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To uncover complex hidden dependency structures among variables, researchers have used a mixture of vine copula con-
structions. To date, these have been limited to a subclass of regular vinemodels, the so-called drawable vine, fitting only one type of
bivariate copula for all variable pairs. However, the variation of complex hidden correlations from one pair of variables to another
is more likely to be present in many real datasets. Single-type bivariate copulas are unable to deal with such a problem. In addition,
the regular vine copula model is much more capable and flexible than its subclasses. Hence, to fully uncover and describe complex
hidden dependency structures among variables and provide even further flexibility to the mixture of regular vine models, a
mixture of regular vine models, with a mixed choice of bivariate copulas, is proposed in this paper. +e model was applied to
simulated and real data to illustrate its performance. +e proposed model shows significant performance over the mixture of
R-vine densities with a single copula family fitted to all pairs.

1. Introduction

Real data often exhibit complex multivariate mixture de-
pendency structures among variables. +ese dependencies
may vary from one pair of variables to another.+e variation
in the dependency structures adds extra complexity for
modelling and capturing these types of relationships. +e
Gaussian mixture model is commonly used to model data
with complex dependency structures due to its ease of
implementation. However, the main limitation of this model
is that mixture Gaussian dependencies are assumed between
all variables. Furthermore, all univariate marginal distri-
butions are assumed to be Gaussian, which may not be the
case for many real datasets. Hence, this type of model may
not provide an adequate fit to the data, resulting in inac-
curate estimates of quantities derived from the fitted model.
Copula theory, however, provides two main strengths that
overcome these limitations. First, in copula models, due to
Sklar’s theorem (Sklar [1]), margins are modelled separately
from the dependency structures. Hence, margins do not
need to be from the same type of distribution. Second, there
is a wide range of copula families to describe various types of
dependencies, including heavy tails. +ese two main

advantages make copula a popular model in many areas. In a
mixture context, for example, Zhang and Shi [2] introduced
a Bayesian network with a copula model to study cancer
data. Gunawan et al. [3] studied Bayesian estimation of
copulas in high-dimensional cases of discrete and mixed
margins. In finance, for example, a mixture of three copulas,
Gaussian, Gumbel, and Gumbel survival, was studied by Hu
[4]. Khaled and Kohn [5] investigated the properties of the
mixture copula using different copula classes. Marbac et al.
[6] introduced a mixture of Gaussian copulas.

Regardless of the flexibility of the copula model, it
imposes the same dependency structures among variables.
Furthermore, multivariate copula types are mostly limited to
elliptical copula families. Also, extending copula functions to
high-dimensional cases is known as a difficult problem [7].

To overcome the limitations of copula models, Aas et al.
[7] introduced the so-called pair-copula construction (PCC)
model. PCC decomposes a multivariate density into a cas-
cade of bivariate copula functions. +erefore, only two
variables are modelled at a time using bivariate copula
families, possibly belonging to different types. +ese flexi-
bilities have led PCC to receive great interest in the literature
of different fields, for example, in geostatistics (Gräler and
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Pebesma [8]; Erhardt et al. [9]) and in finance (Min and
Czado [10, 11]).

In the mixture context, several researchers have incor-
porated pair-copula models with a finite mixture model. For
example, Kim et al. [12] formed a mixture of drawable vine
(D-vine) density models using multiple D-vine construc-
tions that provide a high-flexibility mixture model and fa-
cilitate the comprehensive study of complex multivariate
models. +e authors illustrated the improvement of the
model fit to capture hidden dependency structures. Simi-
larly, a mixture of D-vine copulas was introduced by Zheng
et al. [13] for chemical process monitoring. In their models,
only one type of copula family was fitted to all pairs of
variables.

Amixture canonical vine (C-vine)model was introduced
by Sun et al. [14]. +ey showed that the performance of the
C-vine copula mixture model was superior to other
methods, including K-means and Gaussian mixture models
(GMMs). Similarly, Qiu et al. [15] introduced C-vine and
D-vine mixture copula models to analyze the dependency
structure of the multiwind power output. Evkaya et al. [16]
incorporated C-vine into the D-vine copula model (CD-
vine) using fixed pair-copula for each density to model the
dependency pattern among variables based on their tem-
poral order.

Despite the strengths of the mixture PCC models, only
C- and D-vine mixture-based models have been introduced
in the literature due to their ease of computation.+e regular
vine (R-vine) model, however, is a general class that is
formed as a mix of C- and D-vines. R-vine gives more
flexibility for tree structures than C- and D-vines since it
does not have a specific role in ordering the variables.
Dißmann et al. [17] stated that R-vine copula-based models
provide much more modelling capabilities. Besides, the
authors provided a comparison example with several sce-
narios, including mixed R-vine (different copula types for
each pair of variables). +e authors concluded that overall,
their example demonstrated the usefulness of the R-vine
model with different choices of copula for each copula term.

Nowadays, R-vine models have been receiving increas-
ing interest in the literature. For example, Dißmann et al.
[17] provided a novel method for selecting and estimating
R-vine copula models sequentially (tree by tree) using array
representation. +e array representation goes back to Mo-
rales Napoles et al. [18], who aimed to count the number of
R-vine tree structures. +e spatial R-vine model was in-
troduced by Erhardt et al. [19]. In finance, two Bayesian
R-vine models were developed by Gruber and Czado
[20, 21]. In chemical process monitoring, Zhou and Li [22]
applied the R-vine copula model to describe high-dimen-
sional interdependence among complex variables.

