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A higher-order likelihood-based asymptotic method to obtain inference for the difference between two KS Sharpe ratios when
gross returns of an investment are assumed to be lognormally distributed is proposed. *eoretically, our proposed method has
O(n− 3/2) distributional accuracy, whereas conventional methods for inference have O(n−1/2) distributional accuracy. Using an
example, we show how discordant confidence interval results can be depending on the methodology used. We are able to
demonstrate the accuracy of our proposed method through simulation studies.

1. Introduction

LetPt be the price of an investment at time t, and assume this
investment does not pay out dividends. *e net return Rt, of
this investment between time t − 1 and time t is given as

Rt �
Pt − Pt−1

Pt−1
� gt − 1, (1)

where gt is the gross return or relative price of that in-
vestment. Moreover, let

rt � log gt( 􏼁 (2)

denote the log return at time t which represents the con-
tinuously compounded return. One of the most common
measures used to assess an investment’s performance is the
Sharpe ratio. *is ratio, proposed by Sharpe [1], takes the
form

SR �
E rt( 􏼁 − rf

������
var rt( 􏼁

􏽱 , (3)

where rf is a risk-free return. SR then measures the excess
expected return, or risk premium, relative to its volatility.

When data are given in terms of relative prices rather
than returns, Knight and Satchell [2] propose the following
extension to the Sharpe ratio:

KS �
E gt( 􏼁
�������
var gt( 􏼁

􏽱 . (4)

*is extension is known as the KS Sharpe ratio.
In statistical literature, it is common to assume that log

returns (i.e., the rt) are identically and independently dis-
tributed as normal with mean μ and variance σ2. Equiva-
lently, the gt are identically and independently distributed as
lognormal with mean and variance given by

exp μ +
σ2

2
􏼠 􏼡,

exp 2μ + σ2􏼐 􏼑 exp σ2 − 1􏼐 􏼑􏼐 􏼑,

(5)
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respectively. Under this assumption, the Sharpe ratio and the
KS Sharpe ratio can be written as follows:

SR �
μ − rf

σ
,

KS �
1

������

e
σ2

− 1
􏽱 .

(6)

Liu et al. [3] applied the standard likelihood method to
obtain inference for the Sharpe ratio with independent data,
and Ji et al. [4] extended the methodology to obtain in-
ference for this ratio with autocorrelated return data. Fu
et al. [5] relaxed the distributional assumption and applied
the adjusted empirical likelihood ratio method to obtain
inference for the Sharpe ratio. Despite work on the Sharpe
ratio, there does not appear to be any statistical studies on
the KS Sharpe ratio except for the original paper by Knight
and Satchell [2], in which they obtained the uniformly
minimum variance unbiased estimator for the ratio.

As the KS Sharpe ratio depends only on σ, one sample exact
inference is straightforward. However, inference for either the
difference or the ratio of two independent KS Sharpe ratios is
complicated and no exact analysis is available. In this paper, we
propose to use a higher-order likelihood-based asymptotic
method to obtain inference for the difference between two
independent KS Sharpe ratios. *e proposed method provides
an important indicator to practitioners who are interested in
comparing the performance of two assets. We compare our
method to two standard asymptotic methods through an ex-
ample and simulations. While the example shows the differ-
ences between the three methods, the simulation studies
demonstrate the extreme accuracy of our proposed method.
Accuracy is important as sample sizes can be limited in
practice. *e proposed method is straightforward and easy to
use in practice. *e methodology can also be applied to obtain
inference for the ratio of two independent KS Sharpe ratios.

2. Likelihood-Based Inference

In this section, we review first-order likelihood-based inferential
procedures. We then propose a modification to the first-order
procedures such that the resulting inference procedure has third-
order accuracy. Let (y1, . . . , yn) be a sample from a population
with probability density function f(yi; θ), where θ is a k-di-
mensional parameter. Let ψ � ψ(θ) be the scalar parameter of
interest and λ � λ(θ) be the (k − 1)-dimensional nuisance
parameter. As defined by Kalbfleisch [6], the log-likelihood
function for θ based on the observed sample (y1, . . . , yn) is

ℓ(θ) � ℓ(ψ, λ) � ℓ θ; y1, . . . , yn( 􏼁 � a + 􏽘
n

i�1
logf yi; θ( 􏼁,

(7)

where a is an arbitrary additive constant. Reid [7] notes that
the value of the likelihood function is only meaningful in
relative terms. *e likelihood function contains almost
everything that a model has to say about the observed data.
Among the possible values of θ, the overall maximum
likelihood estimator (mle) of θ,

􏽢θ � 􏽢ψ, 􏽢λ
T

􏼒 􏼓
T

� ψ(􏽢θ), λ(􏽢θ)
T

􏼐 􏼑
T

� argmax
θ

ℓ(θ; y). (8)

maximizes the likelihood function regardless of the value of
the additive constant a. Hence, without loss of generality, we
set a to be zero. Moreover, let

j(􏽢θ) � −
z2ℓ(θ)

zθzθT

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏽢θ
, (9)

be the observed information evaluated at mle.

