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In this paper, we propose an extreme conditional quantile estimator. Derivation of the estimator is based on extreme quantile
autoregression. A noncrossing restriction is added during estimation to avert possible quantile crossing. Consistency of the
estimator is derived, and simulation results to support its validity are also presented. Using Average Root Mean Squared Error
(ARMSE), we compare the performance of our estimator with the performances of two existing extreme conditional quantile
estimators. Backtest results of the one-day-ahead conditional Value at Risk forecasts are also given.

1. Introduction

Correct specification of a loss/returns distribution is key to
the accuracy of a risk measure such as Value at Risk. As
noted in [9], the major difference among many estimators of
Value at Risk lies in estimation of the distribution of returns.
Complexity in modeling financial data is due to its failure to
exhibit standard statistical properties such as normality,
independence, and identical distribution [18]. Statistical
tests have revealed that returns exhibit fat-tails, time-varying
volatility, and volatility clustering. Moreover, [7] showed
that returns exhibit serial correlation over long time hori-
zons. Models based on mean autoregression coupled with
results from extreme value theory such as the AR(1)-
GARCH(1,1) model in [30] incorporated most of the
aforementioned characteristics of financial data but suffer
from lack of robustness due to the effect of extreme ob-
servations on the mean. Extreme quantile autoregression in
[2, 24, 25] among others leads to a more robust model. $is
is because they combine regression quantiles introduced by
[17] in an autoregressive fashion while using extreme value
techniques on the resulting residuals to capture the tail

behaviour. A major challenge of this approach is possible
quantile crossing.

$e challenge of quantile crossing has been addressed by
smoothing suggestions in [5, 6, 16] among others in a
nonparametric setting. Equally, the conditional location-
scale model used in obtaining Restricted Regression
Quantiles (RRQ) in [11] averts possible crossing in extreme
quantiles but can suffer from the same when estimating the
median. To avert quantile crossing even at the middle, [1]
added a forced ordering constraint in the estimation of
multiple quantiles. Simulation results revealed that, based on
standard error of the estimates, noncrossing quantile re-
gression in [1] produces better estimates in the middle.
However, the RRQ estimator produced better estimates at
the tails, especially when the sample size was large.

$e lack of monotonicity in estimation of conditional
quantiles is addressed in [3] through sorting of originally
estimated nonmonotone quantile curves using a functional
delta method. $e monotonic quantile functions obtained
were found to be closer to the true quantile than the
nonmonotonic quantiles. Function limit theory for the
rearranged estimators was also derived. $e resulting
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monotonic quantile functions were then used in estimating
economic functions using Vietnam data. However, the
model was not extended to extreme cases to cover heavy tails
beyond the sample.

Parametric quantile regression is used in [27] to estimate
percentiles in positive valued datasets. Specifically, a linear
quantile regression model was used with the error term
assumed to follow a generalized gamma distribution. $e
idea of quantile regression was achieved by allowing pa-
rameters for the error distribution to depend on the uni-
variate covariate leading to a location-scale model.$e four-,
five-, and six-parameter generalized conditional gamma
distributions were considered and likelihood ratio test was
used in selecting the best-fit model for each dataset. As-
ymptotics for the three resulting models were also derived.
However, the use of generalized gamma distribution limits
the model to applications where the covariate is greater than
zero. $is together with the fact that some financial datasets
have heavier tails than the Gamma distribution limits the
application of the model in finance.

We seek to improve the extreme conditional quantile
estimator in [25] using an interquantile dispersion from the
central conditional quantile.

2. Methods and Estimation

Let St, t ∈ R+U 0{ }􏼈 􏼉 be a real valued financial time series on a
complete probability space (Ω,F, P). We assume that
St ∈ R+ and it is Ft-measurable where Ft, t ∈ R+􏼈 􏼉 is an
increasing sequence of σ-algebras representing information
available up to time t. In particular, let St be the value of a
portfolio at trading time t.$e return on the portfolio at time
t, used to quantify the gain in value of the portfolio from
trading time t − Δt to trading time t, is given by

Rt �
St − St− Δt

St− Δt
, (1)

so that

Xt � − Rt, (2)

is the corresponding loss return of St.

Definition 1 (Risk Measure). A risk measure is a function ρ
from a setL of risks in a financial position (in this case, the
loss distribution) to R; that is, ρ: L⟶ R.

