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An omnibus test for normality with an adjustment for symmetric alternatives is developed using the empirical likelihood ratio
technique. We first transform the raw data via a jackknife transformation technique by deleting one observation at a time. .e
probability integral transformation was then applied on the transformed data, and under the null hypothesis, the transformed data
have a limiting uniform distribution, reducing testing for normality to testing for uniformity. Employing the empirical likelihood
technique, we show that the test statistic has a chi-square limiting distribution. We also demonstrated that, under the established
symmetric settings, the CUSUM-type and Shiryaev–Roberts test statistics gave comparable properties and power. .e proposed
test has good control of type I error. Monte Carlo simulations revealed that the proposed test outperformed studied classical
existing tests under symmetric short-tailed alternatives. Findings from a real data study further revealed the robustness and
applicability of the proposed test in practice.

1. Introduction

.e empirical likelihood (EL) methodology was introduced
in [1, 2] and has been widely studied as a nonparametric
approximation of the parametric likelihood approach (e.g.,
[3–6]). .us, it utilizes the concept of the likelihoods in a
distribution-free manner in approximating optimal para-
metric likelihood-based techniques. .e method provides a
versatile approach that may be applied to perform inference
for a wide variety of statistical applications. An area with
substantial new development in the use of the EL methods is
hypothesis testing. Various researchers have proposed
goodness-of-fit (GoF) tests for continuous distributions
based on the EL for a wide range of hypothesis tests, which
includes exponentiality [7, 8], logistic [9], uniformity [10],
and normality [11, 12].

From the various proposed EL testing procedures as well
as in the current statistical practice, it is evident that the
problem of testing composite hypotheses of normality is

undeniably the most common research focus in GoF testing.
.e continued growing need for normality tests is attributed
to the frequent use and applications of normally distributed
data in various areas of pure and applied statistical practices.
Although it is difficult to propose a test for normality
competing with the highly efficient family of Shapiro–Wilk
tests (e.g., [13–16]), the proposed EL-based normality tests
have proved to be superior under certain alternative dis-
tributions [12]. Of these tests, the moment-based tests seem
to have gained more traction due to their flexibility, sim-
plicity, power properties, and convenient use of omnibus
tests in accessing the normality of underlying continuous
distributions.

To test for normality, Dong and Giles [11] proposed an
omnibus test statistic by directly utilizing the EL method-
ology outlined by Owen [17]. .ey utilized the first four
moment constraints that characterize the normal distribu-
tion. After outlining drawbacks of the test proposed by Dong
and Giles [11], Shan et al. [12] proposed a cumulative sum-
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(CUSUM-) type simple and exact empirical likelihood ratio-
based (SEELR) test statistic for normality which unlike that
of Dong and Giles [11] has good control of type I error (also
see [18]) and can be easily implemented in a wide range of
statistical packages. .e test by Shan et al. [12] is an omnibus
test that makes use of standardized sample observations
using the Lin and Mudholkar [19] jackknife transformation.
In their study, Shan et al. [12] reported that power of their
proposed omnibus test is comparable to well-known existing
tests and oftentimes outperforms these tests under certain
alternatives, mostly asymmetric distributions.

Just like some tests for normality, the test proposed by
Shan et al. [12] suffers the loss of power under several
symmetric alternatives. It is a challenge to propose an
omnibus test that has high power than the classical Jar-
que–Bera’s tests [20, 21] and the D’Agostino–Pearson k2 test
[22] in detecting departures from normality in alternatives
that exhibit the symmetric nature of the normal distribution.
.rough the utilization of various mathematical and sta-
tistical properties that characterize the normal distribution
(for example, see [19, 23, 24]) one can remedy such shortfalls
in GoF tests. One such remedy is transformation to uni-
formity, which has several benefits that include increasing
the power of a test under certain alternatives (for example,
see [8, 25]). For a data-driven omnibus test for symmetry,
Fang et al. [25] utilized a bootstrapping approach coupled
with the probability integral transformation, and under the
null hypothesis, the transformed data had a limiting uniform
distribution. For superior power under symmetric alterna-
tives, their proposed test required only odd-ordered or-
thogonal moments of the transformed data in constructing
the test statistic.

.e use of the probability integral transformation in the
development of GoF tests of normality has been widely used
especially in empirical distribution function- (EDF-) based
tests. Rosenblatt [26] first introduced the concept. .us, the
EDF tests make use of the probability integral transfor-
mation U � F(X). If F(X) is the distribution function of X,
the random variable U is uniformly distributed between 0
and 1. Given n observations X(1), . . . , X(n), the values U(i) �

F(X(i)) are computed. .e most commonly used EDF tests
for normality are the Anderson–Darling test [27, 28] and the
Lilliefors test which is well known as the modified Kol-
mogorov–Smirnov test [29] and the Cramér–von Mises test
[30]. In addition to the use of the probability integral
transformation, several approaches have been used to
construct GoF tests for the composite hypothesis of nor-
mality. In this study, we adopted the EL methodology to
propose a new omnibus test for normality by exploiting
different forms of characterizing the normal distribution.
.e purpose of this paper is to use a jackknife character-
ization due to Shan et al. [12], as in Lin and Mudholkar [19],
followed by a probability integral transformation (see
[8, 25]) for developing a goodness-of-fit test for normality.
Here we consider the approach to obtaining a GoF test
statistic by combining two well-known characterizations,
individually powerful against different classes of alternatives.
However, following the works of Fang et al. [25], we restrict
attention to symmetric alternatives. Power comparisons are

conducted with some of the most widely known EDF-based
tests, well-known and powerful moment-based tests, and the
powerful classical SW tests.