In a mixture context, however, R-vine has not been
investigated in the literature. Introducing mixture vine
copulas into conventional vine pair-copula construction is a
challenging task that opens up areas for future research
regarding the selection of such models [21]. From the
previous studies of the mixture PCC models and the R-vine
models, a mixture of R-vine models may provide further
flexibility for modelling highly complex hidden

dependencies among the variables. Furthermore, specifying
different bivariate copula types for each copula term im-
proves the model fit for capturing multivariate dependencies
among the variables and hence reduces the misspecification
of the dependency structures. +erefore, a mixture of R-vine
density models with mixed copula types will introduce
further improvement and flexibility to the model. Although
Kim et al. [12] mentioned, as a valuable extension of their
work, fitting different bivariate copula types for all copula
terms of a mixture of D-vines, this has not been investigated
in the literature.

+erefore, inspired by and building on the works of
Dißmann et al. [17] and Kim et al. [12], this paper develops
the first mixture of the R-vine density model, with a mixed
choice of bivariate copulas (copula family is specified in-
dividually for each pair in each density), in the literature.+e
new proposed model aims to introduce higher flexibility to
mixture vine copula models, providing a way to fully cap-
tured mixed hidden complex correlations among variables.

+e rest of the paper is organised as follows: Section 2
reviews a brief theoretical background of the copula and the
regular vine copula. Section 3 discusses the selection strategy
of the mixture of R-vines; the model describes the expec-
tation-maximisation algorithm (a method used to estimate
the model parameters) and provides an example of a two-
component mixture R-vine density model stored in an array
representation. Section 4 illustrates the performance of the
proposed model in simulated and real datasets. Moreover,
the new mixture model is compared with a mixture R-vine
model where a single copula family is fitted to all pairs of the
variables.

2. Theoretical Background

2.1. Copula. Generally, a copula function can be defined as a
function that “links or joins” multivariate distribution
functions to their univariate uniform marginal distribution
functions [23].

Definition 1. Copulas, which were introduced by Sklar [1],
are multivariate cumulative distribution functions with
uniform marginal distributions on (0, 1) such that
(Schweizer and Sklar [24])

C: [0, 1]
n⟶ [0, 1], n≥ 2. (1)

Theorem 1 (see Sklar [1] in Joe [25]). If F is an n-variate
distribution function with univariate margins
F1, F2, . . . . . . , Fn, then there exists an n-copula function C

such that

F x1, x2, . . . , xn( 􏼁 � C F1 x1( 􏼁, F2 x2( 􏼁, . . . , Fn xn( 􏼁( 􏼁. (2)

If the margins are continuous, then the copula

C u1, u2, . . . , un( 􏼁 � F F
−1
1 u1( 􏼁, F

−1
2 u2( 􏼁, . . . , F

−1
n un( 􏼁􏼐 􏼑

(3)
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is unique, where F− 1 is the inverse function of the marginal
functions and u ∈ [0, 1]n.

&e joint density function can be obtained by taking the
partial derivatives of (2):

f x1, x2, . . . , xn( 􏼁 � c12,...,n F1 x1( 􏼁, F2 x2( 􏼁, . . . , Fn xn( 􏼁( 􏼁

× f1 x1( 􏼁 × f2 x2( 􏼁, . . . , fn xn( 􏼁,

(4)
where c12,...,n(·) is a copula density function.

From (4), the joint density function can be factorised
into its dependence structures and univariate margins.
Hence, from Sklar’s theorem (Sklar [1]), margins can be
modelled separately from the dependence structures. &is
forms the main advantage of copula models. Another
advantage of copulas is that they are invariant under
strictly increasing transformations of the random vari-
ables, while the margins may be changed [26]. In addition
to these advantages, there are various copula families, such
as elliptical copula (Gaussian and t-student) and Archi-
medean copula (e.g., Frank, Clayton, and Gumbel), which
can model a wide range of non-Gaussian dependence
structures including tail dependencies. For more families,
see Joe [25]. &ese advantages make copula-based models
commonly used models in different areas such as finance
(e.g., Embrechts et al. [27] and Cherubini et al. [28]),
spatial statistics (e.g., Bárdossy [29] and Kazianka and
Pilz [30, 31]), hydrogen production (e.g., Qiu et al. [15]),
and climate study (e.g., Khan et al. [32]).

Despite the advantages of the copula-based model, it
imposes the same dependency structures between all variables
in high-dimensional cases. Also, constructing a higher-di-
mensional copula is known as a difficult problem (Aas et al.
[7]). To overcome these limitations, a novel multivariate
model using only bivariate copula families has been developed
in the literature. &is new model is known as a vine copula or
a pair-copula-based model.

&e following section introduces a brief theoretical
background of the vine copula model. For more details, the
interested readers are referred to Aas et al. [7] and Dißmann
[33].

2.2. Pair-Copula. A vine copula model decomposes
multivariate copulas into bivariate copulas (pair-copula)
to build high-dimension models using only bivariate
copulas. In doing so, the pair-copula models provide a
flexible way to model multiple complex high-order de-
pendence structures using only bivariate copulas, pos-
sibly belonging to different copula families. +e pair-
copula model originated with Joe [34] and was later
investigated and named as a regular vine model by
Bedford and Cooke [35, 36]. Kurowicka and Cooke [37]
further developed this model. Later, the full inference of
the C-vine and D-vine models was introduced by Aas
et al. [7].

In C-vine, all variables are modelled with respect to a
particular variable, while in D-vine, variables are ordered
sequentially.

Definition 2 (tree; see Bedford and Cooke [35]). T� N, E{ }

is a tree (an acyclic graph) with N nodes and E edges
(connect each pair of N ).

+e degree of the node is the total number of edges
connected to this node.

Definition 3 (vine, regular vine; see Ch. 4 of Kurowicka and
Cooke [37]). V is a vine on d elements if

(i) V � (T1, T2, . . . , Td−1), where T1 indicates the first
tree of the vine, and so on.

