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A stress-strength reliability model compares the strength and stresses on a certain systems; it is used not only primarily in
reliability engineering and quality control but also in economics, psychology, and medicine. In this paper, a novel
extension of stress-strength models is presented. The mew model is applied under the generalized exponential distri-
bution. The maximum likelihood estimator, asymptotic distribution, and Bayesian estimation are obtained. A com-
prehensive simulation study along with real data analysis is performed for illustrating the importance of the new stress-

strength model.

1. Introduction

Stress-strength reliability analysis is a statistical analysis of
the interference of of the strength of the component and the
stresses placed on the component. The stress-strength re-
liability analysis is a statistical tool used in reliability
engineering.

In a stress-strength reliability model, both strength and
stresses are considered as separate random variables. Stress
experienced by a certain component is usually presented by
the random variable X and the strength of the same com-
ponent is presented by the ramdom variable Y. A situation in
which X >Y is one in which the stress is greater than the
strength, and then, the component fails.

The abovementionedprobability model can be expressed
as R=Pr(X>Y) and then called as the stress-strength
quantity. The stress-strength reliability model has various
applications in many fields such as reliability, quality con-
trol, and engineering. For more details in this matter, see the

work of Kotz et al. [1] and Ventura and Racugno [2]. Rezaei
et al. [3] presented a list of probability distributions used
under the stress-strength reliability model. Recently, Rasekhi
et al. [4] presented a Bayesian and the classical inference of
reliability in multicomponent stress-strength under the
generalized logistic model. Saber and Yousof [5] investigated
the Bayesian and the classical inference for the generalized
stress-strength  parameter under generalized logistic
distribution.

We suppose that we know these two components have
been worked till a known time, and then, we are going to
have some inferences on R. For this case, Saber and
Khorshidian [6] introduce the conditional stress-strength
model R

R* = P(X>Y|X>a,Y>b). (1)

When independent random variables X and Y are
continues, R*? can be computed by the following equation:
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[(1-Fy(a)- [," Fx(0)fy (dy,
[I-Fx@][l-Fy(B)] “

_J1-F® - [[C Fx () fy (dy,
[1-Fx@][1-Fy(®)] <"

[7® Fy (x)f x (x)dx — Fy (b) (1 - Fy (@),
[1-Fy(a)][1-Fy )] a>tr
(2)

Saber and Khorshidian [6] studied this model for the
case of exponential distributed components under the
nonparametric case, and the Bayesian estimation is ignored.
However, in this work, we study the conditional stress-
strength model for two-parameter generalized exponential
(GE) distributed components, and the Bayesian estimation is
considered. The GE distribution can be used as an alternative
to gamma, Weibull, and log-normal distributions. For more
related studies, see the work of Gupta and Kundu [7] and
Kundu (2002) and Rao [8].

The probability density function and cumulative dis-
tribution function of GE distribution are, respectively,

Journal of Probability and Statistics

fx(x)= oc)te_lx(l - e_lx)ail,

] (3)
Fy(x)=(1-¢™),

where x >0 and « > 0 are the shape parameters and A >0 is
the scale parameter.

The rest of the paper is organized as follows. We devote
Section 2 to study R!** in case of GE distribution. In Section
3, the ML estimator of quantity R*? and its corresponding
asymptotic distribution and confidence interval are pro-
vided. A simulation study is presented in Section 4, and
Section 5 has been devoted to applying a real dataset to the
recommended model.

2. Conditional Stress-Strength Model for
GE Distribution

In this section, quantity (2) is computed when distribution of
components is GE.

Theorem 1. We suppose random variables X and Y are
independent and X ~ GE(ay,A) and Y ~ GE(a,,); then,

1-(1- ef)tb)mZ —(ay/ () + ay)) |

[1 - (1 — e”‘“)“l] [1 _ (1 _ ei/\b)az]la:ba
ab 1- (l — eflb)"‘z _ ((xz/((xl + 062))[1 — (1 _ ef/lb)azﬂxl]l
R\ b_< [1_(1_ e_M)al][l—(l— e—)tb)"‘z] la<b (4)
(/e + e)[1 -] {1 e[ me )
[1-(1-e?)][1-(1-e?)"] la>br

Proof. Let
fx) = “1/167”(1 7”)
fY (y) _ az/\e—/\y(l —/ly)lxz—l

Fx()=(1-¢)", (5)
Fy(y) =(1-¢)",
Fy(a) :(1 /\a)‘xl
E, (b) =(1 Ab)“z

Substitute the last six equations in equation (2). Let
a = b; then,

o _L=Fr @ [[" Fx () fy (n)dy ()
[1-Fx(@][1-Fy(®)]