2. Test Development

Consider an unknown continuous distribution with non-
ordered random variables denoted by X1, X2, . . . , Xn that
are assumed to be independent and identically distributed
(i.i.d.). .e intention is to test whether the observations are
consistent with a normal distribution. .us, we intended to
test whether to accept or reject the following null hypothesis:

H0: X1, X2, . . . , Xn ∼ N μ, σ2􏼐 􏼑, (1)

where μ and σ2 are unknown parameters. We then proposed
to use standardized random variables of the sample ob-
servations. To achieve this, we adopted a jackknife trans-
formation technique by deleting one observation at a time
following Lin and Mudholkar [19] works (also see [12]).
.us, we transformed our observations using

Zi �

��������
(n/n − 1)

􏽰
Xi − X( 􏼁

SD−i

, i � 1, 2, . . . , n, (2)

where X � (1/n) 􏽐
n
j�1 Xj, SD2

−i � (1/n − 2) 􏽐
n
j�1,j≠ i (Xj−

X− i)
2, and X−i � (1/n − 1) 􏽐

n
j�1,j≠ i Xj. It should be noted

according to Shan et al. [12] as n gets large, the standardized
data points Z1, Z2, . . . , Zn become asymptotically inde-
pendent while under the null hypothesis they are distributed
according to a t distribution with n − 2 df, which as n grows
approaches the standard normal. In addition to this
transformation, we then further adopted the probability
integral transformation (see [25] as well as [8]). .e
probability integral transformation then transformed the
standardized random variables into independent uniformly
distributed random variables Y1, Y2, . . . , Yn. .at is, under
the null hypothesis, the transformed data follow the uniform
distribution asymptotically. From the proposed transfor-
mation, Yi are uniformly distributed on (0, 1), where the
density function of Y(a, b) is given by

f(y) �

1
b − a

, for a≤y≤ b,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where a � the lowest value of y and b � the highest value of y.
.e kth moment of the uniform distribution is defined by

E Y
k

􏼐 􏼑 �
b

k+1
− a

k+1

(k + 1)(b − a)
. (4)

From the uniformly transformed observations, we then
proposed to test for the following null hypothesis:

H0: Y1, Y2, . . . , Yn ∼ Uniform(0, 1), (5)

versus the alternative that Y1, Y2, . . . , Yn are from a non-
uniform distribution defined on (0, 1). In accordance with
the EL method, under H0, we considered unbiased empirical
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moment equations utilizing the rawmoments of the uniform
distribution, which are given by

􏽘

n

i�1
piY

k
i − μk � 0, k � 1, 2, . . . , m. (6)

.e composite hypothesis for the ELR test was then
given by

H0: E Y
k

􏼐 􏼑 � μk vsHa: E Y
k

􏼐 􏼑≠ μk, k � 1, 2, . . . , m.

(7)

.e nonparametric empirical likelihood function cor-
responding to the given hypotheses in equation (7) is
expressed as

L(F) � L Y1, Y2, . . . , Yn | μk( 􏼁 � 􏽙

n

i�1
pi, (8)

where the unknown probability parameters pi’s are attained
under H0 and Ha. Under H0, the EL function given in
equation (8) is maximized with respect to the pi’s subject to
two constraints:

􏽘

n

i�1
pi � 1,

􏽘

n

i�1
piY

k
i � μk, k � 1, 2, . . . , m.

(9)

Following this, the weights of pi’s are identified as

p1, p2, . . . , pn � arg max
a1 ,a2 ,...,an

􏽙

n

i�1
ai

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

n

i�1
ai � 1, 􏽘

n

i�1
aiY

k
i � μk,

(10)

where 0≤ aj ≤ 1, for j � 1, 2, . . . , n. If we then use the La-
grangian multipliers technique, it can be shown that the
maximum EL function under H0 can be expressed as

L FH0
􏼐 􏼑 � L Y1, Y2, . . . , Yn | μk( 􏼁 � 􏽙

n

i�1

1
n 1 + λk Y

k
i − μk􏼐 􏼑􏼐 􏼑

,

(11)

where λk in equation (11) is a root of

􏽘

n

i�1

Y
k
i − μk􏼐 􏼑

1 + λk Y
k
i − μk􏼐 􏼑

� 0. (12)