(ii) T1 is a connected tree with nodes N1 � 1, 2, . . . , d{ }

and edges E1.
(iii) For j � 2, 3, . . . , d − 1, j � 2, 3, . . . , d − 1 is a

connected tree with nodes Dj � Ej−1.
In addition, V becomes a regular vine on d elements
if

(iv) For j � 2, . . . , d − 1, if l � l1, l2􏼈 􏼉 and m � m1, m2􏼈 􏼉

inTj are two nodes connected by an edge inTj, then
exactly one of lj is equal to mj, j � 1, 2. +is con-
dition is known as the proximity condition.

Under the proximity condition, two nodes in tree (Tj+1)

are only connected by an edge if they were sharing a
common node in the previous tree (Tj). Kurowicka and
Cooke [37] defined the D- and C-vine models as follows:

(i) If every node at the first tree of a regular vine is
connected at maximum with two nodes, then the
regular vine is called D-vine.

(ii) If at each tree Tj of a regular vine, there is one
particular node that is connected to all other nodes,
then the regular vine is called a C-vine. At the first
tree, this node is called a root node.

Definition 4 (regular vine (R-vine) specification; see Bed-
ford and Cooke [36]). (F,V,B) is a regular vine copula (R-
vine copula) specification if

(i) F � (F1, F2, . . . , Fn) is a vector of continuous in-
vertible distribution functions

(ii) V is an n-dimensional regular vine (R-vine)
(iii) B � Be|i � 1, 2, . . . , n − 1; e ∈ Ei􏼈 􏼉 is a set of bi-

variate copulas

Let x � (x1, . . . , xn) be a vector of random variables, e �

l, m{ } an edge, and i � 1, . . . , n and De a conditioning set of
edge e. Bedford and Cooke [36] defined regular vine de-
pendence as follows.

Definition 5 (regular vine (R-vine) dependence). A joint
distribution function F on x is said to realise a regular vine
copula specification (F, V, B) or exhibit regular vine
dependence if for each e ∈ Ei, the bivariate copula of XCel

and XCem given XDe is a member of the bivariate copula
Be(XDe). +e marginal distribution of Xi is Fi, for
i � 1, 2, . . . , n.

+e bivariate copula of XCel and XCem given XDe is a
conditional bivariate copula which is assumed to be
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independent of conditioning variables (see Aas et al. [7] and
Haff et al. [38]).

Theorem 2 (see [17]). Let (F, V, B) be an n-dimensional
regular vine specification. &en, there is a unique distribution
function F that realizes (F, V, B). Its density is

f(1,2,...,n)(x) � 􏽙
n

j�1
fj xj􏼐 􏼑 􏽙

n−1

i�1
􏽙
e∈Ei

cCel,Cem|De
FCel|De

􏼐

xCel|xDe
􏼐 􏼑, FCem|De

xCem
|xDe

􏼐 􏼑􏼓,

(5)

where x � (x1, x2, . . . , xn), e � l, m{ }, xDe denotes a condi-
tioning variable in a conditioning set De, i.e.,
xDe

� xi|i ∈ De􏼈 􏼉, and fi is the density of Fi, i � 1, 2, .., n.
Moreover, cCel,Cem|De

stands for the density function of bi-
variate copulas between edge e � l, m{ }.

Continuing with the last theorem, let e ∈ Ei, e � l, m{ },
l � l1, l2􏼈 􏼉, m � m1, m2􏼈 􏼉, be the edge that joined Cel and Cem.
Joe [34] showed that the conditional marginal distribution,
FCel|De

(xCel|xDe
) and FCem|De

(xCem
|xDe

), can be obtained as
follows:

FCel|De
xCel

|xDe
􏼐 􏼑 �

zCCl|Dl
FCl,l1|Dl

xCl,l1
|xDl

􏼒 􏼓, FCl,l2|Dl
xCl,l2

|xDl
􏼒 􏼓􏼒 􏼓

zFCl,l2Dl
xCl,l2

|xDl
􏼒 􏼓

,

≕h FCl,l1|Dl
xCl,l1

|xDl
􏼒 􏼓, FCl,l2|Dl

xCl,l2
|xDl

􏼒 􏼓􏼒 􏼓.

(6)

FCelDe
(xCel|xDe

) and FCemDe
(xCem

|xDe
) are then called

transformed variables (see Aas et al. [7] andDißmann et al. [17]).

Regular vine is a general case of vine copula that includes
both C- and D-vines. &e number of R-vine tree structures is
considerable in comparison with C- and D-vines. Morales
Napoles et al. [18] showed that, for n variables, there are

(n!/2) · 2 n − 2
2􏼠 􏼡 possible R-vine tree structures. &e fol-

lowing presents one possible example of a 5-dimensional
R-vine copula model (following the details given in Aas et al.
[7]).

2.2.1. Example of a 5-Dimensional R-Vine Copula.
Figure 1 shows the tree structure of a 5-dimensional R-vine
copula (Aas et al. [7]).

In this example, we have 5 variables, 4 trees, and 10
edges. At the first tree, all pairs of variables are modelled via
unconditional bivariate copula families. For the upper levels,
the dependencies are captured via conditional bivariate
copulas. In this case, there are two sets of variables: the
conditioning and conditioned variables. For example, c13|2 is
the density of the conditional bivariate copula family that
models the dependency structure between the first and third
variables given the second variable. In this case, the first and
third variables are called conditioned variables, while the
second variable is called a conditioning variable. In general,
all the variables that are present before | are called condi-
tioning variables, while the variables after | are called
conditioned variables. +e joint density of this 5-dimen-
sional R-vine is as follows:

f x1, x2, x3, x4, x5( 􏼁 � f1 x1( 􏼁 · f2 x2( 􏼁 · f3 x3( 􏼁 · f4 x4( 􏼁 · f5 x5( 􏼁,

c12 F1 x1( 􏼁, F2 x2( 􏼁􏼈 􏼉 · c23 F2 x2( 􏼁, F3 x3( 􏼁􏼈 􏼉 · c34 F3 x3( 􏼁, F4 x4( 􏼁􏼈 􏼉 · c35 F3 x3( 􏼁, F5 x5( 􏼁􏼈 􏼉,

c13|2 F x1|x2( 􏼁, F x3|x2( 􏼁􏼈 􏼉 · c24|3 F x2|x3( 􏼁, F x4|x3( 􏼁􏼈 􏼉 · c45|3 F x4|x3( 􏼁, F x5|x3( 􏼁􏼈 􏼉,

c14|23 F x1|x2, x3( 􏼁, F x4|x2, x3( 􏼁􏼈 􏼉 · c25|34 F x2|x3, x4( 􏼁, F x5|x3, x4( 􏼁􏼈 􏼉

· c15|234 F x1|x2, x3, x4( 􏼁, F x5|x2, x3, x4( 􏼁􏼈 􏼉.

