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Multiple imputation by chained equations (MICE) is the most common method for imputing missing data. In the MICE al-
gorithm, imputation can be performed using a variety of parametric and nonparametric methods. +e default setting in the
implementation of MICE is for imputation models to include variables as linear terms only with no interactions, but omission of
interaction terms may lead to biased results. It is investigated, using simulated and real datasets, whether recursive partitioning
creates appropriate variability between imputations and unbiased parameter estimates with appropriate confidence intervals. We
compared four multiple imputation (MI) methods on a real and a simulated dataset. MI methods included using predictive mean
matching with an interaction term in the imputation model in MICE (MICE-interaction), classification and regression tree
(CART) for specifying the imputation model in MICE (MICE-CART), the implementation of random forest (RF) in MICE
(MICE-RF), and MICE-Stratified method. We first selected secondary data and devised an experimental design that consisted of
40 scenarios (2× 5× 4), which differed by the rate of simulated missing data (10%, 20%, 30%, 40%, and 50%), the missing
mechanism (MAR and MCAR), and imputation method (MICE-Interaction, MICE-CART, MICE-RF, and MICE-Stratified).
First, we randomly drew 700 observations with replacement 300 times, and then the missing data were created.+e evaluation was
based on raw bias (RB) as well as five other measurements that were averaged over the repetitions. Next, in a simulation study, we
generated data 1000 times with a sample size of 700. +en, we created missing data for each dataset once. For all scenarios, the
same criteria were used as for real data to evaluate the performance of methods in the simulation study. It is concluded that, when
there is an interaction effect between a dummy and a continuous predictor, substantial gains are possible by using recursive
partitioning for imputation compared to parametric methods, and also, theMICE-Interactionmethod is alwaysmore efficient and
convenient to preserve interaction effects than the other methods.

1. Introduction

+e need to adequately deal with missing data is a practical
challenge for researchers when analyzing epidemiological
data. A well-known approach (and the default in most
statistical packages) to deal with themissing data problems is
complete case analysis (CCA), which omits subjects with

missing values from the analysis. In some cases, such an-
alyses are inefficient, since they sacrifice information from
partially observed responses, and even in the worst situa-
tions, they may result in biased inferences about the pa-
rameters of interest [1]. An alternative to CCA is MI, which
creates copies of the dataset, replacing the missing values in
each dataset with independent random draws from the
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predictive distribution of the missing values under a specific
model (the imputation model). Each dataset is analyzed
separately and the results of M datasets are combined with a
set of simple rules. +e corresponding estimates (M point
and M variance estimates) are combined according to
Rubin’s combination rule [2].

Using Rubin’s rule [2], the reasons for missing data are
classified as missing completely at random (MCAR) when
the probability of missingness is independent of the ob-
served and unobserved data, missing at random (MAR) if
the probability of missingness is independent of the un-
observed data after conditioning on observed data, and
missing not at random (MNAR), where the probability of
missingness is dependent on unobserved data even after
conditioning on observed data [3–6].

MICE, also called fully conditional specification (FCS), is
commonly used for imputing missing data. +e MICE
method specifies the univariate distribution of each in-
complete variable conditional on all other variables and
creates imputations per variable. +e MICE algorithm is a
Gibbs sampler, a Bayesian simulation approach that gen-
erates random draws from the posterior distribution and
conducts univariate imputations sequentially until conver-
gence [7–10].

In the MICE algorithm, the set of conditional distri-
butions may not correspond to any joint distribution since
the users specify univariate conditional distributions, and so
the joint distribution may not actually exist. Despite this
theoretical drawback of the MICE method, the simulation
study suggests this imputation method performs well in
practice [11, 12]. +ere are a number of software packages
available to impute missing data using MICE methods.
+ese include “IVEware” in SAS [11], “mice” [12, 13] and
“mi” in R [14], and “mi” and “ice” in STATA [15].

In the MICE strategy, when the data include an inter-
action effect, the interaction can be modeled by appropriate
models manually and by imputing the missing values in
separate subgroups of the data. +e default setting in
implementation of MICE is for imputation models to in-
clude variables as linear terms only with no interactions, but
omission of important nonlinear terms may lead to biased
results [16].

Motivated by these challenges, several authors have
developed more flexible techniques that can handle missing
values in the presence of interactions easily. Automatic
Interaction Detection is one of the first implementations of
recursive partitioning [17]. Besides the fact that the re-
cursive partitioning technique finds the split that is most
predictive of the response variable by searching through all
predictor variables, they model the interaction structure in
the dataset by splitting a dataset into increasingly homo-
geneous subgroups sequentially. In other words, since splits
are conditional on previous splits, possible interactions are
automatically detected. Others have used an approach
combining of recursive partitioning with imputation
methods [3, 18]. +ey used CART as an imputation engine
in MICE. CART in MICE is available as an option in “mice”
in R.

CART methods have properties that make them at-
tractive for imputation: they are robust against outliers, can
deal with multicollinearity and skewed distributions, and are
flexible enough to fit interactions and nonlinear relations.
Indeed, many aspects of model fitting have been automated,
so there is little tuning needed by the imputer [18].

However, to our knowledge, few evaluations have been
done in simulation contexts; even fewer evaluations have
been done on data, in the presence of interaction with
mixtures of binary and continuous predictors. +is lack of
comparisons makes it difficult, if not impossible, to assess
the relative merits of each procedure.

+us, to find out when the data include a mixture of
continuous and binary predictors in the presence of an
interaction, which method is best to impute the missing
values in the binary response under MAR and MCAR
missing mechanisms, we need to evaluate the performance
of the four methods for handling missing data in a real and
simulated dataset. +is evaluation can be further justified
through the following reasons: first, most of the studies that
evaluated and compared the performance of these four
methods have not included the mixture of continuous and
binary predictors with binary outcome. Second, no study has
yet been made due to the challenge that MICE-Interaction
and MICE-Stratified will result in proper imputation in
datasets with interaction between a dummy and continuous
predictor. +ird, it is not clear what proportion of missing
data via MAR andMCAR correspond to a certain amount of
bias in the results, so even if we accept that one method has a
kind of superiority over others, it is desirable to know how
much of the bias can be compensated by that method.