We assume that Xt can be expressed using a linear
heteroscedastic model of the following form:

Xt � μt + et, (3)

where μt ≡ f: Rd⟶ R is the conditional mean function of
Xt givenFt− 1 and it is defined as μt � Yt

′β. et are errors and
Yt is a d-dimensional process which is Ft− 1-measurable. In
particular, Yt has 1 as the first element and a collection of the
last observed returns up to time t − 1; that is,
Yt � (1, Xt− 1, . . . , Xt− d). To ensure that the model is smooth
and obeys some of the financial norms such as clustering of
shocks, we further assume that et can be decomposed into

et � ϵtσt, (4)

where ϵt are independent and identically distributed random
variables and σt > 0 is the conditional volatility. In this case,
Xt is said to assume a location-scale model of the form

Xt � μt + σtϵt. (5)

$e corresponding α quantile of Xt under this formu-
lation is given by

μm
t,α � μt + σtq

ϵ
α, (6)

where qϵα is the α-quantile of ϵt. Let us now define a con-
ditional quantile autoregressive model on Xt of the form

Xt � μt,θ + εt, (7)

where μt,θ is the central conditional θ-quantile of Xt and εt

are errors with zero θ-quantile. Let εt � σt,θZt, where σt,θ is
the central conditional scale of Xt and Zt are i.i.d. residuals.
Using an approach similar to Points Over $reshold (POT),
we propose an extreme conditional quantile of the form
given in equation (8) and refer to it as the adjusted extreme
conditional quantile. $at is, suppose that we are interested
in an extreme quantile, μt,θ,α, for some α ≈ 1 or 0; the idea is
to estimate the central quantile, μt,θ, and scale σt,θ, for some
level θ in the middle and approximate the extreme quantile
as

μt,θ,α � μt,θ + σt,θ q
z
α − q

z
θ􏼂 􏼃, (8)

where qz
α and qz

θ are the α, θ-quantile of Zt, respectively, for
α, θ ∈ (0, 1). If the parametric distribution of Zt is known,
then qz

α and qz
θ are easily determined as the inverse of the

cumulative distribution of Zt at probability levels α and θ,
respectively; otherwise, appropriate estimates are deter-
mined. Note that μt,θ,α is μm

t,α in conditional quantile
autoregressive form. Observe that when α � θ, equation (8)
reduces to

μt,θ,θ � μt,θ, (9)

which is the central conditional quantile of Xt given Yt � y.
$is confirms that indeed εt has a zero θ-quantile. From
equation (8), we obtain the following estimator for the
extreme conditional quantile:

􏽢μt,θ,α � 􏽢μt,θ + 􏽢σt,θ 􏽢q
z
α − 􏽢q

z
θ􏼂 􏼃, (10)

where 􏽢qz
θ and 􏽢qz

α are appropriate estimates of the
θ, α-quantiles of the i.i.d. residuals, respectively. We com-
pare this estimator with

􏽢μm
t,θ,α � 􏽢μt,θ + 􏽢σt,θ􏽢q

z
α, (11)

proposed in [25], and

􏽢μh
t,θ,α � 􏽢μt,θ + 􏽢σt,θcα, (12)

where cα is the resulting coefficient from quantile regression
of εt against 􏽢εt at 100α%. Note that 􏽢μh

t,θ,α is the estimator
proposed in [11].
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2.1. Estimation of Central Quantiles. Let μt: R
d⟶ R be an

unknown smooth function and define the loss function Mθ:

Mθ x, μt( 􏼁 � θ x − μt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
+

+(1 − θ) x − μt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
−

� x − μt( 􏼁 θ − Ix− μt ≤ 0􏼐 􏼑,
(13)

where |x − μt|
+ and |x − μt|

− represent absolute positive and
negative values, respectively, and Ix− μt ≤ 0 is the indicator
function. Assuming that the conditional quantile process is
well defined, we expect

E Mθ Xt, μt,θ􏼐 􏼑|Yt � y􏽨 􏽩 � 0. (14)

So the θ-conditional quantile of Xt is given by

μt,θ � argmin
μt

E Mθ Xt, μt( 􏼁|Yt � y􏼂 􏼃. (15)

Note that equation (14) can be used to check whether the
conditional quantile process is correctly specified or not. We
impose the following regularity assumptions to ensure
consistency of the conditional quantiles.

Assumption 1. Xt, Yt􏼈 􏼉 are identically distributed with the
joint probability density fX,Y(x, y) and a continuous
conditional probability density fX|Y(x|y) of Xt given
Yt � y.

Assumption 2. $ere exists δ > 1 such that E(‖Yt‖
δ)<∞.

Assumption 3. μt,θ ≡ f: B⟶ R, where B is a compact
subset of Rd.

Assumption 4. fε|Y(ε|x)> 0∀x, where fε|Y(ε|x) is the
conditional probability density of εt � Xt − μt,θ givenYt � y.