(7)

3. A Mixture of R-Vine Densities

Mixture models provide a flexible way to capture multi-
variate hidden dependency structures among variables. A
finite mixture model is a model applied to data that are
assumed to be generated from a finite number of unknown
distributions. +e density in the finite mixture model is a
weighted sum of a finite number of densities.

Kim et al. [12] formed a mixture of D-vine models with a
single copula family fitted to all copula pairs. +is section
extends the work of Kim et al. [12] from amixture of D-vines
to a mixture of R-vine model with an individual choice of
copula types for each pair in each density of the model.

3.1. Finite Mixture Model. Suppose that an n-dimensional
random vector x � (xk1, . . . , xkn) is generated from a

k-component mixture of R-vine density model. Hence, the
density of x is given by

f(x|Θ) � 􏽘
K

k�1
πkfk x|θk( 􏼁, (8)

where πk is an unknown parameter (known as a mixture
coefficient or weights) of the k th component that satisfies the
following:

0< πk < 1,

􏽘

K

k�1
πk � 1.

(9)

Θ is the set of all model parameters, while θk is the set of
all the parameters of the k th component. In mixture models,
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expectation-maximisation algorithm (EM algorithm) is a
commonly used method to estimate the model parameters.
Further details of this method will be introduced in the next
section.

3.1.1. EM Algorithm. Expectation-maximisation algorithm
(EM) (Dempster et al. [39]) is an estimation method with
two steps: the so-called expectation step (E-step) and the
maximisation step (M-step).

Suppose that a dataset of size N is drawn independently
from the k-component mixture of R-vine density model
given in equation (8). Suppose further that the data are
converted into uniform distribution using an empirical
cumulative distribution function. +en, the log pseudo-
likelihood function of Θ is given as follows:

l(Θ) � log 􏽙
N

n�1
􏽘

K

k�1
πkf xn|θk( 􏼁

⎧⎨

⎩

⎫⎬

⎭ � 􏽘
N

n�1
log 􏽘

k

k�1
πkf xn|θk( 􏼁,

(10)

whereΘ is the set of all model parameters and θk is the set of
all the parameters of the k th component. EM algorithm
introduces a latent variable zn � (zn1, zn2, . . . , znk), where
znk � 1 if xn is drawn from the k th component (the k th

component of the mixture model) and znk � 0, otherwise. In
other words, znk indicates from which mixture component
each observation was drawn. +ese latent variables are as-
sumed to be independent and identically distributed from
the multinomial distribution such that

znk ∼ M k, π1, . . . , πk( 􏼁, k � 1, . . . , K. (11)

Consequently, we now have the complete data:

xc � xn, zn( 􏼁, z � z1, . . . , zk( 􏼁. (12)

+en, the complete-data log likelihood function, ℓc(Θ),
is given as follows:

ℓc(Θ) � 􏽘
N

n�1
􏽘

K

k�1
znklog πk + 􏽘

N

n�1
􏽘

K

k�1
znklog f xn|θk( 􏼁. (13)

EM algorithm starts with initial values of the unknown
parameters Θ(0), and the two steps (E and M) are repeated
until the convergence (ℓ(Θ)(i+1) − ℓ(Θ)(i)) is smaller than a
prespecified tolerance.

E-step: calculate the conditional expectation of the
complete-data log likelihood, ℓc(Θ) in equation (14), given
the observed data and using the current estimate of the
parameters (Θ).

Suppose that we are at iteration i + 1. +en, the con-
ditional expectation of znk is calculated as follows:

􏽢znk � E znk|x,Θ(i)
􏽨 􏽩 � P znk � 1|x,Θ(i)

􏽨 􏽩 �
π(i)

k f xn|θ(i)
k􏼐 􏼑

􏽐
K
s�1 π

(i)
s f xn|θ(i)

k􏼐 􏼑
.

(14)
M-step: maximize the complete-data log likelihood,

ℓc(Θ) (from E-step), with respect to (Θ) in order to produce
a new estimate of the model parameters (Θ(n+1)). In this step,
the estimation of each component parameter is computed
independently, i.e., π(i+1)

1 , . . . , π(i+1)
k and θ(i+1)

1 , . . . , θ(i+1)
k .

+e new estimate of π(i+1)
k can be obtained as follows:

􏽢π(i+1)
k �

􏽐
N
n�1 􏽢z

(i)
nk

N
, (15)

while the updated θ(i+1)
k can be obtained by maximising the

following equation using the numerical maximisation
method:

􏽢θ
(i+1)

k � max
θ

􏽘

N

n�1
􏽘

K

k�1

􏽢z
(i)
nk , log f xn|θ(i)

k􏼐 􏼑. (16)

3.2. Model Selection of the Mixture of R-Vine Densities.
Statistical inference algorithms for computing the log-
likelihood functions and simulating strategy from an R-vine
distribution using the lower triangular arrays of R-vine
copula models were introduced by Dißmann et al. [17].
Algorithm 2.1 from Dißmann et al. [17] computes a given
R-vine specification density. In addition, the authors showed
how to calculate the log likelihood of the evaluated density to
be used for estimating the pair-copula parameters using, for
example, maximum likelihood. +eir method introduced
high flexibility for R-vine copula models.