Regarding the above explanations, this study was carried
out to evaluate the performance of four MI methods in real
and simulated data. At first, we performed MICE-Stratified,
filling in values separately for the two subgroups defined by
the value of the binary variable in each dataset. +en, we
used three MI methods. First, we used MICE-Interaction
method. For MICE-interaction, we included the interaction
term as just another variable in the predictor matrix and
used the default predictor matrix in themice function. +en,
we used CARTfor specifying the imputation model in MICE
(MICE-CART), and the implementation of random forest
(RF) in MICE (MICE-RF). We decline to provide formulaic
or mathematical details in this article because we want to
focus more on simulation.

+e paper is organized as follows. In Section 2, MICE-
Interaction and MICE-Stratified are first elaborated. In
continuation of this section, two main recursive partitioning
techniques are considered, namely, CART and RF. Subse-
quently, incorporation of the CARTmethod and RF method
in the MICE framework is presented. In Section 3, we
implement a secondary empirical study to investigate the
performance of the discussed methods. In Section 4, a
simulation study is carried out to investigate which of the
discussed methods are convenient to preserve the interac-
tion effects. +e results from both studies are discussed in
Section 5; at the end of the study, some final conclusions are
given.
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2. Methods

2.1. MICE Approach. Suppose that data are presented as
X � (Xmiss, Xobs), where Xmiss is included of the columns
with at least one missing value, Xobs is included the columns
of X that are completely observed, Xj is the jth column of X,
Xmiss

j is the missing values in the jth column of theXmiss, Z is
the currently imputed data matrix X, and k is the number of
partially observed variables. Suppose that Xmiss is ordered in
non-decreasing numbers of missing values in each column.
Define Xmiss

−j equal to the matrix X with its jth column
removed.+us, we will have the following algorithm to show
the implementation of standard MICE:

(1) To fill in the initial values for the missing values,
define a matrix Z equal to Xobs; for each Xmiss

j , all the
Xmiss

j values are initially filled in by random draws
from the predictive distribution conditional on Z,
and attach the imputed version of Xmiss

j to Z prior to
incrementing j.

(2) Forj � 1, . . . , k, replace the missing values of Xj

with random draws from the predictive distribution
conditional on Xmiss

−j .
(3) Repeat steps 1 and 2 for a number of iterations. +is

procedure is performed for each variable with at least
one missing value, yielding one complete dataset.

(4) Repeat steps 1–3 a number of times (M), resulting in
M imputed datasets that are available for analysis.
Each of the M imputed datasets is analyzed sepa-
rately. In the next step, the results are combined
using Rubin’s rules. It is standard to use generalized
linear models as the basis of the posterior predictive
distribution draws in steps 1 and 2.

For MICE-Interaction method, the interaction is in-
cluded in the predictor matrix. In the other words, the
interaction term is included as just another variable in the
imputation model and then the mice function is used since
this method performs better than or equivalent to all other
methods considered (the “mice” package in R does this)
[3, 7, 8, 19].

For MICE-Stratified method, the datasets are stratified
by dummy variable and then MICE method is used to
impute missing values, in the presence of interaction effect
between a dummy and a continuous variable.

An alternative approach is described in [20]. +ey de-
fined a new class of nonparametric multiple imputation
methods based on the CART or RF algorithm. +ese two
methods fall into the umbrella concept of “recursive par-
titioning,” which allows for the modelling of internal in-
teractions in the data by sequentially partitioning the dataset
into homogeneous subsets. Some researchers used the tree
package and showed that the CART results for recovering
interactions were uniformly better than standard techniques
[18]. Shah and coworkers applied random forest techniques
to both continuous and categorical outcomes, which pro-
duced more efficient estimates than standard procedures
[21]. A similar set of routines building on the rpart [22] and
randomForest [23] packages were developed by Doove and

coworkers [22]. Methods CART and RF are part of mice
package.

2.2. Imputation by MICE-CART. CART is a nonparametric
recursive partitioning imputation method that provides the
results as a tree structure. +e root node is at the top of the
tree, which includes all members. It follows by exploring
the data to find the best variable and a cut-off that best
separates the subjects into two child nodes. Subgroups are
made by the optimal split according to a measure of ho-
mogeneities such as the Gini index [24]. Partitioning of
each child node continues until some certain stopping
criterion has been reached, e.g., a predetermined number of
observations in the final subsets [25]. +erefore, tree
models easily reveal the interaction between independent
variables [26].

Suppose that the data are presented as a matrix
X � (Xobs, Xmiss), where Xobs contains the columns of X

with observed data for all variables and Xmiss is the part of X
that has at least one missing datum. Similar to MICE, the
variable with missing data is considered as a dependent
variable. +e following steps indicate an implementation of
CART in MICE:

(1) For each variable with missing data (j� 1, . . ., k), fill
in the initial values _Xj by random draws from Xobs

j ,
and update the Xobs matrix (shown by Z).

(2) Fit the CARTusing each Xmiss
j as outcome, and Z as

predictor variables; only subjects with observed
values on Xmiss

j are used in this processXobs.
(3) For subjects in Xmiss

j , find the terminal node; they
end up according to the fitted tree in step 2; and one
observed value on Xmiss

j is randomly selected from
the subset in this node and used for imputation.

(4) Repeat steps 2 and 3 for a number of iterations. +is
procedure is performed for each variable with at least
one missing value, yielding one complete dataset.

(5) Repeat steps 1–4 a number of times (M), resulting in
M imputed datasets.

To construct the tree, a minimum leaf size of 5 con-
sidered, with the deviance of less than 0.0001. Additionally,
the response variable (Y) was included as a predictor in the
imputation models to impute each incomplete variable
[3, 18, 20].