Under the alternative hypothesis, 􏽐
n
i�1 piY

k
i � μk is not

required to identify the weights, pi in order to maximize the
EL function but only, 􏽐

n
i�1 pi � 1. .us, under Ha, the

nonparametric EL function is given by

L FHa
􏼐 􏼑 � L Y1, Y2, . . . , Yn( 􏼁 � 􏽙

n

i�1

1
n

􏼒 􏼓 �
1
n

􏼒 􏼓
n

. (13)

Now let us consider (−2LLR)k to be −2 log-likelihood
test statistic for the hypotheses H0: E(Yk) � μk vs. Ha: E

(Yk)≠ μk. It should be noted that, under H0, minus two
times the log LLR has an asymptotic χ2(1) limiting

distribution [1]. Considering the null and alternative hy-
potheses, the test statistic is given by

(−2LLR)k � −2 log
L FH0

􏼐 􏼑

L FHa
􏼐 􏼑

� 2􏽘
n

i�1
log 1 + λk Y

k
i − μk􏼐 􏼑􏽨 􏽩.

(14)

We then proposed to reject the null hypothesis using two
different test statistics. Firstly, we considered the cumulative
sum- (CUSUM-) type statistic given by

CSELR � max
k∈G

(−2LLR)k >Cα. (15)

Secondly, we considered the common alternative to the
CUSUM-type statistic, which is to utilize the Shir-
yaev–Roberts (SR) statistic (for example, see [31] among
others). In our case, the classical SR statistic was of the form

SRELR � 􏽘
k∈G

exp (−2LLR)k >Cα, (16)

where Cα is the test threshold and is 100(1 − α)% percentile
of the χ2(1) distribution. .e set G are integer values rep-
resenting the moment constraints that will maximize the test
statistic. Our proposed test statistic (equation (15)) is de-
veloped utilizing approaches introduced by Vexler and Wu
[32], and various authors have demonstrated that the SR
statistic (see equation (16)) and the CUSUM-type statistic
have almost equivalent optimal statistical properties due to
their common null-martingale basis [31]. .e choice of G is
also vital in moment-based test statistics. Fang et al. [25]
utilized the probability integral transformation and rec-
ommended that, under the test of symmetry, only odd-
ordered moments of the transformed data are required in
the construction of the test statistic..ey further alluded that
the use of odd-ordered moments has several benefits that
include power against most symmetric alternatives and
robustness and performs well under small sample sizes
among others.

For our proposed test statistics, we decided to then
conduct an extensive Monte Carlo simulation exercise in
order to empirically evaluate the suitable choice of G that
will give us optimal power under symmetric alternatives in
testing for normality. Following the work of Fang et al. [25]
as well as Shan et al. [12], we estimated the powers of the test
statistics for different alternatives and definitions of odd-
ordered moments of G. Table 1 displays a subset of the
Monte Caro simulation results. We also considered addi-
tional alternatives based on samples of sizes n� 20, 50, and
100 at α � 0.05. We used size-adjusted critical values for
each test statistic, and power for each test was computed
using 5,000 replications. .e results were that both the
CUSUM-type and the Shiryaev–Roberts proposed test sta-
tistics with G � 3, 5{ } showed an average power that was
greater than that of all other cases under symmetric short-
tailed alternatives. In addition, the CUSUM-type test sta-
tistics with G � 3, 5{ } showed an average power that was
greater than that of all other cases under symmetric long-
tailed alternatives. Since our proposed test is meant to
perform superior under symmetric alternatives, we
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recommend to use G � 3, 5{ } since the proposed test
statistics with G � 3, 5{ } are simple and provide relatively
high levels of power under symmetric alternatives. .e
results of our Monte Carlo simulation experiments are
consistent with that of Fang et al. [25]. In this article, we
denoted CSELR for the CUSUM-type test statistic and
SRELR for the Shiryaev–Roberts proposed test statistic. A
schematic algorithm of the testing procedure is shown in
Figure 1.

3. Monte Carlo Simulation Procedures

We utilized the R statistical package for all the simulation
procedures. Firstly, size-adjusted critical values for the
proposed test statistics were determined. In order to achieve
this, we used 50,000 replications, and without loss of gen-
erality, data were simulated from a standard normal dis-
tribution at stipulated sample sizes and α-levels. Only
samples of sizes 20 to 100 were considered (see Table 2)..is
was entirely motivated by the need to utilize samples that
commonly arise in practice.

For power comparisons, twelve selected competitor tests
were considered. .e choice of these tests was guided by
potential competitor tests, thus tests developed using similar
characterization techniques as well as well-known powerful
classical normality tests. .ree broad categories of these
competitor tests were established. .ese include EDF-based
tests, moment-based tests, and the Shapiro–Wilk-based tests.
For the EDF-based tests, we opted for the Anderson–Darling
(AD) test [27, 28], the Lilliefors (LL) test which is well known
as the modified Kolmogorov–Smirnov test [29], the
Cramér–von Mises (CVM) test [30], and the Hn test [33].
Moment-based tests included the Jarque–Bera’s (JB) test
[20, 21], the robust Jarque–Bera’s (JB) test [20, 21], the
kurtosis (b2) test [14], the skewness (

��
b1

􏽰
) test [14], the

D’Agostino–Pearson k2 (DP) test [22], and the simple and
exact empirical likelihood ratio (SEELR) test based on mo-
ment relations [12]. Lastly, the other categories of competitor
tests consisted of the classical well-known and powerful
Shapiro–Wilk (SW) test [13] and the Shapiro–Francia’s (SF)
test [15] which is a modification of the SW test. Most of these
competitor tests have proved to be powerful against a wide
range of alternatives including symmetric ones [33–39].

