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We provide a permutation invariant version of the strong law of large numbers for exchangeable sequences of random variables.
,e proof consists of a combination of the Komlós–Berkes theorem, the usual strong law of large numbers for exchangeable
sequences, and de Finetti’s theorem.

1. Introduction

Kolmogorov’s strong law of large numbers (SLLN) for in-
dependent and identically distributed (i.i.d.) sequences of
random variables has been generalized into several di-
rections. It has, for example, been generalized for pairwise
independent, identically distributed random variables in [1],
for nonnegative random variables in [2], for dependent,
mixing random variables in [3, 4], and for pairwise un-
correlated random variables in [5].

,ere is also a version of the SLLN for exchangeable se-
quences. More precisely, let (ξn)n∈N be an exchangeable se-
quence of random variables on a probability space (Ω, F,P), let
E be its exchangeable σ-algebra, and let T be its tail σ-algebra. If
the sequence (ξn)n∈N is integrable, then the SLLN for ex-
changeable sequences tells us that (ξn)n∈N is almost surely
Cesàro convergent; more precisely, we have the following result.

Proposition 1. Let (ξn)n∈N ⊂ L1 be an exchangeable se-
quence of integrable random variables. -en, (ξn)n∈N is
P-almost surely Cesàro convergent to the limit

ξ � E ξ1|E􏼂 􏼃 � E ξ1|T􏼂 􏼃. (1)

,is result is well known; see, for example, [6], Example
12.15, or [7], page 185.,e goal of this note is to establish the

following permutation invariant version of the SLLN for
exchangeable sequences.

Theorem 1. Let (ξn)n∈N ⊂ L1 be an exchangeable sequence of
integrable random variables. We set ξ ≔ E[ξ1|E]. -en, the
following statements are true:

(1) For every subsequence (nk)k∈N and every permutation
π: N⟶ N, the sequence (ξnπ(k)

)k∈N is P-almost
surely Cesàro convergent to ξ

(2) For every permutation σ: N⟶ N and every sub-
sequence (mk)k∈N, the sequence (ξσ(mk))k∈N is P-al-
most surely Cesàro convergent to ξ

(3) We have P-almost surely ξ � E[ξn|E] � E[ξn|T] for
each n ∈ N

Intuitively, the statement of ,eorem 1 is plausible.
Indeed, de Finetti’s theorem, which is stated as,eorem 3 in
the following, provides a connection between exchangeable
sequences and conditional i.i.d. sequences, and in the
present situation, it implies that the sequence (ξn)n∈N is i.i.d.
given E or given T.

Let us briefly indicate the main ideas for the proof of
,eorem 1. Since exchangeability of the sequence is pre-
served under permutations, by Proposition 1, it follows that
the sequences (ξnπ(k)

)k∈N and (ξσ(mk))k∈N are almost surely
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Cesàro convergent. However, it is not clear whether the
limits of these two sequences coincide with ξ because their
exchangeable σ-algebras can be different from E, and ac-
cordingly, their tail σ-algebras can be different from T.
Nevertheless, note that, by exchangeability of the sequence,
all these limits have the same distribution.

In order to overcome the problem regarding the iden-
tification of the limits, we use the Komlós–Berkes theorem
(see [8]), which is stated as ,eorem 2 in the following. ,is
result is an extension of Komlós’s theorem (see [9]); see also
[10], ,m. 5.2.1, for another extension of Komlós’s theorem.
,e Komlós–Berkes theorem was also used in order to prove
the von Weizsäcker theorem (see [11]); see also [10], ,m.
5.2.3, for a similar result and [12] for a note on the von
Weizsäcker theorem.

Coming back to the identification of the limits, the
Komlós–Berkes theorem provides us with a subsequence
(nk)k∈N such that, for every permutation π: N⟶ N, the
sequence (ξnπ(k)

)k∈N is almost surely Cesàro convergent to the
same limit. Using this result, in three steps, we will show
that, for every subsequence and every permutation, the
corresponding sequence is almost surely Cesàro convergent
to the same limit and that this limit is given by ξ. For the
identification of the limits, we use results about conditional
expectations which are provided in the Appendix section.