2.3. Imputation by MICE-RF. +e algorithm needed for RF
imputation is a modification of the discussed CART algo-
rithm. +e first two steps are replaced by a construction of k
bootstrapped datasets, k being the number of trees in the
forest, and the fitting of k tree models. Optionally, each tree
can be fitted using the full bootstrapped dataset or randomly
selecting the input variables. To avoid reduced variability by
imputing based on an averaged tree, possibly due to the
higher stability of the individual trees, the imputed value is
randomly selected from the union of the k donor pools. For
more details on the algorithm, see [22].
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3. Empirical Study

We used empirical data from a population-based study
collected in southeastern Iran [27]. +e data was initially
collected to address the main variables that encourage
participants to change their body using a variety of methods
such as diet, exercise, or drugs. A multistage sampling was
adopted where the area was stratified into 10 blocks. From
each block, approximately 120 households were selected. In
each block, the first household was selected at random. +e
remaining blocks were selected following a systematic
sampling approach. In each household, only one person,
aged 14–55, was interviewed.

3.1. Dependent and Independent Variables. +e outcome
variable of interest was whether participants had tried to
change their body using a variety of methods such as diet,
surgery, or drugs. Independent variables include BMI (body
mass index), body-esteem scale (BE), perceived sociocultural
pressure scale (PSPS), physical appearance comparison scale
(PACS), and Gender. Our data did not involve any missing
values. +ese variables were measured with standard and
validated questionnaires. Logistic regression analysis
showed that BMI, BE, PACS4, PSPS, and Gender were in-
dependent variables that could influence eating disorders.
More details are provided in [27].

In this study, we proposed the following complete-data
model (1), which contains all five main variables and an
interaction term between a dummy and a continuous var-
iable to guide the analysis of the datasets.

Logit[P(Y � 1)] � α + β1X1 + β2X2 + β3X3

+ β4X4 + β5X5 + β6X1 ∗X5,
(1)

where Y is the binary outcome variable, X1 is BMI, X2 is
PSPS, X3 is BE, X4 is PACS4, X5 is Gender, and X1 ∗X5 is
the interaction between BMI and Gender.

3.2. Simulation Study for Real Data (Generation of Missing
Data). In this section, the simulation was restricted to
generating missing data in variable Y. In fact, for the ex-
perimental data, the following steps were repeated 1000
times:

Step 1. First, We randomly drew 700 observations 300
times with replacement from each of the datasets. 10%
to 50% univariate missing data were created in the
outcome variable via MCAR and MAR mechanisms.
MAR data was generated in variable Y in a way that
probability of becoming missing depended on X3
andX4.
Step 2. Using MI method: the four considered MI
methods were MICE-Interaction, MICE-CART,
MICE-RF, and MICE-Stratified. +e independent
variables used in all the methods were Gender, BMI,
BE, PACS4, PSPS, and the interaction between Gender
and BMI. Finally, the number of imputations was set to
5 [3, 28].

Step 3. Recalculation of the coefficients and other in-
dexes [5] from complete datasets, which is intended to
represent how MI was able to reduce the effect of
missing data on the estimations.
Step 4. +ere are several measures that may inform us
about the statistical validity of a particular procedure.
+is step includes calculations of raw bias (RB),
percent bias (PB), coverage rate (CR), model-based
and empirical SE, and estimated proportion of the
variance attributable to the missing data (􏽢λ). +e raw
bias, which is the average difference between the true
value of the parameter being estimated from the real
data, and the value of the estimation after imputation,
should be close to 0. Bias can also be expressed as
percent bias (PB). For acceptable performance, we use
an upper limit for PB of 5%. In more detail, the grades
of PB are defined as negligible (0%–5%), minimal
(5%–10%), moderate (10%–20%), heavy (20%–30%),
and severe (>30%) [29, 30]. +e coverage is the per-
centage of cases where the estimand, the true value of
the parameter being estimated [20], is located within
the 95% confidence interval around the estimate,
which should be 95% or higher. +e width of the 95%
confidence interval should be as small as possible (as
long as the coverage does not fall below 95%) and is an
indicator of statistical efficiency. However, it is im-
portant to evaluate the coverage with other measures,
because high variances can lead to higher coverage
rates. We regard the performance of the interval
procedure to be poor if its coverage drops below 90%
[31]. Model-based SE is the mean of the SE estimated
across simulations and empirical SE is the SD of the
estimates across simulations. +e two should be
similar and should match if the Rubin’s variance es-
timate with a specific MI model is unbiased. Lastly, 􏽢λ is
the estimated proportion of the variation attributable
to the missing data, and 􏽢λ is an indicator of the severity
of the missing data problem (the computation of RB,
PB, and λ is based on equations (2)–(4). +e mice
package of R was used to calculate these
measurements.

RB � E(Q − Q), (2)

PB � 100
E(Q − Q)

Q
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (3)

λ �
B +(B/M)

T
. (4)

A scientific estimand Q is a quantity of scientific interest
that we can calculate if we would observe the entire pop-
ulation. T is the total variance of Q, and hence of (Q − Q) if
Q is unbiased. B is the extra variance caused by the fact that
there are missing values in the sample, and B/M is the extra
simulation variance caused by the fact that the imputation
reputation M is finite [3].
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4. Simulation Study

+is simulation included the generation of artificial datasets
and then creating missing data in the binary outcome
variable. +e following steps are performed to examine the
imputation methods.

Step 1. In this simulation study, we generated a finite
population of size N � 700 from the binary variable
outcome Y. +e artificial data include one binary
predictor variable and four continuous variables that
the binary variable was uncorrelated from the other
variables. +e number of continuous variables is
kept higher than the number of categorical variables
due to the fact that the simulation is aimed to be
similar to our real data. One binary variable was
randomly drawn from a binomial distribution. +e
marginal distribution of X5 is Bernoulli (0.6).
Moreover, four continuous predictors
(X1, X2, X3 and , X4) were randomly drawn from a
multivariate normal distribution, where the first two
predictor variables (X1 andX2) had a pairwise cor-
relation of r � 0.5 and the last two predictor variables
(X3 andX4) had pairwise correlations of r � 0.3. +e
binary response is modeled using GLM depending
on various binary and continuous predictors. +e
dichotomization of X5 is based on the following
criteria:

P X5 � 1( 􏼁 � P X5 ≤ μ5( 􏼁 � 0.6, (5)

where 0.6 is the mean value of X5. By defining and stan-
dardizing logit [P(Yi � 1)] � β1Xi1 + · · · +βp−1Xip−1+

βpXi1Xip−1, θ � βtrue � (0.25, 0.5, 0.5, 0.5, 0.5, 1), p � 6, I �

1, . . . , N.
We have used the simulation design that combined

sampling and missing data mechanisms. To achieve this
simulation design, we first generated 1000 sets of data based
on the described characteristics and then created missing
values one time for each complete dataset. Steps 2 and 3 are
the same as those described in the real data simulation
section. Various scenarios have been considered, including
two missing mechanisms (MAR and MCAR), five missing
proportions (10%, 20%, 30%, 40%, and 50%), and four
different imputation methods (MICE-Interaction, MICE-
CART, MICE-RF, and MICE-Stratified), which lead to a
combination of 2× 5× 4� 40 scenarios. According to the
above, a total of 1000 repetitions were performed. To
compare different scenarios, the average measures for the
scenarios were calculated.

