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In longitudinal studies, clinicians usually collect longitudinal biomarkers’ measurements over time until an event such as recovery,
disease relapse, or death occurs. Joint modeling approaches are increasingly used to study the association between one lon-
gitudinal and one survival outcome. However, in practice, a patient may experience multiple disease progression events suc-
cessively. So instead of modeling of a single event, progression of the disease as a multistate process should be modeled. On the
other hand, in such studies, multivariate longitudinal outcomes may be collected and their association with the survival process is
of interest. In the present study, we applied a joint model of various longitudinal biomarkers and transitions between different
health statuses in patients who underwent renal transplantation. *e full joint likelihood approaches are faced with the
complexities in computation of the likelihood. So, here, we have proposed two-stage modeling of multivariate longitudinal
outcomes and multistate conditions to avoid these complexities. *e proposed model showed reliable results compared to the
joint model in case of joint modeling of univariate longitudinal biomarker and the multistate process.

1. Introduction

In longitudinal medical studies, repeated measurements of
biomarkers are usually collected until the occurrence of a clinical
event such as recovery, disease relapse, or death. *e main
objective of these studies is to study the association between two
correlated processes or to use the information of biomarkers to
predict or explain the time-to-event. In such analyses, joint
models are needed to accurately study the association between
two processes. Joint modeling approaches, which have been
developed to handle the association between a single

longitudinal biomarker and a time-to-event outcome, have
received considerable attention recently [1–3].

In practice, a patient may experience multiple disease
progression events prior to the event of interest; for example,
the patient with cancer may experience a local recurrence
followed by a distant recurrence and then death. So, instead
of the occurrence of a single event, the progression of the
disease should be modeled as a multistate process, focusing
on the transitions between different health states and the
impact of the longitudinal biomarker on them. Moreover, in
such studies, multiple longitudinal biomarkers may be
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collected for each patient and the correlation structure
between them should be taken into account in the model [4].

*ere are several studies that have extended classical
joint models for when there are multiple longitudinal
outcomes. Chi and Ibrahim [5] extended a joint model for
multivariate longitudinal data and multivariate survival
data. *en, Andrinopoulou et al. [6] extended a joint model
for competing risks and two longitudinal biomarkers. On the
other hand, there are few studies that extended the joint
models for multistate data. Dantan et al. [7] proposed a joint
multistate model with the latent state for one longitudinal
response and illness-death data. Ferrer et al. [4] developed a
joint model with the shared random effect framework for
joint modeling of longitudinal and multistate processes.
However, based on our knowledge, there is no study to
model multivariate longitudinal and multistate processes
jointly. So, in this paper, we are interested to simultaneous
modeling of these two correlated processes.

*e joint model based on the shared random effects
framework, which is the most commonly used framework of
joint modeling of longitudinal and survival data, is faced
with implementation issues when the number of the lon-
gitudinal outcomes grows [8]. Moreover, modeling the
transitions between different health states instead of the time
to a single event can make the issue more complicated.

*e primary joint models have been based on the two-
stage approaches in which the likelihood calculation is
implemented in two steps [1, 8, 9]. *ese initial approaches
are not faced with the problem of computational difficulties
on the full joint likelihood calculation [1]. So, here, we use
the idea of these initial approaches to avoid the computa-
tional complexities and propose a two-stage base model for
joint modeling of multivariate longitudinal and multistate
data. *e rest of the paper is organized as follows. *e
motivating example is described in Section 2. *e basic
concepts of joint modeling of longitudinal and survival data
are provided in Section 3. In Section 4, we illustrate our
proposed two-stage based model for multivariate longitu-
dinal and multistate data. *e application of the model to
renal transplantation data set is presented in Section 5, and a
discussion and conclusion is finally given in Section 6.

2. Motivating Dataset

Our motivating example includes end-stage renal disease
(ESRD) patients who underwent renal transplantation. *e
information of all renal transplantations performed at
Shahid Beheshti hospital in Hamadan province (western of
Iran) from July 1994 to February 2017 (n� 408) was col-
lected retrospectively. Patients were followed from the time
of transplantation at regular visits (first week, first month,
third month, sixth month, and every year thereafter). *e
number of visits for each patient was variable with the
median number of 12 visits and varied between 3 and 37
visits. Donor-Recipient Gender (DRG) was matched in 221
(54.2%) transplantations and was mismatched in 187
(45.8%) transplantations. DRG match included both male
donor to male recipient and female donor to female re-
cipient, though DRG mismatch included female donor to

male recipient and vice versa. *e mean (±SD) age of pa-
tients was 37.24± 13.46 years.