Inspired by and based on Algorithm 2.1 from Dißmann
et al. [17] and the method of Kim et al. [12], the proposed
mixture of R-vine density model with mixed copula families
is presented in this section. I termed it a Mixture of R-vine
Density Model with Mixed Families (MRDMMF). An ex-
ample of constructing a two-component mixture of R-vine
model, in an array representation, is given in Section 3.3.

3.2.1. Full Inferences and the Selection Strategy of the R-Vine
Mixture Model. +e full inference of pair-copula models
(see Aas et al. [7]), in general, requires the following four
main steps:

(i) Obtain the normalised ranks of the original data
(ii) Order the variables (tree structure)

1 2 3 4

5

12 23 34 35

13|2 24|3

14|23 25|34

45|3

12 23 34

35

13|2

14|23

15|234

25|34

24|3 45|3

Tree 1

Tree 2

Tree 3

Tree 4

Figure 1: 5-dimensional R-vine copula, 4 trees and 10 edges.
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(iii) Select the appropriate bivariate copula type for each
copula term (possibly belonging to different copula
types)

(iv) Estimate the parameters of the bivariate copula
families

For the first step and to avoid misspecifying the margins,
it is useful to transform the margins nonparametrically using
the empirical cumulative distribution function.

A comparison study between semiparametric and
parametric methods for estimating copulas was investigated
by Kim et al. [40]. +e authors illustrated, by simulation
studies, that the performance of the pseudo-maximum
likelihood (PML) function (see Genest et al. [41] and Ch. 5 of
Cherubini et al. [28]) for estimating copula parameters is
significant in comparison to the full maximum likelihood
(ML) and the inference function for margins (IFM) (Joe
[42, 43]) methods when the marginal distributions are
unknown, which is almost always the case in practice.

For the second step, it is well known that there are
different possible ways to order the variables, and one needs
to select the most appropriate way. +e only way that
guarantees, with no doubt, that the chosen order is the best is
by testing all these possible structures, which is infeasible,
especially in high-dimensional cases. One existingmethod of
selecting the tree structure is based on the largest values of
Kendall’s tau (see, for example, Aas and Berg [44] and Kim
et al. [12]).

Dißmann et al. [17] introduced a tree-by-tree selection
strategy, or a sequential estimation, using the maximum
spanning tree. In their model, at the first tree, the empirical
Kendall’s tau is computed for all possible pairs of variables.
+en, the tree that maximises the sum of absolute empirical
Kendall’s tau is selected. Finally, the pair-copula families are
chosen for each pair, and corresponding parameters are
estimated. Aas et al. [7] ordered the variables based on the
strongest tail dependencies.

Having selected the appropriate order of the variables,
identifying the bivariate copula type that best fits the data is
the most crucial part of the pair-copula models. In the
literature, several methods have been introduced to solve
this challenging issue. For example, Aas et al. [7] used a
scatter plot to determine the shape of each copula family.
Other methods involve selection criteria, such as the Akaike
information criteron (AIC) from Akaike [45] (see, for ex-
ample, Dißmann et al. [17]). After that, the final step of the
pair-copula models is estimating the copula parameters.

+e finite mixture of the R-vine density model, however,
requires estimating not only the pair-copula type but also the
number of mixture components. For k components’ mixture
of R-vine model, there are k∗(d∗(d − 1)/2) bivariate copula
families to be specified and estimated. +ese families do not
have to be of the same type. +us, constructing mixture
R-vine density models with mixed copula types is chal-
lenging. +e difficulty lies in specifying the appropriate
bivariate copula type for each pair in each density (com-
ponent). Testing all possible bivariate copula types in each
mixture component is highly infeasible in practice. How-
ever, even though the scatter plot, in the mixture context, is

almost not straightforward enough to provide exact infor-
mation on the involved pair-copula types, due to the mixture
dependencies, it can still give some information on the
possible types of the dependence structures. In addition to
the scatter plot point, Dißmann et al. [17] said that the
bivariate copula types determined at the first tree have a
significant influence on the model fit. From these two points,
a method for specifying bivariate copula types in the mixture
context is introduced based on the scatter plot method of
Aas et al. [7]. Following the structure of Aas et al. [7], the first
step is plotting the original data. +en, based on the possible
information extracted from the scatter plot of each pair,
several possible mixture models are constructed (first tree
only). After that, the selection criteria are computed to
determine the most appropriate model. For this step, three
commonly used selection criteria are employed, namely,
Akaike information criterion (AIC) of Akaike [45]; Bayesian
information criterion (BIC) of Schwarz et al. [46]; and the
consistent Akaike information criteria (CAIC) of Bozdogan
[47]. +e formulas of these criteria are given as follows:

AIC � −2 ln L(􏽢θ) + 2P,

BIC � −2 ln L(􏽢θ) + P(ln(N)),

CAIC � −2 ln L(􏽢θ) + P(ln(N) + 1),

(17)

where 􏽢θ is the estimation value of the parameters, P is the
number of estimated parameter in the model, and N is the
number of the observations.

After that, the remaining trees of the selected model are
determined following the same step as Aas et al.’s [7]
method. However, instead of estimating the model pa-
rameters sequentially, the model parameters are estimated
jointly using the EM algorithm.

To end this section, the main idea of specifying the
bivariate copula type in the mixture R-vine density model
can be summarised as follows:

(1) Plot the original data. From the plot, construct
different possible mixtures of R-vine density models.
In this step, only the first tree of each density of each
model is constructed.

(2) Fit all the constructed mixture of R-vine density
models to the data.

(3) Compute the values of AIC, BIC, and CAIC. +en,
the model with the smallest values is selected as the
most appropriate model.