Then,

B o (R N

(-0~

SN-(1-

-Ab\%2 ’
"))
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|a,

ajta,—1

» 1-Fyla)- f;oo ocz)tef)‘y(l - ef’\y)

d
y, =R

(-0 - 7))

_ 1- FY (a) - ((xz/ ((xl + (xz)) J—:oo (a1 + az)le_ly(l _ e_ly)al+a271dy

>R

(1-(1= ™)) (1=(1-™)")

_ 1-Fy(a)—(ay/ (o +a,)) (1 = Fy (a))

(1-(1- )0 -(1- ™)) 7

In the abovementioned result, it is noted that
W ~ GE (o + a,,A); thus,
Fy(a)=(1-e)"™, (8)

Since a = b, the proof of Theorem 1 is completed.
If a<b, then

gor LB O[T Bl )
[1-Fx(@)][1-Fy(b)]

1 _(1 - e—lb)“z = (o ( + “2))(1 _(1 - eilb)azw‘l)
(=== )

Rla’b _

(11)

Eventually, if a >b, we can calculate R*® like previous
ones.

o Izoo Fy (x)f x (x)dx = Fy (b) (1 — Fx (a)) (12)
The dominator of R in this case is exactly the same as B [1-Fyx(a)][l-Fy ()] '
in the first case with substitution of b instead of a. Therefore, ™
en,
Rlab — 1 - Fy (b) - (ay/ (a, +“2))[1_Fw(b)]. (10)
(1-(r=e)")(1-(1- ™))
00 _ a _ _ a—1
Rla,bzf: (l—e M) ale M(l—e Ay) dy — Fy (b)(1 - Fx (a)) (13)

[1-Fy(a)][1-Fy ()] ’

which can be expressed as

Rlab _ (ay/ (&) +&,))[1 = Fyy (@)] = Fy (b) (1 - Fy (a))
[1-Fyx(a)][l - Fy(®)] '

(14)

Below, we derive the maximum likelihood estimation
(MLE) of the RI** model; and hence, the asymptotic dis-
tribution of those is presented in order to constructing the
corresponding confidence interval.

Let X,,X,,...,X,, be a random sample of size m of
GE(a,A)andY,,Y,,...,Y, bearandom sample of size n of
GE(a,,A) such that X and Y are independent. Then, the
likelihood function can be expressed as

m n
(a3
e i=1 j=1

L=o o,

-] [fe-em]

i=1 j=1

(15)

Then, the log-likelihood function is given by

L =mln o +nln ¢x2+(m+n)ln)t—)t<2xi+2yj>

i=1 j=1

+ (o - 1)

Mz

1

ln(l - ef}‘x’) +(ay,-1) iln(l - ef"yf).
i

(16)

Therefore, the maximum likelihood estimator of parameters
can be obtained by solving (BLZ’]-’”/a/\) =0, (aL;’fj’”/a(xl) =0
and (JL{}"/da,) = 0. A simple computation shows

aL’fJ” m o L
a(;Jl =a—1+;ln(1—e’b"),

oL <
Zoy ln(l—ef’\x),
o, a &
17
aL,n; m+n z x;e i 1
a1 in+zyj +( 1)21_ -1,
i=1 j=1 i=1 e

Therefore, we have
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o m Equations (18) and (19) depend on unknown parameter
! e ln(l e lx,-)’ (18) 1. We substitute equations (18) and (19) in JL;";"/0A, and we
- can find A by solving the following nonlinear equation:
n
a, = :
2 Z;‘:l ln(l _e—/lyj) (19)
L™ wm+n - = m moxe M n c )"e%yj
i,] i J
= A Y+ ) - ————+1 S S | | Y — 1)
oA A ; ]; 7)o n(1- e ) ;1 —e ™ |Y0In(1-eM) j:zll —e™Mi
Then, two other parameters are earned by substitution A Therefore, the maximum likelihood estimator of RI*?
in equations (18) and (19) as becomes
_ m
a, = —,
h ln<1 - e_M")
(21)
_ n
a, =

py ln(l - eiAyJ)

[1-(1- ) @ a1 -(1-e )]

[1 —(1 - e—Xa)E'][l —(1 - e—Xh)az]