2. Proof of the Result

Let (Ω, F,P) be a probability space. We denote by L1 �

L1(Ω, F,P) the space of all equivalence classes of integrable
random variables. Let (ξn)n∈N be a sequence of random
variables. Furthermore, let E be the exchangeable σ-algebra
of the sequence (ξn)n∈N, and let T be the tail σ-algebra of the
sequence (ξn)n∈N. We assume that the sequence (ξn)n∈N is
exchangeable; that is, for every finite permutation
π: N⟶ N, we have

P ∘ ξn( 􏼁n∈N( 􏼁 � P ∘ ξπ(n)􏼐 􏼑
n∈N􏼐 􏼑, (2)

or equivalently, for all k ∈ N, all pairwise different
n1, . . . , nk ∈ N, and all pairwise different m1, . . . , mk ∈ N, we
have

P ∘ ξn1
, . . . , ξnk

􏼐 􏼑 � P ∘ ξm1
, . . . , ξmk

􏼐 􏼑. (3)

Remark 1. Note that, for every subsequence (nk)k∈N and
every permutation π: N⟶ N, the sequence (ξnπ(k)

)k∈N is
also exchangeable. Accordingly, for every permutation
σ: N⟶ N and every subsequence (mk)k∈N, the sequence
(ξσ(mk))k∈N is also exchangeable.

Lemma 1. -e following statements are true:

(1) For every subsequence (nk)k∈N and every permutation
σ: N⟶ N, there exist a permutation π: N⟶ N

and a subsequence (mk)k∈N such that σ(mk) � nπ(k)

for all k ∈ N

(2) For every subsequence (nk)k∈N and every permutation
π: N⟶ N, there exists a permutation σ: N⟶ N

such that σ(nk) � nπ(k) for all k ∈ N

Proof

(1) We define the one-to-one map τ: N⟶ N as

τ(k) ≔ σ− 1
nk( 􏼁, for each k ∈ N. (4)

,en, there exists a permutation π: N⟶ N such
that τ(π(k))< τ(π(k + 1)) for all k ∈ N. Indeed, we
define π inductively as follows. Let π(1) ∈ N be the
unique index such that

τ(π(1)) � min τ(k): k ∈ N{ }. (5)

If π(1), . . . , π(p) are already defined for some p ∈ N,
then let π(p + 1) ∈ N be the unique index such that

τ(π(p + 1)) � min τ(k): k ∈ N∖ π(1), . . . , π(p)􏼈 􏼉􏼈 􏼉.

(6)

,en, π is a permutation. We define the subsequence
(mk)k∈N as mk ≔ τ(π(k)) for each k ∈ N. ,en, we
have σ(mk) � nπ(k) for each k ∈ N.

(2) We define the permutation σ: N⟶ N as

σ(m) ≔
nπ(k) if m � nk for some k ∈ N,

m, otherwise.
􏼨 (7)

,en, we have σ(nk) � nπ(k) for all k ∈ N. □

For convenience of the reader, we state the
Komlós–Berkes theorem and de Finetti’s theorem before we
provide the proof of ,eorem 1.

Theorem 2. (Komlós–Berkes theorem). Let (ξn)n∈N ⊂ L1 be
a sequence of integrable random variables such that
supn∈NE[|ξn|]<∞. -en, there exist a subsequence (nk)k∈N
and an integrable random variable ξ ∈ L1 such that, for every
permutation π: N⟶ N, the sequence (ξnπ(k)

)k∈N is P-almost
surely Cesàro convergent to ξ.

Proof. See [8]. □

Let G ⊂ F be a sub-σ-algebra. A sequence (ξn)n∈N of
random variables is called independent and identically
distributed (i.i.d.) given G if for every finite subset I ⊂ N and
all Borel sets Bi ∈ B(R), i ∈ I, we have P-almost surely

P ∩
i∈I

ξi ∈ Bi􏼈 􏼉|G􏼒 􏼓 � 􏽙
i∈I

P ξi ∈ Bi|G( 􏼁(independence givenG),

(8)

and for all n, m ∈ N and every Borel set B ∈ B(R), we have
P-almost surely
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P ξn ∈ B|G( 􏼁 � P ξm ∈ B|G( 􏼁(identical distributions givenG).

(9)

Theorem 3 (de Finetti’s theorem). Let (ξn)n∈N be a sequence
of random variables. -en, the following statements are
equivalent:

(i) -e sequence (ξn)n∈N is exchangeable
(ii) -ere exists a sub-σ-algebraG ⊂ F such that (ξn)n∈N is

i.i.d. given G

If the previous conditions are fulfilled, then we can choose
G � E or G � T.

Proof. See, for example, ,m. 12.24 of [6]. □

Now, we are ready to provide the proof of ,eorem 1.