In terms of the alternative distributions, we considered
distributions that cover a wide range of symmetric alter-
native distributional properties. Following Esteban et al. [40]
and Torabi et al. [33], we considered the following alter-
native distributions, which can be classified into two broad
sets of symmetric alternative distributions: (1) symmetric
short-tailed distributions and (2) symmetric long-tailed
distributions. In order to evaluate our proposed tests under
asymmetric alternatives, we opted for a third set (3) of
asymmetric alternatives:

(1) Set 1: symmetric short-tailed distributions:

(i) .e beta distribution with parameters (3, 3), (2,
2), (1, 1), and (0.5, 0.5)

(ii) .e uniform distribution, U(a, b) with a� 0 and
b� 1

(iii) .e logit-normal distribution with μ � 0 and
σ � 1

(iv) .e truncated standard normal distribution at a
and b, i.e., (−2, 2) and (−1, 1)

(v) Tukey’s lambda distribution with λ � 0.25, 0.75,
and 1.25

(2) Set 2: symmetric long-tailed distributions:

(i) Student’s t distribution with 2, 4, 7, and 15
degrees of freedom.

(ii) .e Cauchy distribution with x0 � 0 and c � 1
(iii) .e logistic distribution with parameters μ � 0

(location) and σ � 1 (scale)
(iv) .e double exponential distribution (also

known as the Laplace distribution) with pa-
rameters μ (location) and λ (scale)

(v) Tukey’s lambda distribution with
λ � −0.10, −0.15, and −0.25

(3) Set 3: asymmetric distributions:

(i) .e gamma distribution with parameters (2, 1)
(ii) .e Weibull distribution with parameters (2, 1)
(iii) .e skewed normal distribution with parame-

ters (0, 1, 5)
(iv) .e skewed Cauchy distribution with parame-

ters (0, 2, 5)
(v) .e beta distribution with parameters (2, 1) and

(3, 1.5)

For power simulation, 10,000 samples each of size
n � 20, 30, 50, 80, and 100 were obtained under the various
alternative distributions. Power was computed by consid-
ering the number of times the test rejected the null hy-
pothesis over the total number of replications. A numerical
bootstrap study on real data was conducted to assess the
robustness and applicability of the proposed tests. However,
it was necessary to first assess the type I error control of our
proposed tests before the power study.

3.1. Type I Error Control. Here, we provide the values of type
I error rates along with the associated standard errors of the
proposed tests for α � 0.01, 0.05, and 0.10. In order to
compute these quantities, for each nominal alpha, we
generated 500,000 random samples from a standard normal
distribution, each corresponding to sample size
n � 20, 30, 50, 80, and 100. .e results presented in Table 3
show that the proposed tests control type I error very well.
Figure 2 includes plots of the simulated type error rates only
for α � 0.05 for all the sample sizes considered. .e plots for
the empirical cumulative probability function of the simu-
lated p values for n � 20, α � 0.01, and α � 0.10 were
omitted since their plots were more or less the same as those
for other sample sizes and α� 0.05, respectively. It is evident
that the plots produced the expected appearance in all the
simulated scenarios. .at is, the plots show close to the
α-level of simulated type I error rates. .e closeness of the
estimated probabilities of type I error to the nominal value
(α � 0.05) attests that the GoF test does perform as expected.
.ese results were extended in order to evaluate the type I
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error control when simulating from a normal distribution
with varying parameters of μ and σ2. We considered various
scenarios which include N(0, 52), N(5, 52), N(7, 152),
N(15, 252), and N(50, 752) for samples of sizes 20, 50, 100 at
alpha levels of 0.01, 0.05, and 0.10 (see Table 4). Similarly, as
observed in Table 3, the estimated probabilities of type I

error were close to the respective nominal values which
shows that the GoF test does perform as expected. It is
important to note that various alternative methods that can
also be used to assess the closeness of the simulated type I
error rates to the nominal size alpha are available in the
literature. .e most popular one is based on the central limit

Start

Generate data X1, X2, ..., Xn

Reject H0 if test statistic > Cα.

End

Transform data using the jackknife resampling technique
Zi = [√n/(n – 1) (Xi–X)]/SD–i, i = 1, 2, ..., n.–

Apply the probability intergal transformation on the transformed data,
Z1, Z2, ..., Zn, i.e., thus, given F (z) the Y = F (Z) over (0, 1)

Utilizing the raw moments of the uniform distribution, apply th EL on the composite hypotheses
H0 : E (Yk) = μk vs Hα : E (Yk) ≠ μk. For k = 3, 5

Using the Lagrangian multipliers maximise the EL functions under
H0 : L (FH0) = πn

i = 1 1/n (1 + λk (Yk
i – μk)) and under Hα : L (FHα) = πn

i = 1 (1/n).