(4) +en, for the second tree and based on the selection
families of the first tree of each density of the selected
model, a method from Aas et al. [7] is used to de-
termine the bivariate copula types for each pair.

(5) After that, the model parameters are estimated
jointly using the EM algorithm.

(6) For the remaining trees T � 3, . . . , d, Steps 4 and 5
are repeated until the last tree is reached.

+e following steps summarise the full inference of the
MRDMMF:
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(i) Obtain the normalised ranks of the observed data
(ii) Construct different mixture of R-vine density

models with mixed copula families
(iii) Estimate copula parameters using the EM algorithm
(iv) Fit all models to the data, and compute the AIC,

BIC, and CAIC
(v) +e model with the smallest values of the selection

criteria is selected as the best-fit model to the data

Since the primary focus of this paper is to introduce a
new mixture model, the types of bivariate copula families
used in the simulation studies are prespecified as the most
commonly used copula families. In addition, the number of
mixture components in both the simulation and the real
datasets is fixed at two.

3.3. AMixture of R-VineDensities in anArrayRepresentation.
+is section explains by example the representation array of
the mixture of R-vine density model. In this model, each
array of the pair-copula families is treated as a mixture
component.

Example 1. (example of a two-component mixture of R-vine
densities in an array representation).

To store a two-component mixture of R-vine density
model of one-parameter copula families in an array rep-
resentation, one need to have five arrays: one array for the
tree structure, two arrays for storing the involved bivariate
copula types (each array stands for a single mixture com-
ponent), and another two arrays for their corresponding
parameters. In this example, S stands for the R-vine tree
structure (numbers refer to the variables), while BCi and
BCpi are the mixture components (numbers refer to the
bivariate copula) and the corresponding parameters,
respectively.

S �

5 0 0 0 0

2 2 0 0 0

4 4 4 0 0

1 3 3 3 0

3 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

BC1 �

0 0 0 0 0

6 0 0 0 0

3 3 0 0 0

4 5 6 0 0

4 5 6 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

BC2 �

0 0 0 0 0

3 0 0 0 0

5 6 0 0 0

3 4 3 0 0

5 3 3 5 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

BCp1 �

0 0 0 0 0
3.5 0 0 0 0
3.5 3 0 0 0
3 3.9 3.5 0 0
2.9 3 2.5 1.8 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

BCp2 �

0 0 0 0 0
2.5 0 0 0 0
3 3.9 0 0 0
1.5 2.5 3 0 0
3.5 2 1.5 3.5 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)

Figures 2 and 3 show the construction and the contour
plots of the given mixture of R-vine model, respectively
(these plots are generated via contour.RVineMatrix and plot
(RVM) functions from the VineCopula package [48] in R
[49]).

4. Numerical Application

+is section aims to illustrate the efficiency of themodel fit of
the MRDMMF. +erefore, the simulation studies were
designed with two main scenarios.+e first scenario tests the
performance of the proposed model in order to evaluate its
ability to estimate the true complex multivariate dependency
structures.+e second scenario contains twomain parts.+e
first part compares the performance of MRDMMF with one
of the mixtures of R-vine model where a single copula family
is fitted to all pairs of variables. I termed the latter model the
Single-Family Mixture of R-vine Density Model
(SFMRDM). +is comparison aims to express the flexibility
and the usefulness of MRDMMF over the SFMRDM. +e
second part aims to study the effect of misidentifying the
number of mixture components on the model fit when
MRDMMF is fitted to a nonmixture dataset (a similar
scenario was applied by Kim et al. [12]).

For both scenarios, two samples of size 300 and 1500
were simulated using the RVineSim function from the
VineCopula package in R (Schepsmeier et al. [48]). +ese
datasets were repeated 100 times each. +e simulated data
for the first scenario are based on the mixture of R-vine
density model given in Example 1 (the mixture weight is
π1 � 0.6), while the data for the second scenario are a
nonmixture dataset based on the first density of the mixture
model.

4.1. Simulated Data Application

4.1.1. First Scenario. In this scenario, the two-component
MRDMMF model, given in Example 1, is fitted to the
simulated datasets. To evaluate its performance, the differ-
ence between the true and the mean of the estimated pa-
rameter values of the simulated data is computed. Figure 4
shows the scatter and contour pair plots of the simulated
dataset (size 300). Table 1 gives a full description (or in-
formation) of the simulated mixture of the R-vine density
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model. +is description includes information of the type of
the pair-copula families fitted for each pair, its parameters,
and the corresponding Kendall’s tau (τ) values. For con-
venience, the short names of the bivariate copula types are
used. Hence, the involved bivariate copula families, with
their short names, are Frank (F), Clayton (C), Gumbel (G),
and Joe (J). +e estimation result is summarised in Table 2.

Comparing the true simulation model (provided in
Table 1) and the estimated model (provided in Table 2)
shows that the estimated correlation parameters and the
corresponding Kendall’s tau values are very close to the true
values. Hence, the performance of the EM algorithm is
satisfied, and the underlying dependencies are well captured.

4.1.2. Second Scenario (First Part). +is section aims to
express the significant performance and the improvement of
the model fit of the MRDMMF over the SFMRDM. For the
single mixture model, Frank copula is specified as a pair-
copula type for all pairs in the mixture of R-vine densities.
After that, all models are fitted to the data, and the values of
different selection criteria (AIC, BIC, and CAIC) are
computed for each model. +eir values are shown in Table 3.