Several parameters, so-called biomarkers, such as cre-
atinine, hemoglobin, and blood urea nitrogen (BUN), were
collected in regular visits to monitor renal transplantation.
*ese biomarkers are variably associated with renal trans-
plantation function and mortality. Often, it is the trend of
these biomarkers rather than the measure of their level at a
specific time point that affect the risk of an event. Moreover,
acute or chronic graft rejection is an unwanted outcome of
transplantation, which can affect the overall survival of
patients. Indeed, a patient may experience graft failure re-
jection prior to death and this graft failure may cause an
increase in the risk of mortality. So, in this study, there were
two types of outcomes, including (1) multiple longitudinal
outcomes represent the longitudinal biomarkers and (2)
multistate outcome that represents the survival process. To
take into account the correlation between longitudinal
biomarkers as well as the correlation between longitudinal
and multistate processes, it was essential to use the joint
modeling approaches.

Multistate process is shown in Figure 1. After trans-
plantation (state 1), a patient may experience graft rejection
(state 2) and death (state 3) due or not to ESRD. It should be
noted that here all patients with acute or chronic rejection
were considered as the same states, due to the small sample
sizes. *eΩmatrix represents the amount of direct observed
transitions between different states. In total, the graft of 53
patients was rejected after transplantation. Overall, 49 pa-
tients have died during the follow-up; among them, 14
patients died after rejection, and 35 patients died without
graft rejection. Moreover, 359 patients were censored during
the follow-up; among them, 320 patients were censored for
both rejection and death events, and 39 patients were
censored for death after rejection. *ese 39 patients were
returned to dialysis.

Ω �
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1
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320 53 35

0 39 14

0 0 49
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

*e observed levels of the longitudinal biomarkers are
called observed values and the predicted levels of longitu-
dinal biomarkers based on the multivariate linear mixed
effects model are called expected values. *e mean of ob-
served and expected values of the longitudinal biomarkers
over time are depicted in Figure 2. In this figure, patients are
divided into four groups: those who experienced graft re-
jection, those whose graft was not rejected during the follow-
up, those who died, and those who were alive at the end of
the study.

3. Simultaneous Modeling of Longitudinal and
Time-to-Event Data

In this section, we will briefly describe the joint modeling of
a single longitudinal biomarker and time to a single event of
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interest, in the shared random effects framework.*is model
consists of two submodels, including a linear mixed sub-
model for longitudinal data (repeated measurements of the
longitudinal biomarker) and a proportional hazard sub-
model for time-to-event data.

3.1. Longitudinal Submodel. Let us assume that Yij is the
measure of a biomarker on subject i � 1, 2, . . . , n, at time tij,
j � 1, 2, . . . , ni.*e trajectory of this longitudinal variable is
modeled by a linear mixed model as follows:

Yij � Yi tij􏼐 􏼑 � X
L
i tij􏼐 􏼑

T
β + Zi tij􏼐 􏼑

T
]i + εij, (2)

where XL
i (tij) and Zi(tij) are the vector of covariates as-

sociated with the vector of fixed effects β and the vector of
random effects ]i, respectively, where

Tdenotes the transpose
operator. We assumed that ]i � (]0i, ]1i) ∼ N(0,Σ) (]0i and
]1i are the random intercept and random slope effects, re-
spectively) and εi � (εi1, εi2, . . . , εini

)T ∼ N(0, σ2Ini
), where I

is the identity matrix of order ni; ]i and εi are independent
[10].

3.2. Proportional Hazard Submodel. Let Ti � min(T∗i , Ci)

represent the observed failure time for the i th subject, where
T∗i denotes the true failure time, and Ci is the censoring time
for i th subject. Moreover, an event indicator is defined as
δi � I(T∗i ≤Ci), which equals 1 if the failure is observed and
0 otherwise. To model the time-to-event occurrence, a
proportional hazard Cox model [11], which takes into ac-
count the biomarker’s dynamics via shared random effects,
]i, is used. *us, the model is defined as follows:

λi t|]i( 􏼁 � lim
dt⟶0

Pr t≤T
∗
i < t + dt|T

∗
i > t, X

S
i , ]i􏼐 􏼑

dt

� λ0(t)exp X
S
i (t)

T
c + ηωi t, ]i( 􏼁􏽮 􏽯,

(3)

where λ0(t) is the hazard at baseline and XS
i (t) is the vector

of possibly time-dependent fixed effects covariates associ-
ated with the vector of coefficients c. *e multivariate
function ωi(t, ]i) defines the association between the lon-
gitudinal and survival processes, and η is the coefficient that
quantifies this association. Here, different (most commonly
used) association functions which are used to describe the
association structure between longitudinal and time-to-
event data are presented as follows (note, for ease of writing,
here only the time variable is included in the model; however
other covariates can also be included in the model):

(i) *e association structure takes into account the
random time trend in the time-to-event model. *is
association structure is defined as

ωi t, ]i( 􏼁 � ]0i + ]1it. (4)

So, the time-to-event submodel is rewritten as

λi t|]i( 􏼁 � λ0(t)exp X
S
i (t)

T
c + η ]0i + ]1it( 􏼁􏽮 􏽯, (5)

in which η represents the association between the
longitudinal biomarker measurements and the risk
of the event at time t [2]. *is association structure
expresses the subject-specific deviations from the
average intercept and average slope.

