted least
squares (WLS) was proposed by Browne [22] to resist the
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effect of nonnormality in data for covariance structure
models. It is computed by the following equation:

FADFE � (s − σ)′W− 1
(s − σ), (7)

where s and σ are the column vectors of the nonduplicate
elements of sample and implied covariance matrices, re-
spectively, and W is a positive definite matrix with size k∗ �

(k(k + 1)/2) [23]. 'e lavaan package in R was used to
produce the results of the model fit and path coefficients
whilst the DiagrammeR package was used to report the path
diagrams.

2.3. Model Adequacy Test. 'e SEM, unlike the linear
models, adopts fit indices [24]. In this study, we considered
the absolute, relative, and parsimonious fit indices.

'e absolute fit indices are used in omnibus test, which is
usually undertaken in SEM to test whether Σ � Σ(θ) or not,
where Σ is the covariance matrix for the population which is
estimated using sample covariance matrix S [25]. 'is test is
distributed as χ2df, and nonsignificance of this test implies
the discrepancy between these two covariance matrices is
not significant. 'e chi-square test tests the hypothesis:
H0: Σ � Σ(θ) versus H1: Σ≠Σ(θ) that all the residuals are
zero with a test statistic

χ2 � (N − 1)F(θ), (8)

which follows the chi-square distribution with degrees of
freedom, df � (k(k + 1)/2 − t), where t is the number of
parameters to be estimated. 'e chi-square statistic with a
large sample size rejects the null hypothesis and the test
statistic from a small sample size lacks power, and as a result,
the relative chi-square (χ2/df) was developed by Satorra and
Bentler [26] such that 2≤ χ2/df≤ 5.

'e goodness-of-fit index (GFI) assesses the amount of
variance and covariance in the sample variance matrix that is
predicted by the Σ(θ) [27], which is affected by sample size.
'e GFI is computed by the following equation:

GFI � 1 −
tr Σ− 1

S − I􏼐 􏼑
2

􏼔 􏼕

tr Σ− 1S􏼐 􏼑
2

􏼔 􏼕
, (9)

which usually falls between 0 and 1, but becomes desirable if
it is at least 0.95 [28].

'e adjusted goodness of fit (AGFI) by Jöreskog and
Sörbom [27] adjusts the GFI for model complexity with
degrees of freedom. Like the GFI, the AGFI falls within 0 and
1 and also sensitive to the sample size [28]. It is calculated by
the following equation:

AGFI � 1 −
k(k + 1)

2df
􏼢 􏼣(1 − AGFI). (10)

'e root mean square residual (RMR) by Jöreskog and
Sörbom [27] is the square root of the average residual be-
tween the elements of sample covariance and predicted
covariance matrix [29]. 'e RMR is computed by the fol-
lowing equation:

RMR �

���������������

2􏽘
k

i�1
􏽘

i

j�1

sij − 􏽢σij􏼐 􏼑
2

k(k + 1)

􏽶
􏽴

, (11)

where k � n + m, which is the total number of exogenous
and endogenous variables. Generally, RMR assumes values
from 0 to 1 (0≤RMR ≤ 1), but RMR ≤ 0.05 is more pre-
ferred. When there are differences in the scales of mea-
surement for the observed variables, it makes it difficult to
interpret, and hence, standardized root mean square residual
(SRMR) was developed for easier and meaningful inter-
pretation [28, 29]. 'e SRMR is computed by the following
equation:

SRMR �

�����������������������

2􏽘
k

i�1
􏽘

i

j�1

sij − 􏽢σij􏼐 􏼑/ siisjj􏼐 􏼑􏽨 􏽩
2

k(k + 1)

􏽶
􏽴

, (12)

where sij and 􏽢σij are the elements of the covariance matrix of
the sample data and implied covariance matrix, respectively.
'e SRMR takes values from 0 to 1, and the lower the value
of SRMR, the better.

'e root mean square error approximation (RMSEA) by
Steiger and Lind [30] is among the fit indices which are used
to assess the fitness of model data and are classified as
badness-of-fit indices. 'e RMSEA is computed by the
following equation:

RMSEA �

���������

χ2 − df

df(N − 1)

􏽳

. (13)

Several studies consider a model as close fit if
RMSEA< 0.05, an average fit if 0.05≤RMSEA≤ 0.08, nei-
ther good nor bad fit if 0.08<RMSEA≤ 0.1, and poor fit if
RMSEA> 0.1 [28].

'e relative fit indices usually compare the chi-square
statistic for the hypothesized model with the baseline
model [29]. 'e values for “normed” or scaled fit indices
should fall between 0 and 1 inclusive. However, some-
times the nonnormed fit indices assume values less than 0
or more than 1. A recently agreed cutoff point for a good
model fit based on relative fit indices is a value greater or
equal to 0.95 [31].