From the sample analog of equation (15), we obtain

􏽢μt,θ � argmin
μt

1
n

􏽘

n

t�1
Mθ Xt, μt( 􏼁|Yt � y􏼂 􏼃, (16)

which is the θ-conditional quantile estimator for a sample of
size n. To overcome the limitation of quantile crossing, we
used the approach in [1] where required quantiles were
estimated simultaneously with a noncrossing constraint
using the optimization problem:

min
μt

􏽘

k

i�1
w θi( 􏼁 􏽘

n

t�1
Mθi

Xt, μti
􏼐 􏼑|Yt � y􏽨 􏽩

subject to μti
≥ μti− 1

, Yt ∈ B, i � 1, . . . , k,

(17)

for some weight function w(θi)> 0. A conveniently used
practical choice of the weight function which was also
adopted for this study is w(θi) � 1, ∀i � 1, . . . , k.

Lemma 1 (consistency central quantiles’ estimator). Given
that Assumptions 1, 2, 3, and 4 hold, 􏽢μt,θ − μt,θ � op(1).

2.1.1.;e Scale Function. To still maintain dependence and
ensure positivity of the scale function, this study incor-
porated a scale function in the form of a quantile

autoregressive (QAR) function on the absolute of the
nonstandardized residuals. $is was achieved by replacing
μt,θ with its corresponding estimate in equation (7) so that
εt � Xt − 􏽢μt,θ and

εt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � σt,θ + ϑt,θηt, (18)

where σt,θ is the central conditional θ-quantile of |εt|, ϑt,θ is
the conditional scale of |εt|, ηt are i.i.d. residuals, and ϖt �

ϑt,θηt are errors with zero θ-quantile. Similarly, as is the case
in Section 2.1, we let σt: R

d⟶ R+ be an unknown smooth
function and define the loss function Mθ(x, σt). We assume
that the QAR process in equation (18) obeys the four reg-
ularity assumptions given earlier so that, using noncrossing
quantile regression approach, we obtain the following es-
timate of the scale:

􏽢σt,θ � argmin
σt

1
n

􏽘

n

t�1
Mθ εt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, σt􏼐 􏼑|Yt � y􏽨 􏽩, (19)

where Mθ[(|εt|, σt)|Yt � y] is a loss function of the form
given in equation (13).

Lemma 2 (consistency of the scale estimator). Given that
the QAR process defined in equation (18) satisfies Assump-
tions 1, 2, 3, and 4, 􏽢σt,θ − σt,θ � op(1).

2.2. Extreme Value ;eory (EVT). Most of the financial
datasets are heavy-tailed [12]. $erefore, it is fundamentally
important to incorporate extreme value theory in the esti-
mation of extreme quantiles. A basic requirement for the
application of EVT is independence in the particular dis-
tribution. $e study in [25] observed that it is appropriate to
assume that, at high (low) levels of α, the standardized
residuals in equation (7) given by

Zt �
εt

􏽢σt,θ
, (20)

where 􏽢σt,θ is the estimate of the scale, are approximately
independent, which allows us to apply EVT. Let Z1, Z2, . . .,
follow a common distribution function F. Consider a sample
(Zi)i�1,...,n from which Mn � max Z1, . . . , Zn􏼈 􏼉 and is such
that Mn⟶ zF (a.s) where zF≊sup z ∈ R|F(z)< 1{ }. Pur-
suant to Fisher–Tippett’s theorem in [8], the random var-
iable Z (or alternatively the distribution F of Z ) is said to
belong to theMaximumDomain of Attraction (MDA) of the
extreme value distribution H if there exist norming con-
stants cn > 0 and dn ∈ R such that

Mn − dn

cn

⟶d H. (21)

Consequently, H is referred to as the Generalized Ex-
treme Value (GEV) distribution.

$is study applied Points Over$reshold (POT) method
because it uses more data leading to better estimates
compared to the Block Maxima method. POT models the
distribution

Journal of Probability and Statistics 3



Fu(z) � P(Z − u≤ z|Z> u) �
F(z + u) − F(u)

1 − F(u)
. (22)

of all excesses above a particular threshold u, where
0≤ z≤ zF − u.

Theorem 1 (Pickands–Balkema–de Haan) (see [22]). We
can find (positive-measurable function) β(u) such that

lim
u⟶zF

sup
0≤z<zF− u

Fu(z) − Gλ,β(u)(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0, (23)

if and only if F ∈ MDA(Hλ), λ ∈ R, and Gλ,β(u)(z) is the
Generalized Pareto Distribution (GPD) given by

Gλ,β(u)(z) � Gλ,β(z − u) �

1 − 1 +
λ(z − u)

β
􏼠 􏼡

− (1/λ)

, λ≠ 0,

1 − exp −
z − u

β
􏼠 􏼡, λ � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

with z≥ u when λ> 0 and u≤ z≤ u − (β/λ) when λ< 0. λ and
β are the shape and scale parameters, respectively.