(ii) *e association structure includes the true value of
the longitudinal biomarker (at time t) in the time-
to-event model, as

ωi t, ]i( 􏼁 � β0 + β1t + ]0i + ]1it. (6)

So, the time-to-event submodel is rewritten as

λi t|]i( 􏼁 � λ0(t)exp X
S
i (t)

T
c + η β0 + β1t + ]0i + ]1it( 􏼁􏽮 􏽯,

(7)

in which η is the association between the longitu-
dinal biomarker and the risk of the event at time t
taking into account fixed and random effects pre-
dictions of the true value of the longitudinal bio-
marker [1].

(iii) *e association structure includes both the true
value of the longitudinal biomarker and the slope of
the true biomarker’s trajectory at time t in the time-
to-event model. *is association structure is defined
as

ωi t, ]i( 􏼁 � β0 + β1t + ]0i + ]1it,

ωi
′ t, ]i( 􏼁 �

d
dt

β0 + β1t + ]0i + ]1it( 􏼁.

(8)

So, the time-to-event submodel is rewritten as

λi t|]i( 􏼁 � λ0(t)exp X
S
i (t)

T
c + η1 β0 + β1t + ]0i + ]1it( 􏼁􏽮

+ η2 β1 + ]1i( 􏼁􏼉,

(9)

in which η1 represents the association between the
current true value of longitudinal biomarker and the
risk of the event at time t like the previous asso-
ciation function, and η2 defines the association
between the slope of the true trajectory at time t and
the risk of the event. Note that this association
structure can catch situations in which two patients
have a similar true level of the biomarker at time t,
but they may have different rate of change of the
biomarker [12].

1. Transplantation

2. Graft rejection

3. Death

Figure 1: *e structure of multistate data.
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(iv) *e association structure takes into account the
cumulative effect of the longitudinal biomarker (the
area under the biomarker trajectory) in the time-to-
event model. In this association structure, the in-
tegral of the longitudinal trajectory that represents
the cumulative effect of the biomarker up to time t is
calculated via

ωi t, ]i( 􏼁 � 􏽚
t

0
β0 + β0s + ]0i + ]1is( 􏼁ds. (10)

So, the time-to-event submodel is rewritten as

λi t|]i( 􏼁 � λ0(t)exp X
S
i (t)

T
c + η 􏽚

t

0
β0 + β0s + ]0i + ]1is( 􏼁ds􏼠 􏼡􏼨 􏼩, (11)

in which η represents the association between the
whole history of the longitudinal biomarker up to
time t and the risk of the event at time t. Note that, in
this association structure, the whole history of the
biomarker is associated with the risk of the event,
while in the three previous structures, the risk of an
event is just allowed to be associated with the fea-
tures of the biomarker at a specific time point [1].

4. Simultaneous Modeling of Multivariate
Longitudinal and Multistate Data

As there are multiple longitudinal biomarkers with a mul-
tistate process in our motivating dataset, the clinical interest
is on the correlation between the longitudinal biomarkers
and their association with transitions between different
health states. However, the implementation of the joint

model within the shared random effects framework, men-
tioned in the previous section, is difficult when the number
of biomarkers is large. *is computational problem is due to
the high number of parameters in the variance-covariance
matrix of the random effects. Moreover, modeling the
transitions between different health states instead of the time
to a single event can make the issue more complicated. In
order to overcome this issue, a quick and approximate es-
timation method is required.

*e initial joint models are based on the two-stage
methods, where the likelihoods of the longitudinal and time-
to-event data are calculated separately [12–14]. Some in-
vestigators have shown in some particular studies that the
performance and the resulting estimations of these initial
two-stage based models are similar to the joint models
(based on the full joint likelihood calculation) [15] in the case
of a single longitudinal outcome and single time-to-event
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Figure 2: *e mean of observed value of the longitudinal biomarkers (observed mean value) and the mean value of their predicted value
based on the multivariate mixed effects model (expected mean value) over time based on (a) graft rejection status and (b) death state.
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outcome. So, in the current paper, we will propose an ex-
tension of the joint models for multivariate longitudinal and
multistate data based on the main idea of the two-stage
approaches.

*e proposedmodel is implemented in two stages. At the
first stage, a multivariate linear mixed model is used for
multiple longitudinal biomarkers. *en, at the second stage,
a multistate model with proportional hazards that incor-
porate the dynamics of each longitudinal biomarker through
association structures (Section 3.2) is used for multistate
data.