'e comparative fit index (CFI) by Bentler [32] is used
when comparing hypothesized and baseline models and is
computed by the following equation:

CFI � 1 −
max χ2h − dfh􏼐 􏼑, 0􏽨 􏽩

max χ2b − dfb􏼐 􏼑, χ2h − dfh􏼐 􏼑, 0􏽨 􏽩
, (14)

where χ2b and χ2h are the chi-square test statistics of the
baseline and the hypothesized models, respectively, with
corresponding degrees of freedom dfb and dfh. 'e CFI
value is between 0 and 1, which is less affected by sample size
and has an acceptable value of greater than or equal to 0.95
[32].

In rescaling the chi-square into 0 (no fit) and 1 (exact fit),
the normed fit index (NFI) by Bentler and Bonett [33] is used
and computed by the following equation:
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NFI �
Fb − Fh

Fb

�
χ2b − χ2h
χ2b

, (15)

where the fitting function value of the baseline model is
given as Fb and that of the hypothesized model is Fh. 'is fit
index responds to sample size, and acceptable value should
be greater or equal to 0.95 [31].

'e relative fit index (RFI) proposed by Bollen [34] is to
reduce the effect of sample size on NFI by Bentler and Bonett
[33]. It is computed by the following equation:

RFI �
Fb/dfb( 􏼁 − Fh/dfh( 􏼁

Fb

�
χ2b/dfb􏼐 􏼑 − χ2h/dfh􏼐 􏼑

χ2b/dfb

.

(16)

'e Tucker and Lewis fit index (TLI) [35], also known as
nonnormed fit index (NNFI) [33], was developed against or
to reduce the effect of sample size, but it sometimes reports
values not within 0 and 1 inclusive. 'e TLI is computed by
the following equation:

TLI �
Fb/dfb( 􏼁 − Fh/dfh( 􏼁

Fb/dfb( 􏼁 − [1/(N − 1)]
�

χ2b/dfb􏼐 􏼑 − χ2h/dfh􏼐 􏼑

χ2b/dfb􏼐 􏼑 − 1
.

(17)

'e McDonald and Marsh [36] and Bentler [32] pro-
posed the relative noncentrality index (RNI) for assessing
model fit which is less affected by sample size but not
bounded by 0 and 1. RNI is computed by the following
equation:

RNI �
Fb − dfb( 􏼁 − Fh − dfh( 􏼁

Fb − dfb( 􏼁
�

χ2b − dfb􏼐 􏼑 − χ2h − dfh􏼐 􏼑

χ2b − dfb

.

(18)

'e Bollen incremental fit index (IFI) is one of the fit
indices which are not affected by the sample size [37]. Many
studies showed that some of the fit indices are influenced by
sample sizes in such a way that the larger sample sizes appear
to lead to fit indices with larger values [28, 31]. IFI is
computed by the following equation:

IFI �
Fb − Fh( 􏼁

Fb − dfh/(N − 1)( 􏼁􏼂 􏼃( 􏼁
�

χ2b − χ2h
χ2b − dfh

. (19)

To penalize for model complexity, the normed and
goodness-of-fit indices were adjusted for loss of degrees of
freedom for estimation of more parameters. As a result,
Mulaik et al. [38] and James et al. [39] developed parsi-
monious normed fit index and adjusted goodness-of-fit
index, respectively. 'ese fit indices usually assume values
close to 0.5 [28]. 'e parsimonious normed fit index (PNFI)
is given by the following equation:

PNFI �
dfh

dfb

(NFI) �
dfh

dfb

Fb − Fh( 􏼁

Fb

�
dfh

dfb

χ2b − χ2h􏼐 􏼑

χ2b
,

(20)

whilst the parsimonious goodness-of-fit index (PGFI) is
computed by the following equation:

PGFI �
dfh

dfb

􏼢 􏼣GFI. (21)

3. Application

3.1. StudyData. In order to compare the estimators, we used
the diastolic and systolic blood pressure to measure a the-
oretical variable called hypertension [12]. Obesity and age
are risk factors for hypertension and diabetes which are
cardiovascular disease risk factors [10, 40]. 'ese conditions
contribute the highest to illness, disability, and mortality.
Mortality due to cardiovascular diseases is very common.
Coronary risk is an index used to assess the risk of heart
disease. 'e direct effects of age, obesity, hypertension,
fasting blood sugar, and postprandial glucose were assessed
on the coronary risk (see the conceptual models in Figure 1).
Because diastolic and systolic blood pressures contribute
differently to hypertension, four additional models were
fitted measuring hypertension with manifest variables with
the focus of the converse relationship between hypertension
and diabetes.