A major challenge in POT is accuracy in choosing a
threshold to separate extreme observations from the center
of the distribution [30]. Among the methods discussed in
[32], most authors such as those of [21, 28, 30] prefer the
conventional method in which a threshold that ensures that
between 5% and 10% of the sample data is classified as
extreme observations is chosen. Although conventional
method is subjective, the choice of the threshold can be
checked for appropriateness using a mean excess plot. $e
mean excess function for the GPD is given by

E[Z − u|Z> u] �
β − λu

1 + λ
, (25)

where 1 + λ> 0. $is implies that an optimal threshold
corresponds to start of approximate linearity of the mean
excess plot with the sign of the slope, λ/1 − λ, indicating the
specific family of the GPD. A positive sign corresponds to
the Frechet family, while a negative sign implies the Weibull
family [8].

For convenience in making inferences on variability of
the estimated quantiles, a recommendation in [13] on the
use of Probability Weighted Moments (PWM) method in
estimating parameters of the GPD was adopted. Using the
first and second PWMs, we obtain the corresponding pa-
rameters estimates as

λ �
M0

M0 − 2M1
− 2,

β �
2M0M1

M0 − 2M1
,

(26)

where M0 and M1 are obtained by replacing for k � 0 and
k � 1 in

M1,0,k � Mk � E X 1 − F(X){ }
k

􏽨 􏽩 �
β

(k + 1)(k + 1 + λ)
,

(27)

which is the PWM of GPD with λ> − 1. See [10, 23] for
details on PWM method. For a sample of size n, the cor-
responding PWM estimates are given by

􏽢Mk �
1
n

􏽘

n

i�1
1 − Pi: n( 􏼁

k
xi: n, (28)

where x1: n ≤ · · · ≤ xn: n is the ordered sample and Pj: n �

i + c/n + δ for suitable constants c and δ. As recommended
in [20], c � − 0.35 and δ � 0.

$e overall distribution of the standardized residuals was
obtained by splicing the GPD with the empirical bulk dis-
tribution at the threshold using the approach in [21, 29, 30]
among others to obtain

F(z) � (1 − F(u))Gλ,β(z − u) + F(u), (29)

for z> u and Gλ,β(z − u) the Generalized Pareto Distribu-
tion. When F(u) is approximated empirically, we obtain the
following estimate of F(z):

􏽢F(z) � 1 −
m

N
1 +

􏽢λ(z − u)

􏽢β
􏼠 􏼡

(− 1/􏽢λ)

, (30)

where N is the sample of size, m is the number of
exceedances above the threshold u, and 􏽢β together with 􏽢λ are
the estimated GPD parameters.

Lemma 3 (consistency of Probability Density Function
(PDF) estimator). Let Z1, Z2, . . . , Zn be i.i.d. random vari-
ables from a Cumulative Distribution Function (CDF) F(z)

belonging to the MDA of H(λ). Suppose that F(z) has a right
endpoint at zF ≤∞; then supz|􏽢F(z) − F(z)|⟶ 0 as
n⟶∞.

From equation (30), we get the following estimate for the
quantile of the standardized residuals at level α:

􏽢q
z
α � u +

􏽢β
􏽢λ

N

m
(1 − α)􏼒 􏼓

− 􏽢λ
− 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (31)

Lemma 4 (consistency of error quantiles). Let
Z1, Z2, . . . , Zn be i.i.d. random variables from a CDF F be-
longing to the MDA of H(λ) satisfying α<F(qz

α + ϵ) for any
ϵ> 0. ;en, for every ϵ> 0 and n � 1, 2, . . . ,

lim
n⟶∞

P 􏽢q
z
α − q

z
α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ϵ􏼐 􏼑 � 1. (32)

Using equation (10), we obtained the one-step VaR
predictions as

􏽤VaR
α
t+1 � 􏽢μt+1,θ,α � 􏽢μt+1,θ + 􏽢σt+1,θ 􏽢q

z
α − 􏽢q

z
θ􏼂 􏼃, (33)
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where 􏽢μt+1,θ and 􏽢σt+1,θ are the corresponding one-step
θ-quantile and scale estimates, respectively, from the linear
conditional quantile process.

Theorem 2 (consistency of extreme quantile
estimator). Given that the QAR processes defined satisfy
Assumptions 1, 2, 3, and 4 and F(z) belongs to the MDA of
H(λ), 􏽢μt,θ,α − μt,θ,α � op(1).