4.1. Stage 1: Multivariate Linear Mixed Effects Model. At the
first stage, a multivariate linear mixed effects model is used
for modeling the longitudinal biomarkers measurements.
*e multivariate linear mixed effects model is defined as

Yij,g � Yi,g tij,g􏼐 􏼑 � X
L
i,g tij,g􏼐 􏼑

T
βg + Zi,g tij,g􏼐 􏼑

T
]i,g + εij,g,

(12)

where XL
i,g(tij,g) and Zi,g(tij,g) are the vector of covariates

associated with the vector of fixed effects βg and the vector of
random effects ]i,g for the g th biomarkers, respectively. It is
assumed that vec(]i) ∼ N(0,ψ) when ]i � (]i,1, ]i,2, . . . , ]i,l),
]i,l � (]0i,l, ]1i,l) and l � 1, 2, . . . , g (the “vec” operator vec-
torizes a matrix by stacking its columns). Note that εi is a
ni × g matrix in which the rows are independently dis-
tributed as N(0, D), where ni is the number of longitudinal
measurements for subject i. To estimate fixed and random
effects coefficients, maximum likelihood and empirical
Bayes methods are used, respectively [11]. *e main interest
of this stage is to obtain the prediction of the longitudinal
biomarkers from the multivariate mixed effects model to be
included as covariates in the multistate model at Stage 2.

4.2. Stage 2: Multistate Model. At this stage, a multistate
proportional hazards model, including the estimation of the
longitudinal biomarkers from Stage 1, is fitted to the data. In
the following, we describe the multistate process and
Markovian multistate model which is used at this stage.

For each individual i, a multistate process is observed. Let
Ei � Ei(t), t≥ 0􏼈 􏼉 be the multistate process that takes values
in finite state space S � 0, 1, . . . , M{ } and denotes the state
which is occupied by subject i at time t.*emultistate process
is assumed to be continuous, and Ei is a non-homogeneous
Markov process. *e Markov assumption ensures that the
future of the process depends only on the past via the current

state. Let define Ti � (Ti1, . . . , Timi
) as the vector of the mi ≥ 1

observed transition times for the i th subject, with
Tir <Ti(r+1), ∀r ∈ 0, . . . , mi − 1􏼈 􏼉; i.e., the time of each
transition should be greater than the previous one.*e vector
of observed transition indicators for subject i is defined by
δi � (δi1, . . . , δimi

), with δir equal to 1 if a direct transition to
state r is observed at timeTir and 0 otherwise.*ere will bemi

direct transition for subject i, if the last observed state is an
absorbing state (i.e., it is impossible to leave once it is entered
(e.g., death state)). Otherwise, there are mi − 1 direct tran-
sitions, and Timi

is equal to the right censoring Ci.
A Markov multistate model with proportional hazards is

used to model the transition times. *e transition intensity
for the transition from state h ∈ S to state k ∈ S at time t is
given by

λhk,i t|]i( 􏼁 � λhk,0(t)exp X
S
hk,i(t)

T
chk + 􏽘

g

ηhk,gωhk,i,g t, ]i,g􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(13)

where λhk,0(.) is the completely unspecified baseline hazard
for the transition from h to k, XS

hk,i(t) is the vector of
possibly time-dependent transition-specific covariates, and
chk is the associated vector of fixed regression coefficients.
*e multivariate function ωhk,i,g(t, ]i,g) (mentioned in
Section 3) defines the association between the g-th longi-
tudinal biomarker and the transition from state h to k, and
its corresponding coefficient ηhk,g quantifies this association
[4]. *e maximum likelihood method is used to estimate the
parameters of this model.

*e details of the implementation procedure are given in
Section 5, when the model is used to analyze the renal
transplantation data.

5. Application to Renal Transplantation Data

In this section, we first describe the implementation of our
proposed two-stage based model and then give its fitting
results for our motivating renal transplantation data.

5.1. Implementation of the Two-Stage Model. Stage 1. A
multivariate linear mixed effects model is fitted. Use the
mlmmm.em() function from the Rmlmmm package to fit the
multivariate linear mixed effects model. Joining the fol-
lowing equations showed the multivariate mixed model for
subject i at time j:

Creatinineij � β0,1 + β1,1tij,1 + β2,1t
2
ij,1 + β3,1DRG + β4,1age + ]0i,1 + ]1i,1tij,1 + εij,1,

Hemoglobinij � β0,2 + β1,2tij,2 + β2,2t
2
ij,2 + β3,2DRG + β4,2age + ]0i,2 + ]1i,2tij,2 + εij,1,

BUNij � β0,3 + β1,3tij,3 + β2,3t
2
ij,3 + β3,3DRG + β4,3age + ]0i,3 + ]1i,3tij,3 + εij,3.

(14)

As described in Section 3, different association structures
can be used to explain the dependence of the two processes.