We used a real-life dataset collected and used by Lokpo
et al. [41], from the Ghana Prison Service, Ho in Volta
Region of Ghana after the Research Ethics Committee (REC)
of the University of Health and Allied Sciences gave a
clearance (“ERC/UHAS-REC A.4 [188] 18-19”). Other
ethical considerations were followed including informed
consent. 'ree variables, fasting blood sugar, postprandial
glucose, and coronary risk in Table 1 had few missing values
and they were imputed using their respective medians. 'e
study data accounted for sampling adequacy using the
Kaiser–Meyer–Olkin test. It reported a value of 0.7786 which
implies the dataset had a good sampling adequacy and could
be used for factor analysis. Also Bartlett’s test showed that
the variables are correlated (p value <0.0001). 'e dataset
deviated slightly from multivariate normality; however,
most of the estimators in this study can handle nonnormality
to some level.

4. Results and Discussion

In order to compare the ridge maximum likelihood es-
timator (RMLEh) with other estimators using the above
real-life data, the SEM as presented in the previous section
was applied to the required manifest variables to establish
the effect of obesity, diabetes, and hypertension on cor-
onary disease using a sample data of size 113. 'e models
also assessed the effects of obesity and diabetes on hy-
pertension as well as obesity and hypertension on dia-
betes. Table 2 shows the correlation matrix of the data, and
the model data fit indicators are reported in Table 3. 'e
path coefficients and types of effects are reported in
Tables 4–9 while path model results are presented in
Figures 2–7. In all, six models were fitted. Model 1
contains latent hypertension as a risk factor for type II
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diabetes and Model 2 models the effect of type II diabetes
on latent hypertension. Model 3 models the effect of
manifest diastolic blood pressure on type II diabetes and
Model 4 looks at the effects of manifest systolic blood
pressure on type II diabetes. Lastly, Model 5 models the
effect of type II diabetes on manifest diastolic blood
pressure whilst Model 6 accounts for the effect of type II
diabetes on manifest systolic blood pressure. 'ese re-
lationships are hypothesized based on the literature
[12, 42, 43].

'e results as presented in Table 3 indicate that the MLE
and ridge methods converged successfully for all models
except GLSE which did not converge for Model 4. 'e ULSE
converged for only the third model with high chi-square test
statistic value and unreliable results whilst the ADFE re-
ported converged hypothesized model for Model 6. RMLEh

and RMLEa reported the best and similar fit indices for all
models. 'e SEM results reported a nonsignificant chi-
square test statistic for all methods of estimation except
ULSE which reported the highest chi-square value with

OB

BP BMI HCWC VF

CR

PG

ASBP ADBPFBS

e1e2 e3 e4

e5 e6e7

e8

e9

e10

e11Age

(a)

OB

BP

BMI HCWCVF

CR

PG

ASBP ADBP

e1 e2 e3 e4

e5

FBS

e6e7

e8

e9

e10

e11Age

(b)

Figure 1: Conceptual models. (a) Conceptual model 1, (b) Conceptual model 2.

Table 1: 'e variables in the model.

Variable name Abbreviation Description Scale
Average systolic blood pressure ASBP Systolic blood pressure taken at two times and the average determined Ratio
Average diastolic blood pressure ADBP Diastolic blood pressure taken at two times and the average determined Ratio
Waist circumference WC An anthropometric measure used for measuring obesity at the smallest area of the waist Ratio
Hip circumference HC An anthropometric measure used for measuring obesity at the largest area of the hip Ratio
Body mass index BMI An obesity measure which is computed by weight over height squared Ratio
Visceral fat VF It is the fat that surrounds (wraps) major organs in the body Ratio
Coronary risk CR It is used to determine the likelihood of developing heart disease Ratio
Fasting blood sugar FBS Blood sugar measurement after at least 8 hours of fasting Ratio
Postprandial glucose PG Blood sugar measurement after having a meal Ratio
Age of the respondents Age 'e age in years Ratio
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Table 2: 'e correlation matrix of the manifest variables.

ASBP ADBP WC HC BMI VF CR FBS PG Age
ASBP 1.00
ADBP 0.62 1.00
WC 0.36 0.22 1.00
HC 0.26 0.08 0.70 1.00
BMI 0.31 0.11 0.84 0.81 1.00
VF 0.35 0.22 0.78 0.57 0.75 1.00
FBS 0.13 0.22 0.10 0.07 0.05 0.08 1.00
PG 0.18 0.15 0.12 0.09 0.14 0.18 0.10 1.00
CR 0.23 0.15 0.30 0.24 0.25 0.41 0.12 0.21 1.00
Age 0.44 0.32 0.46 0.07 0.26 0.52 0.22 0.18 0.27 1.00

Table 3: Goodness-of-fit measures for the models.