Calculate the value of test statistic given by
CSELR = max (–2LLR)k or SRELR = ∑k∈G exp (–2LLR)kk∈G

Figure 1: Schematic algorithm of the testing procedure.

Table 2: Size-adjusted critical values for the proposed tests at α � 0.01 − 0.10.

Size-adjusted critical values for CUSUM-type-based test statistic at (α)-H0: X ∼ N(0, 1)

n 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
20 0.4206 0.3437 0.3004 0.2742 0.2547 0.2378 0.2249 0.2140 0.2044 0.1956
30 0.4328 0.3535 0.3112 0.2833 0.2625 0.2466 0.2321 0.2198 0.2095 0.2009
50 0.4458 0.3635 0.3226 0.2920 0.2685 0.2509 0.2361 0.2232 0.2124 0.2022
80 0.4562 0.3695 0.3255 0.2945 0.2720 0.2544 0.2388 0.2260 0.2148 0.2043
100 0.4581 0.3816 0.3348 0.3036 0.2809 0.2627 0.2477 0.2335 0.2219 0.2108
Size-adjusted critical values for Shiryaev–Roberts test statistic at (α)-H0: X ∼ N(0, 1)

n 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
20 2.7840 2.5992 2.5136 2.4619 2.4231 2.3926 2.3676 2.3465 2.3280 2.3115
30 2.8129 2.6242 2.5361 2.4790 2.4384 2.4067 2.3813 2.3586 2.3384 2.3207
50 2.8519 2.6658 2.5725 2.5066 2.4595 2.4205 2.3908 2.3672 2.3476 2.3280
80 2.8821 2.6758 2.5823 2.5177 2.4648 2.4323 2.4031 2.3761 2.3514 2.3311
100 2.8846 2.6920 2.5877 2.5190 2.4678 2.4368 2.3962 2.3792 2.3559 2.3371
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Table 3: Type I error rates along with the standard error for the proposed test statistics using N(0, 1).

Alpha
Simulated probabilities of the type I error along with standard error

Sample size CUSUM-type test statistic Shiryaev–Roberts test statistic

0.01

20 0.009214 ± 1.3509e− 04 0.009346 ± 1.3606e− 04
30 0.010163 ± 1.4181e− 04 0.010291 ± 1.4269e− 04
50 0.010589 ± 1.4469e− 04 0.009849 ± 1.3963e− 04
80 0.010893 ± 1.4675e− 04 0.009613 ± 1.3796e− 04
100 0.009706 ± 1.3862e− 04 0.009916 ± 1.4003e− 04

0.05

20 0.050133 ± 3.0859e− 04 0.049785 ± 3.0758e− 04
30 0.049841 ± 3.0774e− 04 0.050578 ± 3.0989e− 04
50 0.052238 ± 3.1464e− 04 0.049027 ± 3.0534e− 04
80 0.051434 ± 3.1235e− 04 0.050018 ± 3.0826e− 04
100 0.048295 ± 3.0317e− 04 0.051756 ± 3.1327e− 04

0.10

20 0.102066 ± 4.2812e− 04 0.100521 ± 4.2523e− 04
30 0.100938 ± 4.2601e− 04 0.098578 ± 4.2156e− 04
50 0.101902 ± 4.2781e− 04 0.099039 ± 4.2242e− 04
80 0.101586 ± 4.2722e− 04 0.099829 ± 4.2392e− 04
100 0.095552 ± 4.1573e− 04 0.101395 ± 4.2686e− 04
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Figure 2: Continued.
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theorem and it was described in detail by Batsidis et al. [41].
Once the type I error rates were examined, we then pro-
ceeded to evaluate the powers of the proposed tests to de-
termine how well they would detect departures from
normality and to see their power performance compared to
those of the selected competing tests.

3.2. Monte Carlo Power Simulation Results. Results for the
Monte Carlo power comparisons are presented. Bold numbers
in all tables represent the two most superior tests under the
respective simulated scenarios. From Tables 5 and 6, we found
out that when the alternative distributions are short-tailed and
symmetric, our proposed tests performed quite well. Under
these symmetric alternative cases, our proposed tests (SRELR
and CSELR) significantly outperformed all other studied tests.
Tests based on LL, JB, RJB, and

��
b1

􏽰
have the least power as

compared to other tests. In general, the tests based on SRELR,
CSELR, DP, SW, and b2 are the most powerful under these
symmetric short-tailed alternative distributions.

For symmetric long-tailed alternatives (see Tables 7 and
8), the tests based on RJB, b2, SF, and JB are more superior,
whereas the tests based on

��
b1

􏽰
, LL, and SEELR are the least

powerful. Our proposed tests performed slightly lesser than
the DP test but were comparable to the SW test. It is im-
portant to note that, in all of the cases under these symmetric
long-tailed alternatives, our proposed tests outperformed all
the EDF-based tests.