2.1. First-Order Methods. With regularity conditions stated
in Cox andHinkley [8], the asymptotic mean and variance of
the mle are given as θ and j−1(􏽢θ). Hence, for a large sample
size n, by the multivariate central limit theorem, the limiting
distribtion of (􏽢θ − θ) is the kth dimensional multivariate
normal distribution with mean 0 and variance j−1(􏽢θ). *us,
(􏽢θ − θ)Tj(􏽢θ)(􏽢θ − θ) is asymptotically distributed as χ2k, with
first-order accuracy or equivalently, with a rate of conver-
gence O(n−1/2). By applying the delta method, we have

q(ψ) �
􏽢ψ − ψ
������
􏽣var(􏽢ψ)

􏽰 , (10)

where

􏽣var(􏽢ψ) ≈ ψT
θ(􏽢θ)j

−1
(􏽢θ)ψθ(􏽢θ), (11)

and ψθ(θ) is the derivative of ψ(θ) with respect to θ. *e
statistic in (10) is asymptotically distributed as a standard
normal distribution with first-order accuracy. A
(1 − α)100% confidence interval for ψ is thus given by

ψ: |q(ψ)|< zα/2􏼈 􏼉, (12)

where zα/2 is the (1 − α/2)100th quantile of the standard
normal distribution. *e statistic q(ψ) is referred to as the
Wald statistic or the standardized mle statistic. Jobson and
Korkie [9] applied this method to obtain approximate in-
ference for the Sharpe ratio.

Another commonly applied asymptotic method is based
on the likelihood ratio method. Since ψ is a scalar parameter
of interest, we have

R � R(ψ) � sgn(􏽢ψ − ψ) 2 ℓ(􏽢θ) − ℓ 􏽢θψ􏼐 􏼑􏽨 􏽩􏽮 􏽯
1/2

, (13)

where
􏽢θψ � argmax

λ
ℓ(θ; y) (14)

denotes the constrained mle (i.e., the mle of θ for a given ψ).
*e statistic R(ψ) is likewise asymptotically distributed as
standard normal with first-order accuracy. A (1 − α) 100%
confidence interval for ψ is

ψ: |R(ψ)|< zα/2􏼈 􏼉. (15)

*e statisticR(ψ)2 is theWilks statistic or the log-likelihood
ratio statistic andR(ψ) is referred to as the signed log-likelihood
ratio statistic. Reid [7] provided a detailed review of the as-
ymptotic distribution of q(ψ) and R(ψ). In practice, the Wald
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statistic is used more frequently than the signed log-likelihood
ratio statistic due to its simplicity in calculation. *e determi-
nation of the constrained mle required for the signed log-
likelihood ratio statistic can be a much more difficult task.
However, theoretically, the advantage of the signed log-likeli-
hood ratio statistic lies in its invariance to reparameterization.
*eWald statistic does not possess this property and results will
vary depending on the parameterization used.

2.2. ?ird-Order Method. Many methods have emerged in
recent years that improve upon the accuracy of the signed log-
likelihood ratio statistic, see Skovgaard [10] for a detailed
overview. In particular, there are three major improvement
methods which are proposed by the following papers: Barlett
[11]; Barndorff-Nielsen [12, 13]; and Fraser and Reid [14]; and
they are reviewed in Skovgaard [10]. Bartlett [11] proposed
the Bartlett correction method, a method that has fourth-
order accuracy and is applicable to any vector parameter of
interest. Except in special cases, the Bartlett correction factor
is extremely difficult to calculate. Barndorff-Nielsen [12, 13]
proposed the modified signed log-likelihood ratio method.
*is method has third-order accuracy and is applicable only
to a scalar parameter of interest. It further requires the ex-
istence of an ancillary statistic whichmay not exist, and even if
it does exist, it may not be unique. Fraser and Reid [14]
generalized the modified signed log-likelihood ratio method
such that it is applicable to any model and does not require an
ancillary statistic. *e method achieves third-order accuracy.
In this paper, we apply Fraser and Reid’s method to obtain
inference for the difference of two independent KS Sharpe
ratios under lognormal returns.