Model Method χ2
(p value) χ2/df

RMSEA
(p value) RMR SRMR GFI CFI TLI

(NNFI) RNI NFI BFI
(IFI) AGFI PNFI PGFI

Model 1

RMLEh

31.767
(0.105) 1.381 0.058

(0.362) 3.948 0.039 0.950 0.983 0.967 0.983 0.944 0.984 0.880 0.483 0.397

RMLEa

31.767
(0.105) 1.381 0.058

(0.362) 3.948 0.039 0.950 0.983 0.967 0.983 0.944 0.984 0.880 0.483 0.397

MLE 33.166
(0.078) 1.442 0.063

(0.306) 3.967 0.039 0.947 0.981 0.962 0.981 0.942 0.982 0.873 0.482 0.396

GLSE 30.421
(0.138) 1.323 0.054

(0.418) 5.336 0.052 0.946 0.919 0.842 0.919 0.778 0.935 0.870 0.397 0.395

ULSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA
ADFE NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Model 2

RMLEh

33.724
(0.114) 1.349 0.056

(0.392) 3.881 0.042 0.947 0.983 0.970 0.983 0.941 0.984 0.883 0.523 0.430

RMLEa

33.724
(0.114) 1.349 0.056

(0.392) 3.881 0.042 0.947 0.983 0.970 0.983 0.941 0.984 0.883 0.523 0.430

MLE 35.373
(0.082) 1.415 0.061

(0.326) 3.903 0.043 0.943 0.980 0.965 0.980 0.938 0.981 0.875 0.521 0.429

GLSE 32.320
(0.149) 1.293 0.051

(0.450) 5.257 0.056 0.942 0.920 0.856 0.920 0.764 0.934 0.873 0.424 0.428

ULSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA
ADFE NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Model 3

RMLEh

19.064
(0.265) 1.192 0.041

(0.539) 1.035 0.036 0.965 0.993 0.985 0.993 0.961 0.994 0.902 0.427 0.343

RMLEa

19.064
(0.265) 1.192 0.041

(0.539) 1.035 0.036 0.965 0.993 0.985 0.993 0.961 0.994 0.902 0.427 0.343

MLE 20.336
(0.205) 1.271 0.049

(0.466) 1.043 0.037 0.963 0.991 0.979 0.991 0.959 0.991 0.896 0.426 0.342

GLSE 18.824
(0.278) 1.177 0.040

(0.551) 1.717 0.047 0.963 0.958 0.905 0.958 0.817 0.967 0.895 0.363 0.342

ULSE 2417.873
(NA) 151.117 1.158

(0.000) 0.693 0.036 1.000 0.999 0.999 0.999 0.999 0.999 1.000 0.444 0.356

ADFE NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Model 4

RMLEh

19.034
(0.212) 1.269 0.049

(0.466) 2.522 0.038 0.965 0.991 0.979 0.991 0.962 0.992 0.895 0.401 0.322

RMLEa

19.034
(0.212) 1.269 0.049

(0.466) 2.522 0.038 0.965 0.991 0.979 0.991 0.962 0.992 0.895 0.401 0.322

MLE 20.336
(0.159) 1.356 0.056

(0.393) 2.530 0.039 0.963 0.989 0.973 0.989 0.960 0.989 0.889 0.400 0.321

GLSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA
ULSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA
ADFE NA NA NA NA NA NA NA NA NA NA NA NA NA NA
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unknown p value. 'e relative chi-square is also less than
2((χ2/df)< 2) and falls within the accepted interval. Also,
the RMSEA reported nonsignificant values (p value> 0.05)

for all methods that converged successfully, implying a good
model. All the estimation methods reported good and ac-
ceptable SRMR except the ADFE which reported a poor

SRMR of 0.095. Other fit indices which also showed that the
hypothesized models were fitted appropriately include the
absolute fit index: GFI, relative fit indices:
CFI, TLI, RNI, NFI, andBFI (IFI), and parsimonious fit
indices: AGFI, PNFI, and PGFI. Generally, the ridge max-
imum likelihood estimators performed better than other

Table 3: Continued.

Model Method χ2
(p value) χ2/df

RMSEA
(p value) RMR SRMR GFI CFI TLI

(NNFI) RNI NFI BFI
(IFI) AGFI PNFI PGFI

Model 5

RMLEh

24.849
(0.129) 1.381 0.058

(0.369) 7.795 0.066 0.956 0.985 0.970 0.985 0.949 0.984 0.889 0.475 0.382

RMLEa

24.849
(0.129) 1.381 0.058

(0.369) 7.795 0.066 0.956 0.985 0.970 0.985 0.949 0.984 0.889 0.475 0.382

MLE 25.800
(0.104) 1.433 0.062

(0.325) 7.735 0.066 0.952 0.983 0.966 0.983 0.948 0.983 0.881 0.474 0.381

GLSE 23.627
(0.168) 1.313 0.056

(0.396) 10.329 0.089 0.953 0.916 0.832 0.916 0.770 0.934 0.883 0.385 0.381

ULSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA
ADFE NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Model 6