5. Results

5.1. Results for Real Data. For the real dataset, we present
only the results with respect to the interaction effects in the
form of plots. +e results of the imputation methods under
the missing mechanism of MCAR and MAR are shown in
Figures 1–6. +ey are separated by different measurements.

5.1.1. Raw Bias (RB). All the imputation methods used to
estimate the interaction were almost biased towards the null
except the MICE-Stratified method. However, the bias
values of MICE-Stratified method were lower than 0.1 at all
the missing percentages. +e MICE-Interaction and MICE-
CARTmethods were less biased than the other two methods.
We found that the bias values become higher with increasing
missing percentages (Figure 1).

5.1.2. Percent Bias (PB). +e MICE-Interaction and MICE-
CARTmethods were less biased than the other two methods
at almost all scenarios. +e MICE-Stratified method pro-
duced the highest PB at all missing percentages (Figure 2).

5.1.3. Coverage Rate (CR). Among imputation methods, the
MICE-RF method had the highest coverage rates at all
missing rates and both mechanisms and the coverage rate of
the MICE-Stratified method was very low (Figure 3).

5.1.4. Model and Empirical SE. At all the MI approaches, the
empirical and model-based standard errors are almost
identical for the interaction effect (Figures 4 and 5).

5.1.5. <e Proportion of Variation Attributable to the Missing
Data. In general, λ values for all methods were less than 0.5.
+e MICE-Stratified and MICE-CARTmethods had lower λ
value for interaction than the others (for instance, the
MICE-Stratified led to the lowest bias in the MCAR missing
mechanism, at all the missing percentages), which showed
that the MICE-RF andMICE-Interaction methods indicated
greater uncertainty than the other methods in estimating the
interaction effect (Figure 6).

5.2. Results for Artificial Datasets. Tables 1–6 show RB, PB,
CR, model-based SE, empirical SE, and λ under the missing
mechanism of MCAR and MAR for imputation methods;
the tables are separated by different measurements.

By comparing the values of RB for each coefficient,
interesting results were obtained: for all scenarios, the
MICE-Interaction method performed very well in terms of
RB since all RB values for this method were almost zero. For
instance, at 40% missing percentage under both mecha-
nisms, the amount of RBs for the interaction produced by
the MICE-Interaction method was equal to zero (Table 1).

Considering the PB values, the MICE-Interaction method
had acceptable performance since the PB values were less than
5%. For all the coefficients which were in the interaction effect,
at all missing percentages in both missing mechanisms, the
MICE-Interaction method led to a negligible PB
(PB< 2.2%)and had relatively good performance (Table 2).

MICE-Interaction, which correctly includes the inter-
action term in the imputation model, led to slightly higher
coverage for the interaction effect than the other imputation
methods. +e CR values of the MICE-Interaction method
were more than 95%. In almost all scenarios, the CR values
of MICE-Stratified method were less than 95% (Table 3).
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By examining the model and empirical SEs, it is de-
termined that by simulations the difference between the
empirical and Rubin’s MI variance was small or negligible.
+e model SEs was larger than the empirical SEs, and this
allowed the coverage to be relatively good despite the slight
bias (Tables 4-5).

5.2.1. <e Proportion of Variation Attributable to the Missing
Data (λ). Examining the estimated values of λ, it is inter-
esting to note that, in all scenarios, all methods had ac-
ceptable performance based on the λ criterion (λ< 0.5). +e
λ values obtained from the MICE-CART and MICE-Strat-
ified are lower than other methods. +e MICE-Stratified
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Figure 2: Comparison of the performance of imputation methods for real dataset based on the average percent bias (PB) for the interaction
effect. MAR, missing at random;MCAR, missing completely at random;MCR, multiple imputation by chained equation using classification
and regression trees; MRF, multiple imputation by chained equation using random forests; MI, MICE-Interaction method; MS, MICE-
Stratified method.
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Figure 1: Comparison of the performance of imputation methods for real dataset based on the average raw bias (RB) for the interaction
effect. MAR, missing at random;MCAR, missing completely at random;MCR, multiple imputation by chained equation using classification
and regression trees; MRF, multiple imputation by chained equation using random forests; MI, MICE-Interaction method; MS, MICE-
Stratified method.
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method resulted in the lowest λ which showed that the
influence of the imputation model on the final result was not
larger than that of the complete-data model. +e estimated
values were less than 0.2, indicating that the methods deal
with a relatively large fraction of missing information
(Table 6).

6. Discussion

In this study, four MI methods were evaluated, including
MICE-Stratified, MICE-Interaction, and two recursive
partitioning techniques that incorporate interaction effects
in the data, as imputation methods in MICE: CARTand RF.
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Figure 4: Comparison of the performance of imputation methods for real dataset based on the model SE for the interaction effect. MAR,
missing at random; MCAR, missing completely at random; MCR, multiple imputation by chained equation using classification and
regression trees; MRF, multiple imputation by chained equation using random forests; MI, MICE-Interaction method; MS, MICE-Stratified
method.
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Figure 3: Comparison of the performance of imputationmethods for real dataset based on the average coverage rate (CR) for the interaction
effect. MAR, missing at random;MCAR, missing completely at random;MCR, multiple imputation by chained equation using classification
and regression trees; MRF, multiple imputation by chained equation using random forests; MI, MICE-Interaction method; MS, MICE-
Stratified method.
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In addition, the percentage of missing data and two missing
mechanisms on the performance of the MI methods were
examined. We studied the raw bias, percent bias, coverage
rates, model-based SE, empirical SE, and the proportion of
variation attributable to the missing data, after imputation
by these methods. Overall, at lower percentages of missing
values (at most 30%), all three methods except MICE-
Stratified appeared to produce reasonably high quality
imputations.