3. Simulations

To evaluate the accuracy of our estimators, a sample of size
T� 4250 was generated using the model
Xt � 0.5 + 0.3Xt− 1 +

����������

1 + 0.35X2
t− 1

􏽱

Zt, where Zt follows
Student’s t-distribution with 4 degrees of freedom. $e
sample was partitioned into design data of size n and test
data of size T − n. Figure 1 represents a sample path of the
model superimposed with the median. Note that, for sim-
ulation purposes, θ � 0.5 was used in estimating the central
quantile.

Clearly, from the sample path, there is some level of
volatility clustering, which is common inmost financial data.
An ACF plot of the resulting standardized residuals in
Figure 2 confirms that indeed they are independent.

z � 2.3283 was chosen as the threshold to ensure that 10%
of the resulting ordered standardized errors were classified as
extremes. $is was confirmed by approximate linearity of the
mean excess plot after the threshold as shown in Figure 3.

$e corresponding shape and scale parameter estimates
from the GPD fit were 0.1156182 and 1.272937, respectively.
Table 1 outlines the sample statistics of the estimates of the
various quantiles together with the data.

Figure 4 shows the corresponding quantile estimates at
different levels of α.

$e accuracy of our extreme quantile estimator was
evaluated using the Average Root Mean Squared Error
(ARMSE). $e RMSE seeks to return the Mean Squared
Error (MSE) to the original scale of the sample. For k sample
paths of simulations of size n of the extreme quantiles, the
average RMSE is given by

A.R.M.S.E �
1
m

􏽘

k

i�1

���������������

1
n

􏽘

n

t�1
􏽢μt,θ,α − μm

t,α􏼐 􏼑
2

􏽶
􏽴

, (34)

where 􏽢μt,θ,α is replaced by 􏽢μm
t,θ,α or 􏽢μh

t,θ,α when considering
extreme conditional quantiles or restricted regression
quantiles, respectively. To check how our model behaves
under different choices of central quantile, we computed
ARMSE for the extreme conditional quantile at α � 0.95,
where θ � 0.25, 0.5 and 0.75 were considered. 1000 sample
paths, each of sizes 250, 500, 1000, 2000, and 4000, were used
in the computation of ARMSE. Table 2 reports the obtained
ARMSE values.

We note that, for a large enough sample (2000 obser-
vations and above), ARMSE is lowest when θ � 0.5 and thus
this choice of theta is maintained in investigating the ac-
curacy of our estimator and forecasting the one-day-ahead

VaR. Table 3 outlines the obtained ARMSE for the extreme
conditional quantile at α � 0.95 under three different
models.$e sample sizes and number or replications are still
maintained.

Based on ARMSE, both RRQ and ECQ perform better
than AECQ for small samples. However, as the sample size
increases, AECQ outperforms both RRQ and ECQ. $e
decreasing ARMSE with increase in the sample size for
AECQ and ECQ confirms that both are consistent esti-
mators of the extreme conditional quantile. Also, for sample
size above 2000, the rate of convergence of the AECQ es-
timator is higher than that of the ECQ estimator. It was not
possible to comment on the consistency of the RRQ esti-
mator, since its ARMSE fluctuated with increase in sample
size. $e consistent reduction in ARMSE when noncrossing
constraint is added during estimation, confirming that in-
deed this constraint increases accuracy of resulting
estimators.

4. Evaluating VaR Forecasts

In Section 3, we evaluated accuracy of our in-sample
quantile estimates. In this section, we extend this by eval-
uating the out-of-sample VaR forecasts from our quantile
estimator. To achieve this, we carry out backtests on 250 one-
day-ahead VaR forecasts (as recommended in the Basel
Accord) using coverage tests in [4, 31]. Coverage tests were
adopted due to their popularity in literature and practice
[26]. Consider the failure process Iαt � I Xt >VaRα

t􏼈 􏼉, where I
is the indicator function such that

I
α
t �

1, if Xt >VaR
α
t ,

0, otherwise,
􏼨 (35)

and t � n + 1, n + 2, . . . , T. By Lemma 1 in [4],
Iαt ∼

ii d Binom(α) which is tested using the conditional cov-
erage test that combines both the unconditional coverage
test in [19] and the test for independence in [4] to under the
null hypothesis E[Iαt |Iαt− 1] � α. $e likelihood under the null
hypothesis is

L α; I
α
n+1, I

α
n+2, . . . , I

α
T( 􏼁 � (1 − α)

n0αn1 , (36)

where n1 is the number of VaR exceedances and
n0 � T − n − n1. Now consider the first-order Markov chain
generated by the transition probabilities of Iαt :