RMLEh

24.105
(0.117) 1.418 0.061

(0.340) 3.134 0.038 0.957 0.985 0.968 0.985 0.952 0.985 0.887 0.450 0.362

RMLEa

24.105
(0.117) 1.418 0.061

(0.340) 3.134 0.038 0.957 0.985 0.968 0.985 0.952 0.985 0.887 0.450 0.362

MLE 25.255
(0.089) 1.486 0.066

(0.289) 3.150 0.039 0.955 0.983 0.963 0.983 0.951 0.983 0.880 0.449 0.361

GLSE 22.717
(0.159) 1.336 0.055

(0.406) 4.339 0.052 0.955 0.919 0.828 0.919 0.786 0.936 0.881 0.371 0.361

ULSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA

ADFE 15.871
(0.533) 0.934 0.000

(0.782) 11.332 0.095 0.958 NA NA NA NA NA 0.888 NA 0.362

Table 4: Standardized pathways and type of effects of Model 1.

Standardized pathways of Model 1

Hypothesis Structural pathways Path coefficients
(standardized) p value

H1 Obesity⟶ blood pressure 0.215 0.024
H2 Obesity⟶ coronary risk 0.218 0.027
H3 Blood pressure⟶ coronary risk 0.102 0.377
H4 Age⟶ waist circumference 0.248 <0.0001
H5 Age⟶ visceral fat 0.335 <0.0001
H6 Age⟶ obesity 0.255 <0.010
H7 Age⟶ coronary risk 0.147 0.150
H8 Age⟶ fasting blood sugar 0.178 0.096
H9 Age⟶ blood pressure 0.422 <0.0001
H10 Obesity⟶ PG 0.075 0.461
H11 Blood pressure⟶ fasting blood sugar 0.072 0.528
Types of effects in Model 1

Structural pathways 'rough Direct effect Indirect effect Total
effect

Obesity⟶ blood pressure 0.215∗ NA 0.215∗
Obesity⟶ coronary risk Blood pressure 0.218∗ 0.022 0.240∗
Blood pressure⟶ fasting blood sugar 0.072 NA 0.072
Blood pressure⟶ coronary risk 0.102 NA 0.102
Blood pressure⟶ PG 0.174 NA 0.174
Age⟶ fasting blood sugar Blood pressure 0.178 0.031 0.209∗
Age⟶ coronary risk Obesity 0.147 0.056 0.203
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05. PG: postprandial glucose.
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Table 5: Standardized pathways and type of effects of Model 2.

Standardized pathways of Model 2

Hypothesis Structural pathways
Path

coefficients
(standardized)

p value

H1 Obesity⟶ blood pressure 0.209 0.027
H2 Obesity⟶ coronary risk 0.215 0.029
H3 Blood pressure⟶ coronary risk 0.096 0.397
H4 PG⟶ blood pressure 0.089 0.317
H5 Obesity⟶ PG 0.092 0.351
H6 Fasting blood sugar⟶ blood pressure 0.051 0.570
H7 Age⟶ visceral fat 0.336 <0.0001
H8 Age⟶ waist circumference 0.249 <0.0001
H9 Age⟶ obesity 0.254 0.010
H10 Age⟶ blood pressure 0.391 <0.0001
H11 Age⟶ coronary risk 0.161 0.116
H12 Age⟶ fasting blood sugar 0.216 0.019
H13 Age⟶ PG 0.156 0.102
Types of effects in Model 2

Structural pathways 'rough Direct effect Indirect
effect Total effect

Obesity⟶ blood pressure 0.209∗ NA 0.209∗
Obesity⟶ coronary risk Blood pressure 0.215∗ 0.020 0.235∗
Age⟶ coronary risk Obesity 0.161 0.055 0.216∗
Obesity⟶ blood pressure PG 0.209∗ 0.008 0.217∗
Age⟶ coronary risk Blood pressure 0.161 0.038 0.199∗
Age⟶ fasting blood sugar 0.216∗ NA 0.216∗
Age⟶ blood pressure Obesity 0.391∗∗∗ 0.053 0.444∗∗∗
Fasting blood sugar⟶ blood pressure 0.051 NA 0.051
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05. PG: postprandial glucose.

Table 6: Standardized pathways and type of effects of Model 3.