Consistent with similar studies, MI methods were
evaluated based on RB, PB, CR, model SE, empirical SE, and
λ [3, 22]. RB, PB, and CR are several measures that may
inform us about the statistical validity or precision of a
particular procedure. RB is a measure of invalidity and
should be close zero. For acceptable performance, we used
an upper limit for PB of 5% [3, 32]. CR is also a measure of
validity but at the same time is a function of the average
width of the confidence intervals, which is a measure of
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Figure 6: Comparison of the performance of imputationmethods for real dataset based on the proportion of the variation attributable to the
missing data (λ) for the interaction effect.
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Figure 5: Comparison of the performance of imputation methods for real dataset based on the empirical SE. MAR, missing at random;
MCAR, missing completely at random; MCR, multiple imputation by chained equation using classification and regression trees; MRF,
multiple imputation by chained equation using random forests; MI, MICE-Interaction method; MS, MICE-Stratified method.
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Table 2: Comparison of the performance of imputation methods based on the average percent bias (PB) of regression coefficients over 1000
simulations.

Variable Method
MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1 (BMIreal)

MCR 0.048 0.101 0.165 0.239 0.291 0.056 0.109 0.167 0.226 0.315
MI 0.002 0.012 0.025 0.033 0.040 0.005 0.016 0.024 0.000 0.039
MRF −0.025 −0.048 −0.056 −0.077 −0.103 −0.018 −0.034 −0.052 −0.079 −0.079
MS −0.143 −0.246 −0.355 −0.455 −0.556 −0.138 −0.259 −0.355 −0.471 −0.552

X2 (Betotal)

MCR −0.020 −0.043 −0.068 −0.101 −0.117 −0.021 −0.047 −0.064 −0.089 −0.132
MI 0.002 0.001 0.008 0.000 0.016 0.001 0.000 0.009 0.016 0.007
MRF −0.068 −0.129 −0.185 −0.248 −0.286 −0.063 −0.124 −0.175 −0.224 −0.279
MS −0.176 −0.314 −0.428 −0.533 −0.620 −0.173 −0.316 −0.437 −0.535 −0.631

X3 (PACS4)

MCR −0.047 −0.072 −0.103 −0.146 −0.172 −0.020 −0.032 −0.061 −0.081 −0.106
MI −0.006 0.008 0.012 0.016 0.022 0.001 0.009 0.010 0.016 0.016
MRF −0.109 −0.181 −0.258 −0.334 −0.393 −0.069 −0.132 −0.196 −0.247 −0.302
MS −0.235 −0.368 −0.472 −0.556 −0.622 −0.172 −0.312 −0.433 −0.527 −0.623

X4 (PSPS)

MCR −0.041 −0.072 −0.111 −0.144 −0.190 −0.017 −0.044 −0.068 −0.093 −0.126
MI 0.000 −0.003 0.005 −0.001 0.000 0.005 0.004 0.003 0.009 0.010
MRF −0.104 −0.188 −0.259 −0.335 −0.401 −0.065 −0.134 −0.196 −0.254 −0.312
MS −0.227 −0.375 −0.477 −0.563 −0.631 −0.175 −0.318 −0.438 −0.545 −0.633

X5 (Gender)

MCR 0.001 −0.021 −0.088 −0.129 −0.137 −0.047 −0.099 −0.161 −0.247 −0.279
MI 0.013 0.027 0.008 0.012 0.068 −0.005 0.014 −0.027 −0.010 0.008
MRF −0.060 −0.109 −0.214 −0.283 −0.320 −0.093 −0.172 −0.273 −0.341 −0.408
MS −0.172 −0.279 −0.384 −0.479 −0.522 −0.202 −0.338 −0.458 −0.563 −0.646

X1 ∗X5 (BMIreal∗Gender)

MCR −0.076 −0.144 −0.228 −0.304 −0.391 −0.072 −0.136 −0.225 −0.301 −0.401
MI −0.002 0.000 −0.010 0.006 −0.002 0.002 0.001 −0.001 0.003 −0.003
MRF −0.128 −0.233 −0.345 −0.431 −0.518 −0.119 −0.231 −0.328 −0.417 −0.514
MS −0.236 −0.406 −0.533 −0.629 −0.716 −0.231 −0.399 −0.534 −0.631 −0.722

Table 1: Comparison of the performance of imputation methods based on the average raw bias (RB) of regression coefficients over 1000
simulations.

Variable Method
MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1 (BMIreal)

MCR 0.024 0.050 0.082 0.119 0.145 0.028 0.054 0.083 0.112 0.157
MI 0.001 0.006 0.012 0.016 0.020 0.002 0.008 0.012 0.000 0.020
MRF −0.013 −0.024 −0.028 −0.038 −0.052 −0.009 −0.017 −0.026 −0.040 −0.040
MS −0.071 −0.123 −0.177 −0.228 −0.278 −0.069 −0.129 −0.178 −0.236 −0.276

X2 (Betotal)

MCR −0.010 −0.021 −0.034 −0.050 −0.058 −0.011 −0.023 −0.032 −0.044 −0.066
MI 0.001 0.001 0.004 0.000 0.009 0.000 0.000 0.004 0.008 0.003
MRF −0.034 −0.064 −0.092 −0.124 −0.142 −0.031 −0.062 −0.087 −0.112 −0.139
MS −0.087 −0.156 −0.213 −0.266 −0.308 −0.086 −0.157 −0.218 −0.267 −0.314

X3 (PACS4)

MCR −0.023 −0.036 −0.052 −0.073 −0.086 −0.010 −0.016 −0.030 −0.041 −0.053
MI −0.003 0.004 0.006 0.008 0.011 0.001 0.005 0.005 0.008 0.008
MRF −0.054 −0.091 −0.129 −0.167 −0.196 −0.034 −0.066 −0.098 −0.123 −0.151
MS −0.118 −0.184 −0.236 −0.278 −0.311 −0.086 −0.156 −0.217 −0.264 −0.312