Π1 �
π00 π01

π10 π11
􏼢 􏼣 �

1 − π01 π01

1 − π11 π11
􏼢 􏼣, (37)

where πij � Pr(Iαt � j|Iαt− 1 � i). $is has an approximate
likelihood function:

L Π1; I
α
n+1, I

α
n+2, . . . , I

α
T( 􏼁 � πn00

00 π
n01
01 π

n10
10 π

n11
11 , (38)

where nij is the number of times observation i is followed by j
in the failure process Iαt . From equation (38), we obtain the
maximum likelihood estimate of πij as

􏽢πij �
nij

􏽐
1
j�0 nij

. (39)
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Figure 1: Sample path superimposed with median.

Lag

AC
F

ACF plot of the standardized residuals

0 5 10 15 20 25 30

0.8

0.4

0.0

Figure 2: Autocorrelation plot of resulting residuals.

Mean excess plot3

M
ea

n 
ex

ce
ss

Threshold
–10 –5 0 5 10

10
8
6
4
2
0

Figure 3: Mean excess plot.

Table 1: Sample statistics.

α 0 0.50 0.75 0.95 0.99
Minimum − 15.81 − 3.58 − 2.80 − 0.73 1.76
Median (Q1, Q3) 0.67 (0.01, 1.38) 0.65 (0.48, 0.83) 1.15 (0.99, 1.32) 2.47 (2.34, 2.61) 4.07 (3.97, 4.17)
Mean ± SD 0.69 ± 1.41 0.66 ± 0.36 1.16 ± 0.34 2.48 ± 0.27 4.07 ± 0.20
Maximum 10.69 3.22 3.55 4.42 5.47
Q1, lower quartile; Q3, upper quartile; SD, standard deviation.
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Figure 4: Quantile estimates at various α-levels for θ � 50%.

Table 2: ARMSE for 􏽢μt,θ,α for α � 95%.

Sample size (n) θ � 0.25 θ � 0.5 θ � 0.75
250 0.96844 0.74493 0.62015
500 0.79632 0.60788 0.56179
1000 0.71974 0.54056 0.53254
2000 0.71416 0.49585 0.50037
3000 0.69751 0.47862 0.49713
4000 0.69608 0.46439 0.48776

Table 3: ARMSE for 􏽢μt,θ,α under different models for θ � 50% and α � 95%.

Sample size (n)
Without noncrossing constraint With noncrossing restriction

RRQ ECQ AECQ RRQ ECQ AECQ
250 0.58236 0.64552 0.73307 0.58200 0.64230 0.72728
500 0.56989 0.61336 0.60766 0.56816 0.61083 0.60341
1000 0.53386 0.58654 0.53386 0.55780 0.58529 0.53186
2000 0.56051 0.58204 0.49562 0.55800 0.57880 0.49360
3000 0.55478 0.57663 0.48235 0.55235 0.57369 0.48073
4000 0.55271 0.57619 0.47032 0.55013 0.57295 0.46832
RRQ, restricted regression quantiles in [11]. ECQ, extreme conditional quantiles in [25]. AECQ, proposed adjusted extreme conditional quantiles.

Table 4: P values for the likelihood ratio tests.

Sample size (n)
RRQ model ECQ model AECQ model

LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc

250 0.000 0.001 0.000 0.014 0.013 0.002 0.001 0.006 0.000
500 0.000 0.001 0.000 0.036 0.010 0.003 0.009 0.005 0.000
1000 0.000 0.000 0.000 0.042 0.008 0.003 0.019 0.004 0.000
2000 0.000 0.001 0.000 0.055 0.010 0.005 0.051 0.005 0.002
3000 0.000 0.001 0.000 0.062 0.012 0.006 0.062 0.005 0.003
4000 0.000 0.000 0.000 0.067 0.009 0.005 0.066 0.004 0.002
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$erefore, the conditional coverage hypothesis can be
assessed using the likelihood ratio:

LRcc � − 2 log
L α; I

α
n+1, I

α
n+2, . . . , I

α
T( 􏼁

L 􏽢Π1; I
α
n+1, I

α
n+2, . . . , I

α
T􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦ ∼asy χ2(2). (40)

Table 4 reports the obtained P values for the likelihood
ratios of the three tests in [4]. $e tests were conducted on
250 one-day-ahead 5% VaR forecasts from the three con-
sidered models.

LRuc denotes likelihood ratio for the unconditional
coverage test. LRind denotes likelihood ratio for the inde-
pendence test. LRcc denotes likelihood ratio for the condi-
tional coverage test. Models accepted at 5% level of
significance are highlighted in bold. Note that n is size of the
sample used in estimation, while testing was done using a
sample of size 250 for all n.