Here, we focus on the four association structures described
in Section 3.2. So, the estimation of the parameters is used to
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obtain the linear predictors of the longitudinal biomarkers
via the following equations:

ω1
hk,i,g t, ]i,g􏼐 􏼑 � ]0i,g + ]1i,gt,

ω2
hk,i,g t, ]i,g􏼐 􏼑 � β0,g + β1,gt + β2,gt

2
+ β3,gDRG + β4,gAge + ]0i,g + ]1i,gt,

ω3
hk,i,g t, ]i,g􏼐 􏼑 � β0,g + β1,gt + β2,gt

2
+ β3,gDRG + β4,gAge + ]0i,g + ]1i,gt,

ω3
hk,i,g t, ]i,g􏼐 􏼑

’
� β1,g + β2,gt + ]1i,g􏼐 􏼑,

ω4
hk,i,g t, ]i,g􏼐 􏼑 � 􏽚

t

0
β0,g + β1,gs + β2,gs

2
+ β3,gDRG + β4,gAge + ]0i,g + ]1i,gs􏼐 􏼑ds.

(15)

*ese linear predictors are used as the covariates in Stage
2 for the multistate model.

Stage 2.*e transitions intensity between different states
(shown in Figure 1) including the estimation of the

longitudinal biomarkers (linear predictors obtained at Stage
1) is defined as follows:

λhk,i t|]i( 􏼁 � λhk,0(t)exp c1,hkDRG + c2,hkage + 􏽘
3

g�1
ηhk,gωhk,i,g t, ]i,g􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (16)

Note that, in the two-stage based models, the likelihood
calculation for longitudinal and time-to-event submodel are
done separately.

At this stage, themstate package is used to fit the Markov
multistate model.*emsprep() and expands.covs() functions
are used to prepare the multistate data, and then the coxph()
function is used to estimate the parameters of the transition-
specific multistate model.

5.2. Results. *e results of the multivariate longitudinal
model (Stage 1) are presented in Table 1. As shown in this
table, the time variable had significant linear and quadratic
effects on creatinine, hemoglobin, and BUN measurements.
Furthermore, the results showed that DRG was associated
with the creatinine trajectory and age of recipient was as-
sociated with hemoglobin, and BUN measurements (Ta-
ble 1). Since the association between three biomarkers was at
primary interest, the correlation of the random intercepts
and random slopes of longitudinal biomarkers was exam-
ined in the multivariate model. *e correlation matrix of the
random effects based on joint modeling of the longitudinal
biomarkers is given in Table 2. As shown in this table, the
creatinine and BUN measurements were correlated on both
the intercept (r� 0.67) and the slope (r� 0.75). Moreover,
there was a moderate inverse correlation between the ran-
dom slope of hemoglobin and the random slope of creati-
nine (r� −0.52) as well as between the random slope of
hemoglobin and the random slope of BUN (r� −0.55).

*e results of the multistate model (Stage 2) fitted with
various association structures are given in Table 3. We can
observe the effect of different association structures on the

results of two-stage based model through comparing their
estimations. For instance, we had not found any significant
effect of the true slope of creatinine and hemoglobin on time
to graft rejection at time T12 (time of transition from state 1
to state 2), when we used their prediction based on the
multivariate longitudinal model. However, the cumulative
effect of these longitudinal biomarkers, as well as the effect of
their true values on the mentioned transition, was signifi-
cant. Such results display that the choice of association
structure (mentioned in Section 2), which is used in the
multistate model, is of particular importance and may lead
to conflicting results.

As, in practice, the association structure is unknown,
we can compare different association structures and select
the best one via various model selection criteria. *e
log-likelihood values of the multistate models can be used
to select the best structure. *e values of the log-likelihood
for different structures (presented in Table 3) revealed that
including the estimation of the cumulative effect of lon-
gitudinal biomarkers in the multistate model had the best
fit to data. It should be noted that choosing the appropriate
association structure between longitudinal and multistate
model also depends on the clinical aspects. Moreover, we
can use different association structures for each of the
longitudinal outcomes in a single multistate model and
even in each of the transitions of a unique model.

Based on the results of the presented innovative method,
we found that creatinine, hemoglobin, and BUN had pre-
dictive power in ESRD patients who underwent renal
transplantation. *e results showed that, after adjustments
for fixed covariates, the cumulative effects (the whole area
under the curve of the longitudinal biomarkers trajectories)
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of creatinine (HR� 1.10; 95% CI: 1.01–1.18 and; p � 0.024),
hemoglobin (HR� 0.90; 95% CI: 0.84–0.98 and; p � 0.012),
and BUN (HR� 1.13; 95% CI: 1.02–1.24 and; p � 0.016)
rather than their measurements at a particular time affected
the risk of graft rejection. Moreover, the results revealed that
the cumulative effect of hemoglobin on the survival after
rejection was significant (HR� 1.13; 95% CI: 1.02–1.24 and;
p � 0.023). *e results also showed that an increase in age at
the time of transplantation was associated with a lower risk
of graft rejection (HR� 0.95; 95% CI: 0.91–0.99 and;
p � 0.013), and a higher risk of death after rejection
(HR� 1.14; 95% CI: 1.03–1.26 and; p � 0.009).