Proof. of ,eorem 1. By the Komlós–Berkes theorem (see
,eorem 2), there exist a subsequence (nk)k∈N and an in-
tegrable random variable ξ ∈ L1 such that, for every per-
mutation π: N⟶ N, the sequence (ξnπ(k)

)k∈N is P-almost
surely Cesàro convergent to ξ. Now, we proceed with the
following three steps:

Step 1: first, we show that, for every permutation
σ: N⟶ N, the sequence (ξσ(n))n∈N is P-almost surely
Cesàro convergent to ξ. Indeed, by Lemma 1, there exist
a permutation π: N⟶ N and a subsequence (mk)k∈N
such that σ(mk) � nπ(k) for each k ∈ N. By Remark 1
and Proposition 1, we have

ξ � E ξnπ(1)
|E nπ(k)( )k ∈ N

􏼔 􏼕 � E ξnπ(1)
|T nπ(k)( )k ∈ N

􏼔 􏼕, (10)

where E(nπ(k))k ∈ N
denotes the exchangeable σ-algebra of

the sequence (ξnπ(k)
)k∈N and T(nπ(k))k ∈ N

denotes the tail
σ-algebra of the sequence (ξnπ(k)

)k∈N. Furthermore, by
Remark 1 and Proposition 1, the sequence (ξσ(n))n∈N is
P-almost surely Cesàro convergent to the random
variable

η ≔ E ξσ(1)|E(σ(n))n∈N
􏽨 􏽩 � E ξσ(1)|T(σ(n))n∈N

􏽨 􏽩, (11)

where E(σ(n))n∈N
denotes the exchangeable σ-algebra of

the sequence (ξσ(n))n∈N and T(σ(n))n∈N
denotes the tail

σ-algebra of the sequence (ξσ(n))n∈N. By de Finetti’s
theorem (see ,eorem 3), we have

η � E ξnπ(1)
|E(σ(n))n∈N

􏼔 􏼕 � E ξnπ(1)
|T(σ(n))n∈N

􏼔 􏼕. (12)

Since E(nπ(k))k∈N
⊂ E(σ(n))n∈N

and T(nπ(k))k∈N
⊂ T(σ(n))n∈N

, by
(10), we obtain

ξ � E η|E nπ(k)( )k∈N
􏼔 􏼕 � E η|T nπ(k)( )k∈N

􏼔 􏼕. (13)

By exchangeability of the sequence (ξn)n∈N, we have

P ∘
1
n

􏽘

n

i�1
ξnπ(i)

⎛⎝ ⎞⎠ � P ∘
1
n

􏽘

n

i�1
ξσ(i)

⎛⎝ ⎞⎠, for each n ∈ N,

(14)

and hence, by Proposition A.1, we obtain P-almost
surely ξ � η. In particular, if σ � Id, then by (11) and de
Finetti’s theorem (see ,eorem 3), we obtain P-almost
surely

ξ � η � E ξn|E􏼂 􏼃 � E ξn|T􏼂 􏼃, for each n ∈ N. (15)

Step 2: now, let σ: N⟶ N be an arbitrary permuta-
tion, and let (mk)k∈N be an arbitrary subsequence.
,en, the sequence (ξσ(mk))k∈N is P-almost surely
Cesàro convergent to ξ. Indeed, by Step 1 and de
Finetti’s theorem (see ,eorem 3), the sequence
(ξσ(n))n∈N is P-almost surely Cesàro convergent to

ξ � E ξσ(1)|E(σ(n))n∈N
􏽨 􏽩 � E ξσ m1( )|E(σ(n))n∈N

􏼔 􏼕. (16)

Furthermore, by Remark 1 and Proposition 1, the
sequence (ξσ(mk))k∈N is P-almost surely Cesàro con-
vergent to the random variable

ζ ≔ E ξσ m1( )|E σ mk( )( )k∈N
􏼔 􏼕. (17)

Since E(σ(mk))k∈N
⊂ E(σ(n))n∈N

, by (16), we obtain

ζ � E ξ|E σ mk( )( )k∈N
􏼔 􏼕. (18)

By exchangeability of the sequence (ξn)n∈N, we have

P ∘
1
n

􏽘

n

i�1
ξσ(i)

⎛⎝ ⎞⎠ � P ∘
1
n

􏽘

n

i�1
ξσ mi( )

⎛⎝ ⎞⎠, for each n ∈ N,

(19)

and hence, by Proposition A.1, we obtain P-almost
surely ξ � ζ. Consequently, the sequence (ξσ(mk))k∈N is
P-almost surely Cesàro convergent to ξ.
Step 3: now, let (nk)k∈N be an arbitrary subsequence,
and let π: N⟶ N be an arbitrary permutation. By
Lemma 1, there exists a permutation σ: N⟶ N such
that σ(nk) � nπ(k) for all k ∈ N. ,erefore, by Step 2, the
sequence (ξnπ(k)

)k∈N is P-almost surely Cesàro con-
vergent to ξ, which concludes the proof. □

We can extend the statement of ,eorem 1 as follows.