Barndorff-Nielsen [12, 13] defined the modified signed
log-likelihood ratio statistic for a scalar parameter ψ to be

R
∗
(ψ) � R(ψ) −

1
R(ψ)

log
R(ψ)

Q(ψ)
􏼠 􏼡, (16)

whereR(ψ) is the signed log-likelihood ratio statistic defined in
(13), and Q(ψ) is a special statistic that depends on the ex-
istence of an ancillary statistic. Fraser and Reid [14] showed that
for the natural exponential familymodel with θ as the canonical
parameter and ψ a component of θ, Q(ψ) � q(ψ), which is the
standardized mle statistic defined in (10). Fraser and Reid [14]
further extended their methodology to the exponential family
model where ψ is not a component of the canonical parameter.
*eir approach takes the following steps:

(1) Obtain the canonical parameter φ(θ)

(2) *e statistic R(ψ) as defined in (13) remains un-
changed as the signed log-likelihood ratio statistic is
invariant to reparametrization

(3) Obtain the standardized mle statistic Q(ψ) in the
canonical parameter scale as

Q(ψ) �
φ(􏽢θ) − φ 􏽢θψ􏼐 􏼑φλ

􏽢θψ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

φθ(􏽢θ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|j(􏽢θ)|

􏽥j 􏽢θψ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/2

, (17)

where

􏽥j 􏽢θψ􏼐 􏼑 � −
z2ℓ(θ)

zλzλT

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏽢θψ
. (18)

φλ(
􏽢θψ) is the derivative of φ(θ) with respect to λ

evaluated at the constrained mle, and φθ(􏽢θ) is the
derivative of φ(θ) with respect to θ evaluated at the
overall mle

Fraser and Reid [14] showed thatR∗(ψ) is asymptotically
distributed as standard normal with third-order distribu-
tional accuracy. Brazzale et al. [15] have a collection of
examples where they apply this third-order method and
demonstrate the extreme accuracy of the method even when
the sample size is small. In what follows, we apply the above
methods to obtain confidence intervals for the difference of
two independent KS Sharpe ratios.

3. Inference for the Difference of Two
Independent KS Sharpe Ratios

As discussed in Section 1, with (r1, . . . , rn) IID normally
distributed with mean μ and variance σ2, or alter-
natively,(g1, . . . , gn) � (er1 , . . . , ern ) IID lognormally dis-
tributed, the KS Sharpe ratio is a function of σ2 alone. It is
well-known that 􏽐

n
i�1 (ri − r)2/σ2 is distributed as χ2n−1. Exact

(1 − α)100% confidence intervals for σ2 can therefore be
obtained. Since the KS Sharpe ratio is a one-to-one function
of σ2, exact (1 − α)100% confidence intervals for KS can also
be obtained. However, inference for the difference between
two independent KS Sharpe ratios is not as straightforward.
Exact results are not available. In this section, we apply the
likelihood-based methods discussed to this particular in-
ferential problem.

Consider two independent investments with log returns
(rX

1 , . . . , rX
n ) from a normal distribution with mean μX and

variance σ2X. *e (rY
1 , . . . , rY

m) are drawn from a normal
distribution withmean μY and variance σ2Y.*e parameter of
interest is the difference between the two KS Sharpe ratios:

ψ � ψ(θ) �
1

������

e
σ2

X − 1
􏽱 −

1
������

e
σ2

Y − 1
􏽱 , (19)

where θ � (μX, σ2X, μY, σ2Y)T. *e resultant log-likelihood
function is

ℓ(θ) � −
n

2
logσ2X −

􏽘

n

i�1
log g

X
i􏼐 􏼑 − μX􏼐 􏼑

2

2σ2X

−
m

2
logσ2Y −

􏽘

m

j�1
log g

Y
j􏼐 􏼑 − μY􏼐 􏼑

2

2σ2Y
.

(20)

*e overall mle is
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􏽢θ � 􏽢μX, 􏽢σ2X, 􏽢μY, 􏽢σ2Y􏼐 􏼑
T

�

􏽐
n
i�1log gX

i( 􏼁

n
,
􏽐

n
i�1 log gX

i( 􏼁 − 􏽢μX( 􏼁
2

n
,

􏽐
m
j�1 log gY

j􏼐 􏼑

m
,
􏽐

m
j�1 log gY

j􏼐 􏼑 − 􏽢μY􏼐 􏼑
2

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

􏽢ψ �
1

������

e􏽢σ2X − 1
􏽱 −

1
������

e􏽢σ2Y − 1
􏽱 .

(21)

*e inverse of the observed information evaluated at the
mle is used as an approximation to the variance of θ. By
applying the delta method, we are able to estimate the
variance of 􏽢ψ as

􏽣var(􏽢ψ) �
1
2n

􏽢σ2Xe
−2􏽢σ2X e􏽢σ2X − 1􏼒 􏼓

−3
+

1
2m

􏽢σ2Ye
−2􏽢σ2Y e􏽢σ2Y − 1􏼒 􏼓

−3
.