6. Discussion and Conclusion

Traditional joint models for longitudinal and time-to-event
data often consist of one longitudinal and one survival
outcome [1–3]. However, in longitudinal health studies, a
patient may experience a succession of clinical events instead
of a single event and multiple longitudinal biomarkers may
be measured over time. Here, we proposed a two-stage based
model for joint modeling of multivariate longitudinal and
multistate data. With the use of two-stage based modeling,
we avoid the computational complexities of likelihood
calculation in the full joint likelihood approaches [8, 16].
Furthermore, as we have used multivariate longitudinal
model that incorporated the correlation between biomarkers
at the first stage and a multistate model for the disease
progression process at the second stage, we have introduced
an extension of the nave two-stage method in which uni-
variate models are used at both stages.

*e proposed model enabled us to study the complex
association structure between multiple longitudinal bio-
markers and transition between different health states in our

motivating renal transplantation dataset. *e strategy of this
proposed model was based on the specification of two
separate submodels for multivariate longitudinal and mul-
tistate data. At the first stage, a multivariate linear mixed
effects model proposed by Yücel [17] was used to model
biomarkers trajectories. *is model could handle the
missing values which is a crucial issue in longitudinal data.
*en, at the second stage, a multistate model with pro-
portional hazards was used to model transition intensities
incorporating the estimation of the random effects. In our
case study, we assumed a Markov continuous multistate
process as this assumption held for our renal data. However,
a semi-Markov model, in which the hazard of entry into the
next state depends on the sojourn time on the current state
[18] or a non-Markov model [19], can be used simply in-
stead. Moreover, as we did not have any information about
graft retransplantation among patients who experienced
graft rejection, we did not use a reversible multistate model,
although this type of multistate model also can be used. So,
the main advantage of the two-stage based proposed model
is that it can be easily generalized to other types of longi-
tudinal and survival models.

Guler et al. [8] have mentioned that the main limitation
of two-stage methods is bias arising with the unignorable
informative censoring in the longitudinal process which is
caused by the survival process. Here, we compare joint and
two-stage based models to see whether this bias is consid-
erable. To achieve this aim, joint models for multistate and
univariate longitudinal models (for each biomarker) are
fitted and the results compare with two-stage based model.
As presented in Appendix A (TableA.1, two approaches had
similar likelihood values and the biases were minimal.
Moreover, we showed that the impact of longitudinal bio-
markers and the effects of covariates on the transition

Table 1: *e results of the multivariate longitudinal model (Stage 1).

Variables
Creatinine Hemoglobin BUN

β SE p-value β SE p-value β SE p-value
Intercept 1.689 0.129 <0.001 10.788 0.313 <0.001 26.932 2.946 <0.001
Time −0.164 0.020 <0.001 1.048 0.039 <0.001 −3.159 0.355 <0.001
Time2 0.016 0.007 0.022 −0.099 0.004 <0.001 0.235 0.093 0.011
DRG (matched) 0.085 0.042 0.043 −0.053 0.144 0.711 2.093 1.008 0.038
Recipient age −0.001 0.002 0.517 0.016 0.005 0.004 0.156 0.050 0.002

Table 2: *e correlation matrix of random effects for the random intercepts and random slops of the multivariate joint model.

Creatinine Hemoglobin BUN
Intercept Slope Intercept Slope Intercept Slope

Creatinine Intercept 1 −0.16 0.09 −0.40 0.67 −0.19
Slope 1 −0.20 −0.52 −0.27 0.75

Hemoglobin Intercept 1 −0.21 0.08 −0.16
Slope 1 0.10 −0.55

BUN Intercept 1 −0.70
Slope 1
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Table 3: *e results of the multistate models (Stage 2) for different association structures between longitudinal and multistate processes.

Association structure: true slope of longitudinal biomarkers (ω1
hk,ig(t, ]ig))

Transition 1 to 2 Transition 2 to 3 Transition 1 to 3
Variables Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value