X4 (PSPS)

MCR −0.020 −0.036 −0.055 −0.071 −0.095 −0.008 −0.022 −0.034 −0.046 −0.063
MI 0.000 −0.001 0.002 −0.001 0.000 0.003 0.002 0.002 0.005 0.004
MRF −0.052 −0.094 −0.129 −0.167 −0.200 −0.032 −0.066 −0.097 −0.126 −0.156
MS −0.113 −0.187 −0.237 −0.280 −0.314 −0.087 −0.158 −0.218 −0.271 −0.315

X5 (Gender)

MCR 0.000 −0.005 −0.022 −0.033 −0.035 −0.012 −0.025 −0.040 −0.062 −0.068
MI 0.004 0.007 0.003 0.003 0.018 −0.001 0.004 −0.006 −0.002 0.003
MRF −0.015 −0.027 −0.054 −0.071 −0.080 −0.024 −0.043 −0.068 −0.086 −0.102
MS −0.043 −0.070 −0.097 −0.121 −0.132 −0.051 −0.084 −0.115 −0.141 −0.162

X1 ∗X5 (BMIreal∗Gender)

MCR −0.076 −0.144 −0.228 −0.304 −0.390 −0.072 −0.136 −0.225 −0.300 −0.401
MI −0.002 0.000 −0.010 0.006 −0.003 0.002 0.001 0.000 0.003 −0.004
MRF −0.128 −0.233 −0.345 −0.431 −0.517 −0.119 −0.231 −0.327 −0.417 −0.514
MS −0.236 −0.405 −0.533 −0.628 −0.716 −0.231 −0.399 −0.534 −0.631 −0.722
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Table 4: Comparison of the performance of imputation methods based on the model based SE of regression coefficients over 1000
simulations.

Variable Method
MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1(BMIreal)

MCR 0.161 0.167 0.174 0.183 0.190 0.161 0.169 0.174 0.182 0.190
MI 0.164 0.176 0.190 0.209 0.233 0.165 0.177 0.191 0.208 0.230
MRF 0.163 0.171 0.178 0.185 0.189 0.164 0.171 0.178 0.184 0.192
MS 0.149 0.146 0.146 0.146 0.149 0.149 0.146 0.146 0.146 0.148

X2(Betotal)

MCR 0.114 0.118 0.122 0.124 0.128 0.115 0.119 0.122 0.125 0.128
MI 0.117 0.125 0.135 0.147 0.163 0.118 0.126 0.136 0.148 0.163
MRF 0.116 0.120 0.125 0.129 0.133 0.117 0.121 0.125 0.128 0.131
MS 0.105 0.102 0.101 0.101 0.102 0.105 0.102 0.101 0.101 0.102

X3(PACS4)

MCR 0.105 0.109 0.112 0.113 0.117 0.105 0.109 0.112 0.114 0.118
MI 0.108 0.118 0.126 0.140 0.154 0.108 0.115 0.125 0.136 0.147
MRF 0.107 0.111 0.114 0.117 0.119 0.106 0.111 0.114 0.118 0.120
MS 0.095 0.093 0.092 0.092 0.093 0.096 0.093 0.092 0.092 0.093

X4(PSPS)

MCR 0.105 0.109 0.112 0.114 0.116 0.105 0.108 0.111 0.114 0.117
MI 0.109 0.117 0.127 0.140 0.154 0.108 0.115 0.124 0.135 0.149
MRF 0.107 0.111 0.115 0.117 0.119 0.106 0.110 0.113 0.117 0.120
MS 0.095 0.093 0.092 0.092 0.093 0.096 0.093 0.092 0.092 0.093

X5(Gender)

MCR 0.192 0.198 0.204 0.210 0.215 0.192 0.199 0.204 0.210 0.215
MI 0.197 0.210 0.228 0.245 0.270 0.198 0.212 0.228 0.249 0.274
MRF 0.194 0.202 0.208 0.216 0.219 0.195 0.204 0.209 0.217 0.222
MS 0.178 0.175 0.174 0.175 0.178 0.179 0.175 0.174 0.176 0.178

X1 ∗X5 (BMIreal ∗Gender)

MCR 0.238 0.246 0.254 0.264 0.270 0.239 0.249 0.255 0.261 0.268
MI 0.243 0.261 0.281 0.307 0.339 0.243 0.261 0.280 0.305 0.342
MRF 0.241 0.248 0.253 0.259 0.260 0.241 0.249 0.254 0.258 0.263
MS 0.209 0.199 0.192 0.189 0.189 0.210 0.199 0.193 0.189 0.188

Table 3: Comparison of the performance of imputation methods based on the CRs of regression coefficients over 1000 simulations.

Variable Method
MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1 (BMIreal)

MCR 1.000 1.000 0.981 0.964 0.885 1.000 1.000 0.982 0.955 0.924
MI 1.000 1.000 0.998 0.997 0.984 1.000 1.000 0.998 0.992 0.985
MRF 1.000 1.000 1.000 0.998 0.986 1.000 1.000 1.000 0.998 0.994
MS 0.996 0.967 0.826 0.702 0.556 0.997 0.953 0.850 0.674 0.563

X2 (Betotal)

MCR 1.000 0.999 0.982 0.944 0.906 1.000 0.997 0.987 0.955 0.901
MI 1.000 0.999 0.998 0.994 0.983 1.000 1.000 0.998 0.995 0.986
MRF 1.000 0.999 0.987 0.942 0.903 1.000 1.000 0.991 0.963 0.875
MS 0.983 0.740 0.415 0.205 0.092 0.973 0.727 0.402 0.208 0.078

X3 (PACS4)

MCR 1.000 0.996 0.965 0.893 0.834 1.000 0.997 0.987 0.961 0.907
MI 1.000 1.000 0.998 0.991 0.987 1.000 0.999 0.999 0.998 0.983
MRF 1.000 0.980 0.919 0.798 0.678 1.000 0.997 0.964 0.926 0.850
MS 0.896 0.500 0.210 0.093 0.049 0.973 0.666 0.301 0.140 0.046