Observe that, as a consequence of consistency, the ac-
curacy of ECQ and AECQ forecasts improves with increase
in sample size. It can also be seen that all the three models
perform poorly under LRind and LRcc due to dependence in
autoregression. Based on LRuc, the RRQ model performed
poorly when it comes to forecasting.$is can be attributed to
the failure to incorporate extreme value theory in estimating
residual quantiles in the RRQ model.

5. Conclusions and Recommendations

We have derived the extreme conditional quantile estimator
and used it to obtain the one-step-ahead conditional Value
at Risk forecast for a simulated financial distribution.
Consistency of our estimators has been proved and illus-
trated through Monte Carlo simulations. We noticed that
adding the noncrossing restriction during estimation im-
proves accuracy of the resulting extreme conditional
quantile estimator. Backtesting results from the one-step-
ahead conditional Value at Risk forecasts indicate that in-
dependence and conditional coverage tests in [4] are not
appropriate for our estimators due to dependence in
autoregressive models.

6. Proofs

Proof of Lemma 1. Let ζ(μt,θ) � Mθ(Xt, μt) − Mθ(Xt, μt,θ),
ζn(μt,θ) � (1/n) 􏽐

n
μt,θ

ζ(μt,θ), and ζ(μt,θ) � E(ζn(μt,θ)). Note
that, by Assumption 1, ζn(μt,θ) does not depend on n. Since
Mθ(Xt, μt) does not depend on μt,θ, then
􏽢μt,θ ∈ argminμt

(1/n) 􏽐
n
t�1 ζ(μt,θ). We need to show that the

objective function ζ(μt,θ) satisfies the following conditions
for application of $eorem 12.2 in [34]:

(1) ζ(μt,θ) is measurable for each β ∈ B

(2) ζ(μt,θ) is continuous on B almost surely
(3) ∃ a measurable function m: Rd⟶ R such that

(i) |ζ(μt,θ)|≤m(Yt)∀β ∈ B

(ii) ∃δ > 0: E|m(Yt)|
1+δ ≤M≤∞

(4) ζ(μt,θ) has a unique minimum at μt,θ

$e functional form of ζ(μt,θ) and Assumption 3
guarantees measurability of Mθ(Xt, μt,θ). To prove condi-
tion (2), we first show that ζ(μt,θ is Lipschitz continuous. By
definition,

ζ μt,θ􏼐 􏼑 � Xt − μt( 􏼁 θ − I Xt − μt ≤ 0( 􏼁􏼂 􏼃( 􏼁

− Xt − μt,θ􏼐 􏼑 θ − I Xt − μt,θ ≤ 0􏼐 􏼑􏽨 􏽩􏼐 􏼑

� θ μt,θ − μt􏼐 􏼑 − Xt − μt( 􏼁I Xt − μt ≤ 0( 􏼁􏼂

− Xt − μt,θ􏼐 􏼑I Xt − μt,θ ≤ 0􏼐 􏼑􏽩.

(41)

Considering the possible range Xt, we have the
following:

(i) For μt <Xt < μt,θ, it follows that I(Xt − μt ≤ 0) � 0
and I(Xt − μt,θ ≤ 0) � 1; hence, equation (41) re-
duces to

ζ μt,θ􏼐 􏼑 � θ μt,θ − μt􏼐 􏼑 + Xt − μt,θ

� θ μt,θ − μt􏼐 􏼑 + Xt − μt,θ + μt − μt( 􏼁

� Xt − μt( 􏼁 − (1 − θ) μt,θ − μt􏼐 􏼑.

(42)

Since (Xt − μt)> 0 and (Xt − μt,θ)< 0, we have

− (1 − θ) μt,θ − μt􏼐 􏼑≤ ζ μt,θ􏼐 􏼑≤ θ μt,θ − μt􏼐 􏼑, (43)

and so |ζ(μt,θ)| is bounded above by either (1 −

θ)(μt,θ − μt) or θ(μt,θ − μt).
(ii) Similarly, when μt ≤ μt,θ <Xt, I(Xt − μt ≤ 0) �

0 and I(Xt − μt,θ ≤ 0) � 0; hence,

ζ μt,θ􏼐 􏼑 � θ μt,θ − μt􏼐 􏼑, (44)

(iii) Xt < μt ≤ μt,θ; then I(Xt − μt,θ ≤ 0) � 1 and I(Xt−

μt,θ ≤ 1); hence,

ζ μt,θ􏼐 􏼑 � (θ − 1) μt,θ − μt􏼐 􏼑. (45)

Combining equations (43)–(45), we have

ζ μt,θ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max(θ, 1 − θ) μt,θ − μt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ μt − μt,θ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(46)

$us, ζ(μt,θ) is Lipschitz continuous for K � 1 and hence
is differentiable almost everywhere by Rademacher’s theo-
rem in [14] which implies that ζ(μt,θ) is continuous
everywhere.