Proposition 2. Let (ξn)n∈N ⊂ L1 be an exchangeable se-
quence of integrable random variables. We set ξ ≔ E[ξ1|E].
-en, for every subsequence (nk)k∈N and all permutations
π, σ: N⟶ N, the sequence (ξσ(nπ(k))

)k∈N is P-almost surely
Cesàro convergent to ξ. Furthermore, we haveP-almost surely
ξ � E[ξn|E] � E[ξn|T] for each n ∈ N.
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Proof. By Lemma 1, there exists a permutation τ: N⟶ N

such that τ(nk) � nπ(k) for all k ∈ N. ,e mapping
ρ: N⟶ N given by ρ ≔ σ ∘ τ is also a permutation, and we
have σ(nπ(k)) � ρ(nk) for all k ∈ N. ,erefore, applying
,eorem 1 concludes the proof. □

We conclude this section with the following conse-
quence regarding Komlós’s theorem for exchangeable se-
quences, namely, let (ξn)n∈N ⊂ L1 be an exchangeable
sequence of random variables. ,en, ,eorem 1 shows that
both extensions of Komlós’s theorem (the Komlós–Berkes
theorem from [8], which we have stated as ,eorem 2, and
,m. 5.2.1 of [10]) are true with the original sequence
(ξn)n∈N; that is, we do not have to pass to a subsequence
(ξnk

)k∈N.

Appendix

Results about Conditional Expectations

We require the following results about conditional expec-
tations. Since these results were not immediately available in
the literature, we provide the proofs. For the following, let
G ⊂ F be a sub-σ-algebra.

Lemma A.1. Let X ∈ L2 be a square-integrable random
variable such that P ∘X � P ∘E[X|G]. -en, we have
P-almost surely X � E[X|G].

Proof. Setting Y ≔ E[X|G], we have E[X2] � E[Y2], and
hence,

E (X − Y)
2

􏽨 􏽩 � E X
2

􏽨 􏽩 − 2E[XY] + E Y
2

􏽨 􏽩 � 2E X
2

􏽨 􏽩

− 2E[E[XY|G]]

� 2E X
2

􏽨 􏽩 − 2E[YE[X|G]] � 2E X
2

􏽨 􏽩

− 2E Y
2

􏽨 􏽩 � 0,

(A.1)

completing the proof. □

Lemma A.2. Let X ∈ L1 be a nonnegative random variable,
and let φ: R+⟶ R+ be a concave function such that
P-almost surely

E[φ(X)] � E[φ(E[X|G])]. (A.2)

-en, we have P-almost surely

E[φ(X)|G] � φ(E[X|G]). (A.3)

Proof. By Jensen’s inequality for concave functions and
conditional expectations, we have P-almost surely

E[φ(X)|G] ≤φ(E[X|G]). (A.4)

Suppose that (A.3) does not hold true. ,en, we have
P-almost surely

φ(E[X|G]) − E[φ(X)|G] ∈ L
0
+\ 0{ }, (A.5)

where L0
+ denotes the convex cone of all equivalence classes

of nonnegative random variables. Hence, we obtain P-al-
most surely

E[φ(X)] � E[E[φ (X) |G]]<E[φ(E[X|G])], (A.6)
which contradicts (A.2). □

Lemma A.3. Let X ∈ L1 be an integrable random variable
such that

P ∘X � P ∘E[X|G]. (A.7)

-en, we have P-almost surely X � E[X|G].

Proof. First, we assume that X ∈ L1 is nonnegative. Let
n ∈ N be arbitrary. By (A.7) and Lemma A.2, we have
P-almost surely

E[X|G]∧ n � E[X∧ n |G]. (A.8)

,erefore, by taking into account (A.7), we have

P ∘ (X∧n) � P ∘ (E[X|G]∧ n) � P ∘E[X∧ n |G]. (A.9)

Since X∧n ∈ L2, by Lemma A.1 and (A.8), we deduce
that P-almost surely

X∧n � E[X∧ n |G] � E[X|G]∧ n. (A.10)

Since n ∈ N was arbitrary, it follows that P-almost surely
X � E[X|G].

Now, let X ∈ L1 be arbitrary. Since

E[X|G]
+

� E X
+
|G􏼂 􏼃,

E[X|G]
−

� E X
−

|G[ ],
(A.11)

by (A.7), we have

P ∘X+
� P ∘E X

+
|G􏼂 􏼃,

P ∘X−
� P ∘E X

−
|G[ ].

(A.12)

By the first part of the proof, we deduce that P-almost
surely X+ � E[X+|G] and X− � E[X+|G], and hence,
X � E[X|G]. □

Proposition A.1. Let (Xn)n∈N and (Yn)n∈N be sequences of
random variables, and let X ∈ L1 be an integrable random
variable. We assume that P ∘Xn � P ∘Yn for each n ∈ N and
that Xn ⟶ a.s.X and Yn ⟶ a.s.E[X|G] as n⟶∞. -en,
we have P-almost surely X � E[X|G].

Proof. Noting that P ∘X � P ∘E[X|G], this is a conse-
quence of Lemma A.3. □
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