X4 (PSPS)

MCR 1.000 0.994 0.955 0.907 0.824 1.000 1.000 0.983 0.946 0.899
MI 1.000 1.000 0.997 0.995 0.985 1.000 1.000 1.000 0.998 0.989
MRF 1.000 0.980 0.920 0.789 0.676 1.000 0.999 0.970 0.904 0.830
MS 0.893 0.489 0.205 0.088 0.042 0.978 0.648 0.295 0.110 0.047

X5 (Gender)

MCR 1.000 0.999 0.995 0.981 0.959 1.000 0.999 0.990 0.979 0.957
MI 1.000 1.000 0.998 0.997 0.989 1.000 1.000 0.999 0.996 0.988
MRF 1.000 1.000 0.998 0.999 0.994 1.000 1.000 0.999 0.997 0.992
MS 1.000 0.991 0.974 0.951 0.962 0.999 0.991 0.974 0.958 0.924

X1 ∗X5 (BMIreal ∗Gender)

MCR 1.000 0.997 0.929 0.822 0.712 1.000 0.996 0.946 0.834 0.677
MI 1.000 1.000 0.999 0.998 0.990 1.000 0.999 0.999 0.987 0.983
MRF 1.000 0.988 0.867 0.714 0.558 1.000 0.984 0.908 0.734 0.545
MS 0.910 0.455 0.173 0.072 0.015 0.916 0.469 0.166 0.037 0.014
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Table 6: Comparison of the performance of imputationmethods based on the proportion of the variation attributable to themissing data (λ)
of regression coefficients over 1000 simulations.

Variable Method
MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1(BMIreal)

MCR 0.069 0.121 0.178 0.232 0.267 0.067 0.132 0.171 0.222 0.264
MI 0.106 0.206 0.299 0.398 0.489 0.109 0.213 0.308 0.395 0.485
MRF 0.116 0.206 0.270 0.330 0.364 0.119 0.199 0.265 0.317 0.373
MS 0.010 0.038 0.080 0.123 0.173 0.010 0.038 0.076 0.121 0.171

X2(Betotal)

MCR 0.076 0.139 0.192 0.233 0.272 0.078 0.143 0.196 0.232 0.271
MI 0.111 0.205 0.296 0.394 0.486 0.113 0.213 0.309 0.394 0.484
MRF 0.125 0.213 0.290 0.345 0.392 0.133 0.217 0.279 0.332 0.369
MS 0.012 0.040 0.079 0.125 0.173 0.011 0.041 0.079 0.121 0.169

X3(PACS4)

MCR 0.093 0.156 0.205 0.233 0.279 0.080 0.143 0.200 0.230 0.279
MI 0.127 0.243 0.321 0.426 0.510 0.112 0.210 0.308 0.401 0.472
MRF 0.149 0.238 0.299 0.351 0.382 0.128 0.219 0.284 0.341 0.381
MS 0.014 0.046 0.084 0.123 0.175 0.012 0.038 0.079 0.129 0.172

X4(PSPS)

MCR 0.091 0.157 0.209 0.243 0.273 0.080 0.143 0.191 0.231 0.271
MI 0.130 0.239 0.329 0.429 0.508 0.113 0.216 0.307 0.395 0.486
MRF 0.152 0.236 0.304 0.351 0.384 0.130 0.218 0.274 0.327 0.380
MS 0.014 0.046 0.084 0.129 0.174 0.012 0.041 0.079 0.124 0.173

X5(Gender)

MCR 0.072 0.129 0.180 0.228 0.264 0.072 0.132 0.175 0.223 0.258
MI 0.105 0.201 0.304 0.384 0.472 0.112 0.217 0.306 0.400 0.482
MRF 0.116 0.199 0.261 0.323 0.349 0.114 0.208 0.259 0.319 0.358
MS 0.010 0.038 0.076 0.119 0.171 0.011 0.038 0.076 0.124 0.170

X1 ∗X5 (BMIreal ∗Gender)

MCR 0.095 0.159 0.219 0.274 0.309 0.095 0.171 0.220 0.263 0.301
MI 0.111 0.213 0.307 0.398 0.483 0.107 0.214 0.300 0.391 0.491
MRF 0.160 0.250 0.311 0.368 0.404 0.159 0.249 0.311 0.356 0.408
MS 0.015 0.048 0.089 0.135 0.187 0.015 0.047 0.092 0.134 0.185

Table 5: Comparison of the performance of imputation methods based on the empirical SE of regression coefficients over 1000 simulations.

Variable Method
MAR MCAR

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

X1(BMIreal)

MCR 0.069 0.102 0.135 0.160 0.207 0.072 0.102 0.127 0.155 0.181
MI 0.063 0.089 0.122 0.141 0.187 0.065 0.093 0.117 0.149 0.172
MRF 0.060 0.082 0.101 0.110 0.124 0.064 0.083 0.095 0.111 0.122
MS 0.079 0.094 0.109 0.110 0.113 0.078 0.094 0.100 0.107 0.110

X2(Betotal)

MCR 0.055 0.077 0.100 0.120 0.146 0.054 0.073 0.093 0.114 0.136
MI 0.050 0.067 0.088 0.103 0.130 0.050 0.068 0.083 0.105 0.132
MRF 0.050 0.062 0.072 0.080 0.093 0.049 0.061 0.071 0.082 0.092
MS 0.058 0.068 0.073 0.078 0.079 0.058 0.068 0.072 0.078 0.076

X3(PACS4)

MCR 0.055 0.074 0.093 0.116 0.140 0.053 0.071 0.088 0.106 0.127
MI 0.051 0.066 0.083 0.105 0.122 0.048 0.067 0.079 0.095 0.121
MRF 0.051 0.060 0.069 0.079 0.087 0.047 0.060 0.067 0.074 0.083
MS 0.059 0.067 0.069 0.074 0.070 0.056 0.063 0.069 0.071 0.069

X4(PSPS)