To prove Condition 3(i), let
m(Yt) � ‖Yt‖(L‖β‖2)(θ + 1), where β � maxβ∈B‖β‖. Exis-
tence of β is guaranteed by Assumption 3. Clearly, m(Yt) is
measurable and |ζ(μt,θ|≤m(Yt). Assumption 2 ensures that
Condition 3(ii) is satisfied.

8 Journal of Probability and Statistics



To verify Condition 4, let δ � μt − μt,θ; we need to show
that E(ζ(μt,θ))> 0 for any δ > 0. By Knight’s identity in [15],
we have

E ζ μt,θ􏼐 􏼑􏽨 􏽩 � E Mθ Xt, μt( 􏼁 − Mθ Xt, μt,θ􏼐 􏼑􏽨 􏽩

� E μt − μt,θ􏼐 􏼑 I Xt − μt,θ ≤ 0􏽮 􏽯 − θ􏼐 􏼑 + 􏽚
μt− μt,θ

0
I Xt − μt,θ ≤ t􏽮 􏽯 − I Xt − μt,θ ≤ 0􏽮 􏽯􏽨 􏽩dt􏼔 􏼕

� 􏽚
μt− μt,θ

0
Fε|Y(t) − Fε|Y(0)􏽨 􏽩dt.

(47)

$us, E[ζ(μt,θ)]> 0 for all δ > 0 by monotonicity of the
CDF. $erefore, 􏽢μt,θ − μt,θ � op(1) by $eorem 12.2 in [34].

Proof of Lemma 2. $eproof proceeds in a similar way to the
proof of Lemma 1.

Proof of Lemma 3. Observe that

sup
z

|􏽢F(z) − F(z)| � sup
z

[1 − 􏽢F(u)]􏽢Gλ,β(z − u) + 􏽢F(u) − [1 − F(u)]Gλ,β(z − u) − F(u)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� sup
z

[􏽢F(u) − F(u)] + 􏽢Gλ,β(z − u) − Gλ,β(z − u)􏽨 􏽩 − 􏽢F(u)􏽢Gλ,β(z − u) + F(u)Gλ,β(z − u)
􏼌􏼌􏼌􏼌􏼌

+ 􏽢F(u)Gλ,β(z − u) − 􏽢F(u)Gλ,β(z − u)
􏼌􏼌􏼌􏼌􏼌

≤ sup
u

|􏽢F(u) − F(u)| + sup
z

􏽢Gλ,β(z − u) − Gλ,β(z − u)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

− Gλ,β(z − u) sup
u

|􏽢F(u) − F(u)| − 􏽢F(u) sup
z

􏽢Gλ,β(z − u) − Gλ,β(z − u)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(48)

Note that supu|􏽢F(u) − F(u)|⟶ 0 as n⟶∞ by Gli-
venko-Cantelli theorem in [33] and supz|􏽢Gλ,β
(z − u) − Gλ,β(z − u)|⟶ 0 as n⟶∞ heuristically from
consistency of GPD parameters, Lemma 4.1 in [25], and as-
ymptotic normality of PWM estimators in [13]. $erefore,
since 0≤Gλ,β(z − u)≤ 1 and 0≤ 􏽢F(u)≤ 1, we have the result.

Proof of Lemma 4. Let ϵ> 0 and δ � min F(qz
α + ϵ)􏼈 − α, α −

F(qz
α − ϵ)} and note that, for any CDF F defined on

RF(z)≥ k, if z≥F− 1(k), then
P 􏽢q

z
τ − q

z
τ < ε( 􏼁 � P 􏽢q

z
τ > q

z
τ + ε( 􏼁

� P 􏽢F q
z
τ( 􏼁> 􏽢F q

z
τ + ε( 􏼁􏼐 􏼑

� P α> 􏽢F q
z
τ + ε( 􏼁􏼐 􏼑

� P F q
z
τ + ε( 􏼁 − 􏽢F q

z
τ + ε( 􏼁>F q

z
τ + ε( 􏼁 − α􏼐 􏼑

≤P sup
z

|F(z) − 􏽢F(z)|> δ􏼠 􏼡,

(49)
which tends to 0 as n⟶∞ by Lemma 3.

Proof of ;eorem 2. Combining Lemma 1, Lemma 2, and
Lemma 4, we have the desired result.
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