DRG 0.12 (0.11) 1.13 (0.91,
1.40) 0.258 0.22 (0.12) 1.24 (0.98,

1.57) 0.069 −0.32 (0.35) 0.73 (0.98,
1.57) 0.370

Recipient age −0.01 (0.01) 0.99 (0.97,
1.01) 0.317 0.04 (0.02) 1.04 (1.00,

1.08) 0.045 0.005 (0.01) 1.00 (0.98,
1.03) 0.709

Creatinine 0.22 (0.12) 1.25 (0.98,
1.58) 0.067 0.49 (0.26) 1.63 (0.98,

2.72) 0.059 1.05 (0.54) 2.87 (0.99,
8.31) 0.052

Hemoglobin −0.15 (0.08) 0.86 (0.74,
1.01) 0.061 −0.17

(0.09)
0.84 (0.71,

1.01) 0.058 0.36 (0.26) 1.44
(0.86,2.42) 0.168

BUN 0.02 (0.01) 1.02 (1.00,
1.04) 0.045 −0.01

(0.01)
0.99 (0.98,

1.00) 0.143 0.01 (0.01) 1.01 (0.99,
1.03) 0.176

−2(loglikelihood) 5714.38
Association structure: true value of longitudinal biomarkers (ω2

hk,ig(t, ]ig))

Transition 1 to 2 Transition 2 to 3 Transition 1 to 3
Variables Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value

DRG 0.02 (0.11) 1.02 (0.83,
1.27) 0.837 −0.07

(0.12)
0.93 (0.74,

1.18) 0.554 −0.17 (0.37) 0.85 (0.41,
0.74) 0.651

Recipient age −0.02 (0.02) 0.98 (0.94,
1.02) 0.317 0.12 (0.05) 1.13

(1.02,1.24) 0.016 0.01 (0.02) 1.01 (0.97,
1.05) 0.617

Creatinine 0.45 (0.22) 1.57 (1.02,
2.41) 0.040 0.13 (0.26) 1.14 (0.68,

1.89) 0.617 0.67 (0.35) 1.95 (0.98,
3.88) 0.055

Hemoglobin −0.68 (0.05) 0.51 (0.46,
0.56) <0.001 −0.44

(0.22)
0.64 (0.42,

0.99) 0.045 −0.06 (0.07) 0.94 (0.82,
1.09) 0.454

BUN 0.03 (0.01) 1.03 (1.01,
1.05) 0.003 0.01 (0.01) 1.01 (0.99,

1.03) 0.317 −0.01 (0.01) 0.99 (0.97,
1.01) 0.381

−2(loglikelihood) 5061.89
Association structure: both true slope and true value of longitudinal biomarkers (ω3

hk,ig(t, ]ig))

Transition 1 to 2 Transition 2 to 3 Transition 1 to 3
Variables Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value

DRG −0.01 (0.11) 0.99 (0.80,
1.23) 0.927 −0.03

(0.12)
0.97 (0.77,

1.23) 0.807 −0.13 (0.37) 0.88 (0.42,
1.82) 0.728

Recipient age −0.015 (0.01) 0.98 (0.96,
1.00) 0.134 0.01

(0.005)
1.01 (1.00,

1.02) 0.024 0.01 (0.01) 1.01 (0.98,
1.04) 0.374

Creatinine
η11 1.31 (0.38) 3.71 (1.76,

7.83) <0.001 0.08 (0.32) 1.08 (0.59,
2.03) 0.802 1.44 (0.62) 4.22 (1.25,

14.29) 0.020

η21
−1.85
(0.41)

0.16 (0.07,
0.35) <0.001 0.54 (0.36) 1.72 (0.85,

3.47) 0.134 1.13 (0.59) 3.09 (0.97,
9.83) 0.055

Hemoglobin
η12

−0.83
(0.06)

0.44 (0.39,
0.49) <0.001 −0.47

(0.07)
0.62 (0.54,

0.72) <0.001 0.06 (0.09) 1.06 (0.89,
1.27) 0.484

η22
−0.11
(0.07)

0.89 (0.78,
1.01) 0.083 −0.05

(0.08)
0.95 (0.81,

1.12) 0.571 0.43 (0.21) 1.54 (1.03,
2.31) 0.035

BUN
η13 0.01 (0.01) 1.01

(0.99,1.03) 0.074 0.01 (0.01) 1.01 (0.99,
1.02) 0.480 −0.01 (0.01) 0.98 (0.97,

1.00) 0.120

η23 0.05 (0.01) 1.05 (1.04,
1.06) <0.001 0.03 (0.02) 1.03 (0.99,

1.07) 0.134 0.05 (0.03) 1.05 (0.99,
1.11) 0.095

−2(loglikelihood) 4981.07
Association structure: the area under the biomarkers’ trajectories (ω4

hk,ig(t, ]ig))

Transition 1 to 2 Transition 2 to 3 Transition 1 to 3
Variables Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value Coef (SE) HR (95% CI) p-value