From Table 3, the values of all selection criteria of both
datasets support the MRDMMF over SFMRDM. +e results
also show a very poor fit of the SFMRDM. Hence,
MRDMMF improves the model fit for modelling high
multivariate complex dependence structures.
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Figure 2: Construction plots of the mixture components. Top: first component. Bottom: second component. F: Frank, J: Joe, G: Gumbel,
and C: Clayton. +e values inside the parentheses are the Kendall tau’s values.
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Figure 3: Contour plot of the R-vine model. (a) Contour plot of the first component. (b) Contour plot of the second component.
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4.1.3. Second Scenario (Second Part). +e previous section
demonstrated the usefulness of the mixture of R-vine model
with a mix choice of pair-copula type in each density over
the single-family model. In this part, the effect of mis-
specifying the number of mixture components is investi-
gated. For this case, the mixture of R-vine model is fitted to
the nonmixture simulated datasets. +e performance of the
model is shown in Tables 4 and 5.

From the result, it is evident that the mixture weight of
the first component of the model is very high (it almost
equals one), while the weight of the second component is
minimal (almost zero). +is is very acceptable since the data
are nonmixture. For the estimation of the parameters, the
results show that the estimated parameters are very close to

the true values. Hence, the results support and demonstrate
the performance of the proposed model.

4.2. Real Data Application

4.2.1. Real Datasets. +is section aims to illustrate the
performance of the proposed model with real datasets. For
(only) an evaluation test, I applied the newly proposed
mixture of R-vine density model (MRDMMF) to two dif-
ferent datasets, namely, Newthyroid and Glass datasets,
from the [50] repository. +ese datasets consist of 215 and
214 observations, respectively. Figure 5 shows the scatter
pair plots of both original data.
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Figure 4: (a) +e contour (lower triangular), scatter plot (upper triangular), and the correlation computed by Kendall’s tau (the diagonal).
(b) +e scatter pair plot of the simulated data based on the mixture of R-vine densities.

Table 1: Summary of the mixture of R-vine density model (simulated data of size 300).

Edge Type (1st component) θ (τ) Type (2nd component) θ (τ)
1st tree

3, 5 G 2.9 (0.66) F 3.5 (0.35)
1, 2 F 3 (0.31) C 2 (0.5)
1, 4 J 2.5 (0.45) C 2.5 (0.56)
1, 3 C 1.8 (0.47) F 3.5 (0.36)

2nd tree
1, 5; 3 G 3 (0.67) C 1.5 (0.43)
3, 2; 1 F 3.9 (0.38) G 2.5 (0.6)
3, 4; 1 J 3.5 (0.57) C 3 (0.6)

3rd tree
4, 5; 1, 3 J 3.5 (0.57) F 3.5 (0.43)
4, 2; 3, 1 C 3 (0.6) J 3.9 (0.6)

4th tree
2, 5; 4, 1, 3 F 2.5 (0.26) C 2.5 (0.56)
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Following the steps of the mixture of R-vine model, the
observations of both datasets are converted into pseudo-
observations in order to obtain the copula data. For this step,
the pobs function from the R package copula (Hofert et al.
[51]; Jun Yan [52]; Ivan Kojadinovic and Jun Yan [53]; and
Marius Hofert and Martin Mächler [54]) is used. After that,
the most appropriate order of the variables is selected based
on the highest values of the absolute Kendall’s tau. +e tree
structures of both datasets are shown in Figures 6 and 7.

After defining the R-vine tree structure and following the
R-vine representation array (see Dißmann [33]), one can
define the R-vine matrix corresponding to the selected
R-vine structure. Please note that the R-vine matrix is not
unique as the R-vine structure can be represented by dif-
ferent R-vine matrices (Dißmann et al. [17]). RVineS-
tructureSelect function from the (Schepsmeier et al. [48])
package was used to find the structure of the Glass dataset (to
save effort and time) using Kendall’s tau as the edge weight,
while the structure of the Newthyriod dataset was built
manually based on the highest values of Kendall’s tau.

Having determined the order of the variables, the next
step is constructing a different possible mixture of R-vine

density models (first tree only) based on the possible in-
formation from the scatter plot of the original data.

Figure 8 shows contour and scatter pair plots of the real
datasets. +e first dataset clearly shows that some of the
bivariate dependencies, not perfectly (due to hidden mixture
dependencies) but almost, reflect one type of copula family.
For example, the dependency structure between x2 and x4 is
an upper tail dependence. For the second dataset, the sit-
uation is less clear. However, one can still get some

Table 2: Summary of the estimation results of the mixture of R-vine density model (simulation data of size 300), where SD stands for the
standard deviation.

Edge Type (1st component) θ (τ) (SD) Type (2nd component) θ (τ) (SD)
1st tree

3, 5 G 2.895 (0.655) (0.061) F 3.494 (0.348) (0.262)
1, 2 F 3.013 (0.308) (0.250) C 1.981 (0.497) (0.086)
1, 4 J 2.510 (0.450) (0.056) C 2.480 (0.553) (0.088)
1, 3 C 1.799 (0.473) (0.063) F 3.496 (0.349) (0.143)

2nd tree
1, 5; 3 G 3.013 (0.670) (0.164) C 1.494 (0.427) (0.150)
3, 2; 1 F 3.915 (0.381) (0.403) G 2.509 (0.601) (0.098)
3, 4; 1 J 3.528 (0.573) (0.186) C 3.022 (0.602) (0.188)

3rd tree
4, 5; 1, 3 J 3.569 (0.575) (0.342) F 3.600 (0.355) (0.616)
4, 2; 3, 1 C 3.031 (0.601) (0.300) J 3.980 (0.610) (0.369)

4th tree
2, 5; 4, 1, 3 F 2.520 (0.262) (0.508) C 2.629 (0.565) (0.382)

Table 3: Selection criteria values of the second scenario of the
simulation study.

Model AIC BIC CAIC π1
Simulation data (size 300)
MRDMMF −2237.701 −2165.128 −2164.128 0.598
SFMRDM (Frank) −1413.754 −1410.05 −1409.05 0.532
Simulation data (size 1500)
MRDMMF −11161.95 −11156.64 −11155.64 0.599
SFMRDM (Frank) −6898.332 −6786.755 −6765.755 0.57

Table 4: Estimated values of the mixture weight of the simulation
study (second scenario).