For the considered asymmetric alternatives (see Table 9),
the tests based on SEELR, SW, SF, and AD are more su-
perior, whereas the tests based on b2, RJB, and SRELR are the
least powerful. Our proposed test based on CSELR per-
formed slightly lesser than the JB test but was comparable to
the LL test. It is important to note that, in all of the cases
under these asymmetric alternatives, our proposed test
based on CSELR outperformed the SRELR-based test.

In order to get a clearer visualisation of the performance
of the different normality tests, the ranking procedure was
used. Tables 10 to 12 contain the ranking of all the tests
considered in this study according to the average powers
computed from the values in Tables 5–8 and 9, respectively.
.e rank of power is based on the set of alternative dis-
tributions and sample sizes, respectively. Using average
powers, we can select the tests that are, on average, most
powerful against the alternatives from the given sets of al-
ternatives. It should be noted that, under all the symmetric
simulated scenarios, our proposed tests (SRELR and CSELR)
were comparable in power.

From Table 10, it can be clearly seen that our proposed
tests (SRELR and CSELR) are the most powerful tests for
both small and moderate sample sizes under symmetric
short-tailed alternatives. .is is followed rather closely by
the DP test. .e results of the total rank based on all sample
sizes (i.e., n � 20 to 100) show that our proposed tests
(SRELR and CSELR) are overly the most superior tests for
symmetric short-tailed distributions.
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Figure 2: Cumulative type I error rates for α � 0.05 at different sample sizes (n � 30, 50, 80, and 100) using 500,000 simulations.
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For symmetric long-tailed alternatives (see Table 11),
generally the RJB test was the most powerful in both small
and moderate sample sizes. Our proposed tests had
comparable power with the AD test under small samples
for symmetric long-tailed alternatives. However, under
moderate sample sizes, our proposed tests were slightly
more powerful than the DP and SW tests. Lastly, con-
sidering all the sample sizes under symmetric long-tailed
alternatives, our proposed tests were comparable to the
SW test.

Lastly, under asymmetric alternatives (see Table 12), our
proposed test based on CSELR performed better than the

SRELR-based test. It is also important to note that our re-
lated test, the SEELR, outperformed all other tests under
these considered asymmetric alternatives. It is also impor-
tant to note that, unlike some of the competitor tests, our
proposed tests were consistent in power under all alternative
distributions for all simulated scenarios.

4. Real Data Study

We used the snowfall dataset to examine the applicability of
the proposed test on real data. .e snowfall dataset consists
of 63 snow precipitation values that were recorded from the

Table 4: Type I error rates along with the standard error for the proposed test statistics using N(μ, σ2).

N(μ, σ2)
Simulated probabilities of the type I error along with standard error

Alpha Sample size CUSUM-type test statistic Shiryaev–Roberts test statistic

N(0, 52)

0.01
20 0.009434 ± 1.3665e− 04 0.009415 ± 1.3655e− 04
50 0.010655 ± 1.4515e− 04 0.009971 ± 1.4047e− 04
100 0.009746 ± 1.3890e− 04 0.009969 ± 1.4046e− 04

0.05
20 0.049903 ± 3.0701e− 04 0.049897 ± 3.0788e−04
50 0.051580 ± 3.1278e− 04 0.049959 ± 3.0808e− 04
100 0.048599 ± 3.0406e− 04 0.051496 ± 3.1254e− 04

0.10
20 0.102288 ± 4.2854e− 04 0.099721 ± 4.2373e− 04
50 0.102146 ± 4.2825e−04 0.099881 ± 4.2418e− 004
100 0.096571 ± 4.1769e− 04 0.102983 ± 4.2982e− 04

N(5, 52)

0.01
20 0.009358 ± 1.3612e− 04 0.009790 ± 1.3921e− 04
50 0.010421 ± 1.4357e− 04 0.009792 ± 1.3920e− 04
100 0.009779 ± 1.3912e− 04 0.009636 ± 1.3812e− 04

0.05
20 0.050542 ± 3.0979e− 04 0.049276 ± 3.0608e− 04
50 0.050920 ± 3.1087e− 04 0.048651 ± 3.0424e− 04
100 0.048685 ± 3.0434e− 04 0.051655 ± 3.1296e− 04

0.10
20 0.102156 ± 4.2829e− 04 0.099039 ± 4.2243e− 04
50 0.103031 ± 4.2990e− 04 0.098468 ± 4.2135e− 04
100 0.095373 ± 4.1537e− 04 0.101721 ± 4.2747e− 04

N(7, 152)

0.01
20 0.009227 ± 1.3520e− 04 0.009651 ± 1.3824e− 04
50 0.010575 ± 1.4462e− 04 0.010104 ± 1.4138e− 04
100 0.009551 ± 1.3751e− 04 0.009495 ± 1.3713e− 04

0.05
20 0.050768 ± 3.1043e− 04 0.048988 ± 3.0522e− 04
50 0.050882 ± 3.1077e− 04 0.048730 ± 3.0448e− 04
100 0.049044 ± 3.0540e− 04 0.050758 ± 3.1041e− 04