MCR 0.055 0.077 0.094 0.113 0.141 0.051 0.070 0.087 0.110 0.126
MI 0.048 0.068 0.082 0.102 0.122 0.046 0.064 0.079 0.098 0.118
MRF 0.049 0.061 0.069 0.079 0.087 0.045 0.058 0.066 0.077 0.081
MS 0.059 0.066 0.067 0.071 0.069 0.054 0.065 0.069 0.071 0.069

X5(Gender)

MCR 0.077 0.113 0.145 0.172 0.194 0.083 0.114 0.152 0.172 0.205
MI 0.072 0.105 0.136 0.168 0.208 0.073 0.108 0.143 0.171 0.217
MRF 0.070 0.095 0.111 0.122 0.135 0.071 0.094 0.118 0.120 0.135
MS 0.089 0.111 0.125 0.134 0.126 0.091 0.114 0.122 0.121 0.134

X1 ∗X5 (BMIreal ∗Gender)

MCR 0.096 0.139 0.182 0.216 0.248 0.102 0.143 0.175 0.217 0.242
MI 0.086 0.126 0.172 0.214 0.265 0.089 0.131 0.173 0.219 0.258
MRF 0.085 0.115 0.132 0.143 0.147 0.088 0.116 0.131 0.143 0.143
MS 0.127 0.144 0.156 0.151 0.149 0.123 0.142 0.148 0.142 0.143
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precision. If all is well, then RB should be close to zero, and
the coverage should be near 0.95. Methods having no bias
and proper coverage are called randomization-valid [33]. If
twomethods are both randomization-valid, the method with
the shorter confidence intervals is more efficient.+e λ value
is a function of the number of imputations and interpreted
as the proportion of the variation attributable to the missing
data. If λ is high, say λ> 0.5, the influence of the imputation
model on the final result is larger than that of the complete-
data model. Better imputation results in lower values of λ
[2, 34, 35]. As we saw earlier in the current study, in almost
all scenarios, the λ values were less than 0.5. Although the
lowest amount of λ was attributed to the MICE-Stratified
and MICE-CART method, according to the RB and CR
values of these two methods, the MICE-CARTmethod was
superior to the MICE-Stratified method.

Our main result is that, relative to one another, the
MICE-Interaction method appeared to have the best per-
formance at all missing percentages. Also, the recursive
partitioning methods had better performance than MICE-
Stratified method. Furthermore, the simulation results of
comparing the methods showed that the quality of pa-
rameter estimates was almost identical in the two missing
mechanisms.

An extension of this study would consider a dataset that
has more complex structures between the variables than our
data. In addition, looking at each model closely, one would
observe that the design of this study directly aligns with the
strength of each recursive partitioning model. +e recursive
splits in the tree structure allow CART to effectively capture
higher order interaction more accurately, as long as the
number of individuals in each leaf is large enough.

+e imperfect imputation models that resulted in the
bias of recursive partitioning techniques may have emerged
from the presence of main effects in the data. +at is, re-
cursive partitioning techniques have difficulty in modelling
linear main effects. It is hard to capture the main effects
because, due to the binary tree model, it would take many
fortuitous splits to recreate the structure [36].We expect that
this problem will also happen implementing other recursive
partitioning techniques. +e solution to this problem is
provided by STIMA [37], which combines a linear main
effects model with recursive partitioning. +e difficulty with
modelling linear main effects also explains why in our study
the recursive partitioning imputation methods led to biases
that are somewhat higher for the main effects compared to
MICE-Interaction method.

Meng stated that the analysis procedure should be con-
genial to the imputation model. Bartlett et al. connected
congeniality to compatibility by extending the joint distri-
bution of the imputation model to include the substantive
model [38, 39]. Uncongeniality can occur if the imputation
model is specified as more restrictive than the complete-data
model, or if it fails to account for important factors in the
missing data mechanism. Both types of missions introduce
biased and possibly inefficient estimates [3]. In the MICE-
Interaction method, we used the imputation model, which
included the interaction effect, and this made compatibility
between imputation and analysis model [40]. +erefore, the

method led to less bias in estimating the coefficients. +e
higher biases for the interaction effects by RF compared to
CARTmay be explained by interactions that are missed in the
tree building process due to drawing bootstrap samples and
the (low) number of randomly preselected variables [41].
+erefore, it is concluded that MICE-Interaction preserved
the interaction effect best and the MICE-Interaction method
is recommended if a user has presumptions of interaction
effects. +e quality of imputations for any of the methods was
lower for datasets with higher percentage of missing data.

Some features of the present study could be considered
as strengths. For example, to our knowledge, this is the first
time that the performance of four imputation methods was
evaluated in observations involving a combination of binary
and continuous predictors, in the presence of an interaction
effect.

To improve on the performance of the MICE-RF, an
extension of this study will look into the possibility of
changing the number of trees in RF algorithm. Future work
will consider the missing not at random mechanism instead
of missing completely at random and missing at random
considered here. Finally, as mentioned earlier, datasets with
more complex structures between the variables will be
considered.

7. Conclusion

In summary, this paper offered a fair comparison between
MICE-stratified, MICE-Interaction, and tree-based impu-
tation methods in the MICE algorithm. To our knowledge,
this is the first paper to compare tree-based imputation in
MICE to a parametric model that includes a true interaction
effect between a dummy and a continuous variable.

MICE-Interaction had the highest coverage of the in-
teraction effect. Importantly, parametric imputation should
only be utilized if there is enough information to ensure that
all necessary interaction terms are included in the impu-
tation model. If one can accept the reduction of coverage for
the interaction effect, recursive partitioning methods are
recommended as they do not require specification of the
imputation model.

Beyond the fact that there is still room for improvement,
it can be concluded that although recursive partitioning
methods were valuable for imputing datasets containing
interaction effect between a binary and a continuous vari-
able, properly incorporating interactions in the parametric
imputation model (MICE-Interaction method) led to much
better performance.

Abbreviations

CR: Coverage rate
FCS: Full conditional specification
JAV: Just another variable
MCR: MICE-CART
MRF: MICE-RF
MI: MICE-Interaction
MS: MICE-Stratified
MAR: Missing at random
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MCAR: Missing completely at random
MI: Multiple imputation
PB: Percent bias
PMM: Predictive mean matching
RB: Raw bias
RF: Random forests
SE: Standard error.
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