Standardized pathways of Model 3

Hypothesis Structural pathways Path coefficients
(standardized) p value

H1 Obesity⟶ blood pressure (ADBP) 0.063 0.514
H2 Obesity⟶ coronary risk 0.225 0.019

H3
Blood pressure (ADBP)⟶ coronary

risk 0.038 0.691

H4 PG⟶ coronary risk 0.138 0.122
H5 Fasting blood sugar⟶ coronary risk 0.049 0.582
H6 Obesity⟶ PG 0.116 0.230
H7 Blood pressure⟶ PG 0.129 0.169
H8 Blood pressure⟶ fasting blood sugar 0.210 0.024
H9 Obesity⟶ fasting blood sugar 0.028 0.775
H10 Age⟶ obesity 0.283 0.004
H11 Age⟶ waist circumference 0.223 <0.0001
H12 Age⟶ visceral fat 0.315 <0.0001
H13 Age⟶ blood pressure 0.304 0.001
Types of effects in Model 3

Structural pathways 'rough Direct
effect

Indirect
effect

Total
effect

Obesity⟶ coronary risk Blood pressure 0.225∗ 0.002 0.227∗
Obesity⟶ fasting blood sugar Blood pressure 0.028 0.013 0.041
Blood pressure (ADBP)⟶ fasting blood
sugar 0.210∗ NA 0.210∗

Obesity⟶ coronary risk PG 0.225∗ 0.016 0.241∗
Blood pressure (ADBP)⟶ PG 0.129 NA 0.129
Blood pressure (ADBP)⟶ coronary risk Fasting blood sugar 0.038 0.011 0.049
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Table 7: Standardized pathways and type of effects of Model 4.

Standardized pathways of Model 4

Hypothesis Structural pathways
Path

coefficients
(standardized)

p value

H1 Obesity⟶ blood pressure (ASBP) 0.213 0.017
H2 Obesity⟶ coronary risk 0.209 0.033
H3 Blood pressure (ASBP)⟶ coronary risk 0.068 0.504
H4 PG⟶ coronary risk 0.136 0.128
H5 Fasting blood sugar⟶ coronary risk 0.054 0.540
H6 Obesity⟶ PG 0.089 0.379
H7 Blood pressure (ASBP)⟶ PG 0.146 0.137

H8
Blood pressure (ASBP)⟶ fasting blood

sugar 0.121 0.221

H9 Obesity⟶ fasting blood sugar 0.015 0.884
H10 Age⟶ blood pressure 0.379 <0.0001
H11 Age⟶ obesity 0.281 0.005
H12 Age⟶ coronary risk 0.138 0.163
H13 Age⟶ visceral fat 0.315 <0.0001
H14 Age⟶ waist circumference 0.226 <0.0001
Types of effects in Model 4

Structural pathways 'rough Direct effect Indirect
effect

Total
effect

Obesity⟶ coronary risk Blood pressure (ASBP) 0.209∗ 0.014 0.0.223∗
Obesity⟶ fasting blood sugar Blood pressure (ASBP) 0.015 0.026 0.041
Blood pressure (ASBP)⟶ fasting blood
sugar 0.121 NA 0.121

Obesity⟶ coronary risk PG 0.209∗ 0.012 0.221∗
Blood pressure (ASBP)⟶ PG 0.146 NA 0.146
Blood pressure (ASBP)⟶ coronary risk Fasting blood sugar 0.068 0.006 0.074
Age⟶ coronary risk Obesity 0.138 0.059 0.196∗
Age⟶ coronary risk Blood pressure 0.138 0.026 0.164
Age⟶ blood pressure 0.379∗∗∗ NA 0.379∗∗∗
Age⟶ obesity 0.281∗∗ NA 0.281∗∗
Age⟶ visceral fat 0.315∗∗∗ NA 0.315∗∗∗
Age⟶ waist circumference 0.226∗∗∗ NA 0.226∗∗∗
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05. PG: postprandial glucose.

Table 6: Continued.

Age⟶ coronary risk Obesity 0.151 0.064 0.215∗
Age⟶ blood pressure 0.304∗∗ NA 0.304∗∗
Age⟶ obesity 0.283∗∗ NA 0.283∗∗
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05. PG: postprandial glucose.

Table 8: Standardized pathways and type of effects of Model 5.

Standardized pathways of Model 5

Hypothesis Structural pathways Path coefficients
(standardized) p value

H1 Obesity⟶ blood pressure (ADBP) 0.070 0.462
H2 Obesity⟶ coronary risk 0.218 0.018

H3
Blood pressure (ADBP)⟶ coronary

risk 0.037 0.681

H4 PG⟶ coronary risk 0.140 0.119
H5 Fasting blood sugar⟶ coronary risk 0.050 0.584
H6 PG⟶ hypertension (ADBP) 0.121 0.183

H7
Fasting blood sugar⟶ blood pressure

(ADBP) 0.203 0.026

H8 Age⟶ visceral fat 0.448 <0.0001
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Table 8: Continued.