0.10
20 0.101926 ± 4.2786e− 04 0.100764 ± 4.2569e− 04
50 0.102209 ± 4.2838e− 04 0.099809 ± 4.2387e− 04
100 0.096280 ± 4.1714e− 04 0.101345 ± 4.2678e− 04

N(15, 252)

0.01
20 0.009416 ± 1.3648e− 04 0.009651 ± 1.3824e− 04
50 0.010531 ± 1.4432e− 04 0.009910 ± 1.4007e− 04
100 0.010028 ± 1.4086e− 04 0.009329 ± 1.3592e− 04

0.05
20 0.049686 ± 3.0729e− 04 0.049465 ± 3.0664e− 04
50 0.051571 ± 3.1275e− 04 0.049887 ± 3.0788e− 04
100 0.048452 ± 3.0363e− 04 0.050863 ± 3.1072e− 04

0.10
20 0.101373 ± 4.2683e− 04 0.099383 ± 4.2307e− 04
50 0.101062 ± 4.2625e− 04 0.099168 ± 4.2267e− 04
100 0.095026 ± 4.1470e− 04 0.102562 ± 4.2904e− 04

N(50, 752)

0.01
20 0.009383 ± 1.3621e− 04 0.009415 ± 1.3639e− 04
50 0.010662 ± 1.4521e− 04 0.010074 ± 1.4119e− 04
100 0.009592 ± 1.3782e− 04 0.009724 ± 1.3874e− 04

0.05
20 0.049308 ± 3.0618e− 04 0.049587 ± 3.0699e− 04
50 0.051753 ± 3.1325e− 04 0.049020 ± 3.0533e− 04
100 0.048467 ± 3.0368e− 04 0.050790 ± 3.1050e− 04

0.10
20 0.101744 ± 4.2752e− 04 0.099688 ± 4.2366e− 04
50 0.100745 ± 4.2563e− 04 0.099476 ± 4.2326e− 04
100 0.096317 ± 4.1722e− 04 0.102060 ± 4.2809e− 04

Note. Monte Carlo simulations were conducted using 500,000 replications.
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year 1910 to 1972. .e dataset has been extensively used in
various statistical applications; see, for example, .aler [42],
Carmichael [43], Tukey [44], and Parzen [45] to illustrate
and compare various statistical techniques. .e snowfall
dataset is presented as follows: 126.4, 82.4, 78.1, 51.1, 90.9,
76.2, 104.5, 87.4, 110.5, 25.0, 69.3, 53.5, 39.8, 63.6, 46.7, 72.9,
79.6, 83.6, 80.7, 60.3, 79.0, 74.4, 49.6, 54.7, 71.8, 49.1, 103.9,
51.6, 82.4, 83.6, 77.8, 79.3, 89.6, 85.5, 58.0, 120.7, 110.5, 65.4,
39.9, 40.1, 88.7, 71.4, 83.0, 55.9, 89.9, 84.8, 105.2, 113.7, 124.7,

114.5, 115.6, 102.4, 101.4, 89.8, 71.5, 70.9, 98.3, 55.5, 66.1,
78.4, 102.5, 97.0, 110.0.

.e snowfall data is well known to be consistent with the
normal distribution. We plotted a histogram and a Q-Q plot
in order to examine the hypothesis for the normality of the
snowfall data (see Figure 3).

From the plots, it is clearly visible that the snowfall data
are consistent with a normal distribution. Following the
ideas introduced by Stigler [46], we conducted a bootstrap

Table 10: Ranking of tests using average powers computed from the values in Tables 5 and 6 for set 1 of alternative distributions.

Ranking
Power rankings under symmetric short-tailed alternative distributions

Small sample sizes Moderate sample sizes Overall sample sizes
n � 20–50 n � 80–100 n � 20–100

1 SRELR, CSELR SRELR, CSELR SRELR, CSELR
2 DP DP DP
3 SW, b2 b2 SW, b2
4 SEELR, AD SW AD
5 Hn, CVM AD SEELR
6 SF SF Hn, CVM, SF
7 LL SEELR LL
8

��
b1

􏽰
, JB, RJB Hn JB

9 CVM RJB
10 LL

��
b1

􏽰

11 JB
12 RJB,

��
b1

􏽰

Table 11: Ranking of tests using average powers computed from the values in Tables 7 and 8 for set 2 of alternative distributions.

Ranking
Power rankings under symmetric long-tailed alternative distributions

Small sample sizes Moderate sample sizes Overall sample sizes
n � 20 − 50 n � 80 − 100 n � 20 − 100

1 RJB RJB RJB
2 SF, b2, JB b2, SF, JB b2, SF, JB
3 DP SRELR, CSELR DP
4 SW DP, SW SW, CSELR, SRELR
5 CSELR, SRELR, AD AD AD
6 CVM CVM, Hn CVM, Hn

7
��
b1

􏽰
, Hn LL

��
b1

􏽰
, LL

8 LL
��
b1

􏽰
SEELR

9 SEELR SEELR

Table 12: Ranking of tests using average powers computed from the values in Table 9 for set 3 of alternative distributions.