(22)

*e statistic 􏽢ψ is asymptotically distributed as normal
with mean ψ and approximate variance 􏽣var(􏽢ψ). q(ψ) can be
obtained from (10).*is can be viewed as an extension of the
method discussed by Jobson and Korkie [9].

Moreover, it can be shown that the constrained mle is

􏽢θψ � 􏽥μX, 􏽥σ2X, 􏽥μY, 􏽥σ2Y􏼐 􏼑
T
, (23)

where

􏽥μX �

􏽘

n

i�1
log g

X
i􏼐 􏼑

n

􏽥μY �

􏽘

m

j�1
log g

Y
j􏼐 􏼑

m
.

(24)

*e variances given by 􏽥σ2X and 􏽥σ2Y do not have closed-
form solutions and must be obtained numerically. With this
information, R(ψ) can be obtained from (13). Confidence
intervals for ψ based on the first-order methods can likewise
be obtained.We note that the model is an exponential family
model with the canonical parameter given by

φ(θ) �
μX

σ2X
,
1
σ2X

,
μY

σ2Y
,
1
σ2Y

􏼠 􏼡

T

. (25)

Hence, Q(ψ) can be obtained from (17) and the modified
signed log-likelihood ratio statistic R∗(ψ) can be obtained
from (16). Confidence intervals for ψ based on third-order
methods can thus be obtained.

3.1. Example. To illustrate our proposed method, consider
the data reported in Table 1. *is table records the monthly
relative returns of Tesla, Inc. (TSLA) and Netflix, Inc.
(NFLX) downloaded from Yahoo Finance for the period
January 2019 to January 2020. Our interest is in comparing
the performance of the two stocks using the difference

between the two KS Sharpe ratios. In terms of the underlying
assumptions, we note that a Shapiro–Wilks test of normality
for TSLA and NFLX gives p values of 0.7107 and 0.0664,
respectively. Correlation test (p value� 0.1177) between the
two series suggests the two populations are independently
distributed as normal. *e p value from a Durbin Watson
test of serial correlation is 0.8834 for TSLA and 0.3769 for
NFLX, which suggests no serial correlation.

Table 2 records the 95% confidence intervals for the
difference between the two KS Sharpe ratios calculated using
the three different likelihood methods discussed in this
paper. While the intervals all suggest NFLX is the preferred
stock, they do not produce quantitatively similar results.

3.2. Simulation Results. *e results from the above-
mentioned example show how the three methodologies can
result in quite different confidence intervals. In this section,
simulation studies are carried out to assess the performance
of these methods. Extensive simulation studies were per-
formed but only a selection of the results is reported in this
paper. *e presented results are representative of the
findings of all simulations conducted. For each combina-
tions of n, μ, and σ, 10,000 Monte Carlo replications are
performed. For each generated sample, the 95% confidence
interval for the difference of the KS Sharpe ratios is cal-
culated. *e performance of a method is judged using the
following three criteria:

(1) *e central coverage probability (CP): the propor-
tion of the true difference of the KS Sharpe ratios falls
within the 95% confidence interval

(2) *e lower tail error rate (LE): the proportion of the
true difference of the KS Sharpe ratios falls below the
lower limit of the 95% confidence interval

(3) *e upper tail error rate (UE): the proportion of the
true difference of the KS Sharpe ratios falls above the
upper limit of the 95% confidence interval

*e nominal values for these three criteria are 0.95,
0.025, and 0.025, respectively. *e nominal value for the CP
criteria is 0.95. Moreover, since the three methods con-
sidered in this paper have the same limiting standard normal
distribution, the nominal values for the LE and UE criteria
are 0.025 and 0.025, respectively. Tables 3–5 record the
simulation results.

*e central coverage of our proposed method is superior
to both the Wald and signed log-likelihood ratio methods,
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even for small sample sizes. Furthermore, our proposed
method has extremely accurate and symmetric tail error
rates. *e tail error probabilities produced by the other two
methods are wildly asymmetric but perform better as the
sample size increases, indicating that these two methods are
converging to the normal distribution. From all our addi-
tional simulation studies, we can conclude that our proposed
method is indisputably superior and thus recommended for
all empirical applications.

4. Conclusion

We considered lognormally distributed returns and used the
KS Sharpe ratio as a measure of an asset’s expected return
relative to its volatility. We proposed a third-order likeli-
hood-based method for the difference between two such
ratios. Numerical studies verified the extreme accuracy
obtained by the proposed method. When returns are as-
sumed to be lognormally distributed, we advocate the use of
our proposed method. It is both easy to implement and
extremely accurate regardless of the size of the samples.

Data Availability

*e dataset used in the example is from a public domain
(downloaded from Yahoo Finance). *e other numerical
examples in the submitted paper are based on simulation
studies, which are available from the corresponding author
upon request.
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