Sample size Model π1
N � 300 MRDMMF 0.982
N � 1500 MRDMMF 0.994

Table 5: Summary of the estimation results of the mixture of R-
vine density model fitted to nonmixture simulated datasets for the
simulated data of size 300 and 1500.

Edge Type θ (τ) SD
1st tree

3, 5 G 2.911 (0.656) 0.046
1, 2 F 3.022 (0.309) 0.0172
1, 4 J 2.499 (0.449) 0.040
1, 3 C 1.802 (0.474) 0.042

2nd tree
1, 5; 3 G 3.020 (0.668) 0.115
3, 2; 1 F 3.975 (0.386) 0.246
3, 4; 1 J 3.531 (0.574) 0.119

3rd tree
4, 5; 1, 3 J 3.568 (0.577) 0.226
4, 2; 3, 1 C 3.103 (0.607) 0.245

4th tree
2, 5; 4, 1, 3 F 2.638 (0.274) 0.401

1st tree
3, 5 G 2.899 (0.655) 0.020
1, 2 F 3.027 (0.310) 0.054
1, 4 J 2.501 (0.449) 0.014
1, 3 C 1.8 (0.474) 0.017

2nd tree
1, 5; 3 G 3.018 (0.669) 0.043
3, 2; 1 F 3.909 (0.381) 0.117
3, 4; 1 J 3.512 (0.572) 0.058

3rd tree
4, 5; 1, 3 J 3.517 (0.573) 0.083
4, 2; 3, 1 C 3.006 (0.600) 0.099

4th tree
2, 5; 4, 1, 3 F 2.508 (0.263) 0.158
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information. For example, from the plot, some pairs of
variables exhibit tail dependencies. Again, this does not
show the exact type of the appropriate bivariate copula
family. However, extending the number of components of
this model may improve the model fit since increasing the

number of components gives extra flexibility to fit several
bivariate copula types.

Following the selection strategy given in Section 3, the
mixture of R-vine model is constructed with mixed copula
types. For comparison, the four most commonly used copula
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Figure 5: Scatter pair plots of the real datasets. (a) Newthyroid dataset. (b) Glass dataset.
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types, namely, Frank, Gaussian, Gumbel, and Joe copulas,
are fitted to the real datasets as single mixture of R-vine
density models. +en, for each dataset, the best-fit model is
selected based on the smallest values of the selection criteria.
+e results are given in Table 6.

Table 6 shows the values of selection criteria and the
estimated values of mixture weights. Please note that several
starting values were used (the first step) for the EM algo-
rithm. +e starting value that returns the largest log like-
lihood is chosen. After that, the estimation values of the
chosen model are again used as starting values for the same
model (the second step) in order to double-check for any
improvement. For this case, two main improvements were

noticed. First, the number of iterations for the second step is
less than half as many iterations as the first. Second, the log-
likelihood values barely increased.

From Table 6 and for both datasets, all the selection
criteria selected theMRDMMF (the values are shown in bold
text). For the SFMRDM, they all showed a poor model fit.
However, SFMRDM (Gumbel) and SFMRDM (Joe) were the
worst. In these two models, almost half of the pairs of
variables are assumed to be independent. +is is because the
estimates of the copulas parameters (at these pairs) were
either 1 (this means independent for these two families) or 0
(out of boundary). +is provides evidence that the mixture
of one type of copula family is unable to control multiple-
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Figure 6: +e R-vine tree structure of the Newthyroid data.
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Figure 8: From left to right: the contour plots (lower triangular) with the scatter plots (upper triangular) and the correlations computed by
Kendall’s tau (the diagonal) (generated by the pairs.copuladata function from the VineCopula package).
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Figure 7: +e R-vine tree structure of the Glass data.

Table 6: +e values of the selection model criteria and the mixture weights for each model.

Model AIC BIC CAIC π1
Newthyriod dataset
MRDMMF −464.5833 −390.4292 −368.4292 0.91
SFMRDM (Frank) −369.6757 −298.8924 −277.8924 0.35
SFMRDM (Gaussian) −409.8928 −339.1094 −318.1094 0.31
SFMRDM (Gumbel) −258.6438 −224.9374 −214.0374 0.95
SFMRDM (Joe) −226.323 −192.6167 −182.6167 0.91
Glass dataset
MRDMMF −1086.1324 −907.7352 −854.7352 0.85
SFMRDM (Frank) −859.3391 −714.6021 −671.6021 0.66
SFMRDM (Gaussian) −883.504 −738.767 −695.767 0.43
SFMRDM (Gumbel) −433.4244 −326.7389 −341.7389 0.76
SFMRDM (Joe) −395.5369 −331.5834 −312.5834 0.78
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mixture highly complex dependency structures that may
vary from one pair of variables to another. +is comparison
demonstrates the significant performance of the mixture of
R-vine density model with mixed bivariate copula-type
single-family mixture of R-vine density model.

5. Conclusion

In this paper, I have introduced a new mixture of R-vine
density model with a mixed choice for pair-copula families.
+is new method provides much more flexibility for
modelling complex mixture dependency structures among
variables in high-dimensional cases. As with general pair-
copula models, the main challenging part of the proposed
model is specifying the bivariate copula types. For this, the
tree-by-tree scatter plot method was used to construct the
mixture components of the model. To illustrate the model
performance, the proposed model was fitted to simulated
and real datasets. +e simulation studies showed well esti-
mation of the true model parameters. In addition, in the
simulation and the real application studies, both models
showed significant performance of the proposed model over
the single-family mixture of R-vine density model. In this
study, the number of mixture components is fixed. Fixing
the mixture component limits the number and the types of
copula families. Hence, estimating the number of mixture
components will improve the model fit. +is will be done in
future work.
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