H9 Age⟶ PG 0.180 0.052
H10 Age⟶ fasting blood sugar 0.216 0.019
H11 Age⟶ waist circumference 0.416 <0.0001
H12 Age⟶ body mass index 0.203 <0.0001
H13 Age⟶ coronary risk index 0.201 0.029
Types of effects in Model 5

Structural pathways 'rough Direct effect Indirect
effect

Total
effect

Obesity⟶ coronary risk Blood pressure (ADBP) 0.218∗ 0.003 0.221∗
Obesity⟶ blood pressure (ADBP) 0.070 NA 0.070
PG⟶ coronary risk Blood pressure (ADBP) 0.140 0.005 0.145
Fasting blood sugar⟶ coronary risk Blood pressure (ADBP) 0.050 0.008 0.058
Fasting blood sugar⟶ blood pressure
(ADBP) 0.203∗ NA 0.203∗

PG⟶ blood pressure (ADBP) 0.121 NA 0.121
Blood pressure (ADBP)⟶ coronary
risk 0.037 NA 0.037

Age⟶ coronary risk 0.201∗ NA 0.201∗
Age⟶ fasting blood sugar 0.216∗ NA 0.216∗
Age⟶ visceral fat 0.448 NA 0.448∗∗∗
Age⟶ PG 0.180 NA 0.180
Age⟶ waist circumference 0.416 NA 0.416∗∗∗
Age⟶ body mass index 0.203 NA 0.203∗∗∗
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05. PG: postprandial glucose.

Table 9: Standardized pathways and type of effects of Model 6.

Standardized pathways of Model 6

Hypothesis Structural pathways
Path

coefficients
(standardized)

p value

H1 Obesity⟶ blood pressure (ASBP) 0.208 0.019
H2 Obesity⟶ coronary risk 0.209 0.030
H3 Blood pressure (ASBP)⟶ coronary risk 0.066 0.509
H4 PG⟶ coronary risk 0.137 0.124
H5 Fasting blood sugar⟶ coronary risk 0.054 0.549
H7 Age⟶ blood pressure (ASBP) 0.366 <0.0001
H8 PG⟶ blood pressure (ASBP) 0.080 0.337

H9
Fasting blood sugar⟶ blood pressure

(ASBP) 0.029 0.727

H10 Age⟶ obesity 0.254 0.010
H11 Age⟶ fasting blood sugar 0.216 0.019
H12 Age⟶ visceral fat 0.336 <0.0001
H13 Age⟶ waist circumference 0.249 <0.0001
H14 Age⟶ PG 0.180 0.052
Type of effects of Model 6

Structural pathways 'rough Direct effect Indirect effect Total
effect

Obesity⟶ coronary risk Blood pressure (ASBP) 0.209∗ 0.014 0.223∗
PG⟶ coronary risk Blood pressure (ASBP) 0.137 0.005 0.142
Fasting blood sugar⟶ coronary risk Blood pressure (ASBP) 0.054 0.002 0.056
Obesity⟶ blood pressure (ASBP) 0.208∗ NA 0.208∗
Fasting blood sugar⟶ blood pressure
(ASBP) 0.029 NA 0.029

PG⟶ blood pressure (ASBP) 0.080 NA 0.080
Blood pressure (ASBP)⟶ coronary risk 0.066 NA 0.066
Age⟶ blood pressure (ASBP) 0.366∗∗∗ NA 0.366∗∗∗
Age⟶ fasting blood sugar 0.216∗ NA 0.216∗
Age⟶ obesity 0.254∗∗ NA 0.254∗∗
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05. PG: postprandial glucose.
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Figure 2: Structural equation model showing the effects of obesity and blood pressure on diabetes and coronary risk (Model 1).
∗∗∗p value< 0.0001, ∗∗p value< 0.01, and ∗p value< 0.05.
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Figure 3: Structural equation model showing the effects of obesity and diabetes on blood pressure and coronary risk (Model 2).

OB

BMI

0.93∗∗∗HC

0.85∗∗∗

WC

0.84∗∗∗

VF

0.71∗∗∗

ADBP

0.06

FBS

0.03

CR

0.23∗

PG

0.12

e1

0.28

e2

0.15

e3

0.13

e4

0.35

e5

0.95

e6

0.89

e7

0.97

e8

0.86

e9

0.94

0.25 0.21∗

0.04

0.13

0.05 0.14

Age

0.28∗∗

0.22∗∗∗0.31∗∗∗0.30∗∗

0.15

Figure 4: Structural equation modelling assessing the effect of manifest blood pressure (average diastolic blood pressure) on type 2 diabetes
and coronary risk (Model 3).

Journal of Probability and Statistics 11



estimators.'e RMLEh and RMLEa reported the least SRMR
and relative chi-square values of 0.036 and 1.192, respec-
tively, followed by MLE, before GLSE whilst the results of
ULSE are unreliable (see Model 3 of Table 3). Moreover, the
other measures which show good models by reporting
higher values, RMLEh and RMLEa again did better generally.
'ey reported the highest CFI, TLI, RNI, GFI, NFI, BFI, and
AGFI values of 0.993, 0.985, 0.993, 0.965, 0.961, 0.994, and
0.902, respectively, for Model 3. 'ese results show that
RMLEh and RMLEa reported the best fit indices which are
used to assess the model data fit for SEM approach. 'e RNI
and CFI fit indices were proved to be the same sometimes
due to some algebraic conditions they shared in common
[44]. In this study, they were the same for all estimators.