DRG 0.04 (0.11) 0.96 (0.78,
1.19) 0.742 0.26 (0.12) 1.30 (1.03,

1.64) 0.200 −0.47 (0.37) 0.62 (0.30,
1.28) 0.203

Recipient age −0.05 (0.02) 0.95 (0.91,
0.99) 0.013 0.13 (0.05) 1.14 (1.03,

1.26) 0.009 0.01 (0.01) 1.01 (0.98,
1.04) 0.425

Creatinine 0.09 (0.04) 1.10 (1.01,
1.18) 0.024 0.07 (0.04) 1.07 (0.99,

1.16) 0.080 0.15 (0.08) 1.16 (0.99,
1.36) 0.061

Hemoglobin −0.10 (0.04) 0.90 (0.84,
0.98) 0.012 −0.09

(0.04)
0.91 (0.84,

0.99) 0.023 −0.02 (0.01) 0.98 (0.97,
1.00) 0.134

BUN 0.12 (0.05) 1.13 (1.02,
1.24) 0.016 0.02 (0.01) 1.02 (1.00,

1.04) 0.069 −0.001
(0.001)

1.00 (0.99,
1.01) 0.133

−2(loglikelihood) 4013.425
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intensities between different states were the same in terms of
the association direction and significance. On the other
hand, the effect of incorporating the correlation between
longitudinal biomarkers in the model was examined by
comparing the use of univariate and multivariate pre-
diction of biomarkers in the multistate model (Appendix
A (Table A.2)). *e results showed that the estimation of
associations and their significant levels differ in two types
of models. So, we can conclude that incorporating the
correlation between longitudinal outcomes in the model is
of particular importance. In fact, our proposed model is
an extension of the two-stage model-based approach
introduced by Guler et al. [8] for multivariate longitudinal
and a single event of interest. Besides, we used multi-
variate linear mixed effects model to model the trajec-
tories of longitudinal biomarkers, while they have used a
pairwise approach as an alternative. Other features of our
proposed model are similar to the model introduced by
Guler et al., discussed in detail in [8].

In our case study, as it was expected, the level of
creatinine and BUN can be used to monitoring post-
transplant renal graft function. In fact, the levels of these
biomarkers will increase in patients with a dysfunctional
graft, and this increase is translated to a higher risk of
rejection or mortality [20–23]. On the other hand, less
hemoglobin level in the post-transplant period has been
known to be associated with an increased risk of graft loss
and mortality [24, 25] that was consistent with our
findings. Moreover, some transplant medications are
known to be associated with low levels of hemoglobin
(anemia) [24], and the increased risk may be caused by
these treatments. We showed that the prediction of
measurements of investigated biomarkers at a fixed time
point could be useful for monitoring the outcomes of
transplantation. However, the ability of these measure-
ments to predict the outcomes of interest is limited.
Instead, here the cumulative effects of these biomarkers
on the transplantations’ outcomes are demonstrated. So,
it is advised that the measurements of these biomarkers
should be recorded in such a way that the calculation of
cumulative effects is possible.
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and D. Mendonça, “Two-stage model for multivariate lon-
gitudinal and survival data with application to nephrology
research,” Biometrical Journal, vol. 59, no. 6, pp. 1204–1220,
2017.

[9] P. T. T. Huong, D. Nur, H. Pham, and A. Branford, “A
modified two-stage approach for joint modelling of longi-
tudinal and time-to-event data,” Journal of Statistical Com-
putation and Simulation, vol. 88, no. 17, pp. 3379–3398, 2018.

[10] D. Hedeker and R. D. Gibbons, Longitudinal Data Analysis,
Vol. 451, John Wiley & Sons, New York, NY, USA, 2006.

Journal of Probability and Statistics 9

https://downloads.hindawi.com/journals/jps/2021/6641602.f1.docx
https://downloads.hindawi.com/journals/jps/2021/6641602.f1.docx


[11] D. R. Cox, “Regression models and life-tables,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 34,
no. 2, pp. 187–202, 1972.

[12] W. Ye, X. Lin, and J. M. G. Taylor, “Semiparametric modeling
of longitudinal measurements and time-to-event data-a two-
stage regression calibration approach,” Biometrics, vol. 64,
no. 4, pp. 1238–1246, 2008.

[13] Y. Pawitan and S. Self, “Modeling disease marker processes in
AIDS,” Journal of the American Statistical Association, vol. 88,
no. 423, pp. 719–726, 1993.

[14] A. A. Tsiatis, V. Degruttola, and M. S. Wulfsohn, “Modeling
the relationship of survival to longitudinal data measured with
error. Applications to survival and CD4 counts in patients
with AIDS,” Journal of the American Statistical Association,
vol. 90, no. 429, pp. 27–37, 1995.

[15] I. Guler, “Comparing the predictive performance of different
regressionmodels for longitudinal and time-to-event data,” in
Workshop on Statistical Modelling, F. S. T. Kneib and
J. Fahrenholz, Eds., pp. 111–116, Göttingen, Germany, 2014.

[16] L. Wu, W. Liu, and X. J. Hu, “Joint inference on HIV viral
dynamics and immune suppression in presence of mea-
surement errors,” Biometrics, vol. 66, no. 2, pp. 327–335, 2010.
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