Ranking
Power rankings under asymmetric alternative distributions

Small sample sizes Moderate sample sizes Overall sample sizes
n � 20 − 50 n � 80 − 100 n � 20 − 100

1 SEELR SEELR SEELR
2 SW SW SW
3 SF, AD SF SF
4 Hn, CVM AD AD
5

��
b1

􏽰
CVM, Hn CVM, Hn

6 LL, CSELR, DP
��
b1

􏽰 ��
b1

􏽰

7 JB JB JB
8 RJB LL, CSELR LL, CSELR
9 SRELR DP DP
10 b2 SRELR SRELR
11 RJB RJB
12 b2 b2
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type study to empirically examine the proposed test based on
the two statistics, CSELR and SRELR. .e approach was to
use a sample of size 60 by randomly selecting from the
snowfall data and then test for normality at 0.05 level of
significance. We repeated this strategy 10000 times, and the
bootstrap type procedure showed that the proposed CSELR
test had a p value of 0.7755, while the SRELR had a p value of
0.1451. In order to further examine the normality of the
snowfall data, we repeated the bootstrap type study using the
AD, CVM, JB, and SW tests..e p values that were obtained,
that is, 0.6862 for the AD test, 0.6921 for the CVM test,
0.5702 for the JB test, and 0.6650 for the SW test were all
suggestive for one to conclude that the snowfall data are
indeed normally distributed. .us, the p values obtained
from the traditional tests as well as our proposed tests show
to be reliable in illustrating the normality of the snowfall
data. .us, our proposed test statistics have demonstrated
that they are indeed applicable when applied on some real-
life data.

5. Conclusion

By utilizing the EL methodology and exploiting the math-
ematical properties and different forms of transforming the
normal distribution, we have developed simple and powerful
tests for normality against symmetric alternatives. .e
proposed tests are consistent and control type I error very
well, which is consistent with what has been reported in
other studies which looked at EL-based GoF tests (see, for
example, [8, 12, 18]). .ey outperformed other common
traditional tests under symmetric short-tailed alternatives.
.e proposed tests also performed quite well under sym-
metric long-tailed alternatives where they were found to be
comparable to the SW test and outperformed all the con-
sidered EDF tests. .e application of our proposed tests on
real data revealed the applicability as well as the robustness
of the proposed tests in practice. It would be desirable to

develop an ELR-based test for normality that outperforms
the classical tests under most alternative distributions that
occur in practice. .is might be the case after certain
modifications and improvements that include further ex-
ploring the EL methodology as well as other forms of
characterizing the normal distribution. .e researchers are
currently looking at exploiting the use of EDF in developing
an empirical likelihood moment-based EDF test for nor-
mality. .us, combining the characterization of EDF-based
tests and EL omnibus tests can potentially improve power
under small to moderate sample sizes.

Appendix

#Required packages
library(emplik)
library(zipfR)
#Generate standardized data
genedata<−function(n){
#Generate data
s<−runif(n, 0, 1)
x1<−s
for(k in 1 : n){
s[k]<−(x1[k]−mean(x1)) ∗ sqrt(n/(n−1))/(sd(x1
[−k]))
}
return(s)
}
#Generate transformed data
genedata1<−function(n) {
v<−genedata(n)
x<−pnorm(v, 0, 1)
return(x)}

Histogram for snowfall data
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Figure 3: Histogram and Q-Q plots for snowfall data.
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#Moment function for uniform distribution
momentFU<−function(k, a, b){
z<−(b̂ (k+ 1)−â (k+ 1))/((k+ 1) ∗ (b− a))
}
#Compute test statistic
teststatistic<−function(x)
{
#CUSUM-type statistic
k3� el.test(x∗∗3, m3)$−2LLR
k5� el.test(x∗∗5, m5)$−2LLR
return(max(k3, k5))
#Shiryaev–Roberts statistic
#k3� exp(el.test(x∗∗3, m3)$−2LLR
#k5� exp(el.test(x∗∗5, m5)$−2LLR
#return(sum(k3, k5))
}
n<−50 #sample size
a<−0 #lower limit for moment function
b<−1 #upper limit for moment function
#Critical values
#Critical values for CUSUM statistic
CriticalValue<−0.2685595 #n� 50
##########################################
#Critical values for SR statistic
#CriticalValue<−2.459526 #n� 50
MC<−10000 #number of replications
power<− c()
m3�momentFU(3, a, b)
m5�momentFU(5, a, b)
for(i in 1 :MC) {
x<−genedata1(n)
power[i]<−teststatistic(x) }
# Power for the test under alternative
PowerELR� (mean(power>CriticalValue))

Data Availability

.e data used to demonstrate the applicability of our pro-
posed tests in practice are presented in this article and can
also be obtained from respective authors cited in the “Real
Data Study” section. All other data were simulated using R
and the source code is available in the Appendix.
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