'e ADFE and ULSE are not good estimators for the
hypothesized models in this study, whilst GLSE reported fit
indices which do not fall within the acceptable ranges,

especially CFI, TLI, RNI, and NFI for all models except Model
3. 'e obesity latent exogenous variable was determined using
manifest variables: BMI,WC, hip circumference (HC), andVF.
All the manifest variables for measuring obesity fitted correctly
and were significantly positively related to the theoretical
exogenous variable (obesity). 'e latent hypertension was also
significantly determined using diastolic and systolic blood
pressure. 'e measurement of the latent hypertension agrees
with the results of Yousefi et al. [12], where systolic blood
pressure contributed more than the diastolic blood pressure
but disagrees with that of Broström et al. [43].

Some of the hypothesized paths were significant. 'e
theoretical hypertension in this study had no effect on di-
abetes (Figure 2 and Table 4). 'e exogenous latent obesity
has the main effect of 0.215 on the endogenous latent hy-
pertension. 'e exogenous latent obesity also showed a
positive relationship with coronary risk with significant
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Figure 5: Structural equation modelling assessing the effect of manifest blood pressure (average systolic blood pressure) on type 2 diabetes
and coronary risk (Model 4).
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direct and nonsignificant indirect effect of 0.218 and 0.022,
respectively. 'e direct effect of exogenous latent obesity on
postprandial glucose is 0.08 (Figure 2). 'e relationship
between latent blood pressure and latent obesity in this study
(both Model 1: Table 4 and Figure 2, and Model 2: Table 5
and Figure 3) is consistent with the results of Yousefi et al.
[12]. 'ey reported that obesity had a strong positive effect
on latent hypertension which implies that reducing weight
will reduce hypertension.

From the first model (Figure 2), the blood pressure
measured as a theoretical variable had no effect on type II
diabetes. Like the first model, the second model (Figure 3)
shows that type II diabetes also do not have a significant
direct or indirect effect on hypertension endogenous latent
variable for this study (Figure 3 and Table 5). However,
when blood pressure was measured with manifest diastolic
blood pressure in Model 3 (Figure 4 and Table 6), the blood
pressure has a significant effect on type II diabetes. 'e
manifest systolic blood pressure has no significant effect on
type II diabetes (Figure 5 and Table 7). Moreover, it
revealed that obesity affects systolic and diastolic blood
pressure, which means reducing obesity could reduce both
hypertension and type II diabetes. Also, in Model 5 (Fig-
ure 6 and Table 8), type II diabetes has a significant effect on
diastolic blood pressure. 'is implies that an increase in
type II diabetes could lead to high diastolic blood pressure.
Type II diabetes does not have effects on systolic blood
pressure whilst obesity shows a significant effect on systolic
blood pressure as inModel 6 (Figure 7 and Table 9). Obesity
has a positive effect on coronary risk in all models. Gen-
erally, age has positive total effects on obesity, hyperten-
sion, and coronary risk.

5. Conclusion

'is study compared a ridge estimatorwith others inmodelling
the relationship between obesity, type II diabetes, and hy-
pertension on coronary risk controlling for age, as well as the
converse effects of type II diabetes on hypertension. 'e
RMLEh and RMLEa did better than other estimators like the
maximum likelihood, generalized least squares, unweighted

least squares, and asymptotic distribution-free estimators. 'e
ULSE andADFE reported nonconverged and unreliable model
coefficients. Aside the results of the ULSE and ADFE, the other
estimators reported very similar model coefficients.'e obesity
latent exogenous variable was significantly measured using
waist circumference, hip circumference, body mass index, and
visceral fat. All obesity manifest measures are positively related
to the endogenous variable. Also the diastolic and systolic
blood pressure are significant determinants of blood pressure.
'e study found that increase in obesity could result in a
significant increase in both hypertension and coronary risk.
Type II diabetes has a converse effect on blood pressure. Latent
blood pressure and obesity do not have significant relationships
with diabetes. However, type II diabetes has a significant
positive effect on manifest diastolic blood pressure. 'e
manifest diastolic blood also has a significant effect on type II
diabetes. 'erefore, this calls for holistic public healthcare
policies to reduce both conditions under noncommunicable
diseases as reducing one at a time may not be effective.

5.1. Limitation. In order to make an inference concerning
the relationships between obesity, diabetes, hypertension,
and coronary risk to the population of Ghana, a large dataset
covering the whole country is needed. However, the dataset
used for the empirical analysis in this study covered one of
the regions of the country. Hence, the study is unable to
generalize these findings to the whole country. Also, al-
though in assessing the direct and indirect effects of obesity
on diabetes, hypertension, and coronary risk we control for
age, there may be other confounding variables which were
not measured for this study, and hence, further study is
required.
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