1-(1- e*ib)az (@ (a + az))[1 -(1 - ew)a”al]
[1 —(1 - e—Xa)a' ] [1 —(1 - e—Xh)“z]

A |
[1 —(1 - e-;ﬂ)al} [1 —(1 - e-Xh)“z]

In continuation with this section, the asymptotic dis- A ay, ) denoted by  J(0)=E[I(0)], where
tribution of § = (A, @;, @,) and the asymptotic distribution of ~ I(6) = [I;;]; ;1 55 is the observed information matrix; i.e.,
R%? are obtained. The Fisher information matrix of 6 =

la=b>

=la,b _

(22)

la<b

|
la>b

aZLZ}’" L ag, ) azLZ}’" Aag, o) azLZ’j’" Loy, )

or? 0A Oa, 0A Oa,
L™ (N ay,a,) PL™ (N ap,a,) L™ (N ay,a
I(G):— i,j ( 1 2) i,j ( . 1 2) i,] ( 1 2) ) (23)
Ja; 0L o Ja,0ax,

Z)ZLZ;’" (L ay, ) aZLZ}’" (Aay, ) aZL;j;" (L ay, ay)
Oat,0A 0a,0a, da;
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Now, the elements of ] (0) follow by and then,
rL
Jiu=-E a/\; ) (24)
m 2 Ay n 2,7 4;
m+n -x;e -yje
Ju=-E{ ——+(;-1) )y ———+(a,—1) ] . (25)
R e
It can finally be derived as
m+n o 82Beta(t+l,oc -2)
]11=T+m(0‘1_1)/\_; Fom : li=
a, 0*Beta(t +1,a, - 2)
+ }’l((XZ - 1) A—; azt 2 I[:Z)
aZL > m X>67Axi
Jo=Jn=-Els—=—)=-E : >
12 21 (aA a(xl (;1 _e—lx,
ma; OBeta(t +1,a; — 1)
Ty ot =1
= Te =B oL\ E i yjeflyj _na, OBeta(t+ La, — 1) (26)
13 — /31 — o\ aaz - & 1— e_AyJ - 1 ot It=1>
=
azL:-n-’n m m
]22:_E< ’2J >:_E<__2)__2’
oo o)) o
2y MmN
Jos=J3=-E —a ) =0,
Oda, 0,
oL n\ n
h3=‘E< aﬁ >=_E<7?)=&5
2 2 2

By characteristics of MLEs, we have 6 ~ N, (6,%) for a
large number of # and m, where X is the inverse of the Fisher
information matrix I ().

]22]33_]23]32 ]13]32_]12]33 ]12]23_]13]22
1

sz ]23]31_]21]33 ]11]33_]13]31 ]13]21_]11]23

]21]32_]22]31 ]12]31 _]11]32 ]11]22_]12]21

]22]33 _]12]33 _]13]22

_]21]33 ]11]33_]13]31 ]13]21

2= 51 0)

7]22]31 ]12]31 111]22 7]12]21

(27)

In Lemma 1, we recall the multivariate Delta method in
order to find an asymptotic distribution of RI*%. O

Lemma 1. Let {X,} 2, be asequence of random vector, where
X,, — Ny, 2) in distribution. If the function g is contin-
uous in  the  first  partial  derivatives  and
T= (Vg(y))TZ(Vg(y)) >0, then g(X,) — N(g(u), 1) in
distribution. Lemma 1 is related to the the multivariate Delta
method.

Here, with the help of a theorem well known as the
multivariate Delta method, we find the asymptotic distri-
bution of R, As n — 0o and m — co; then,
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(1 ~|a, aby— ab\T
_(Rl - Rla)b) — N (0, Dloeps o (hay, @) = VR™T ' (L, ay, “2)(VR| ) ’
0y
29
wp _[(OR“" OR™" 9R* 29
1 (nlab  olab R R
1 (R - R™) — N (0, Dl (28) o " da,
2
For all cases, I"' (), a;,q,) is equal and the only dif-
1 /b ference is in VRt
—(R T - Rla’b) — N(0, 1)|,5p In the following, this quantity has been computed for
L % cases a = b, a<b, and a > b, respectively.

where 0%,0%, and ¢} are obtained from the following
equations. In all three cases, Case 1. a="b.

3R i ([(xzbe_w(l - e_M’)ar1 - oczbe_lb(l - e_lb)aﬁarl] x{[l -(1- e‘”’)al] [1 -(1- e_M’)az]})
A (1= (=)= (1= ™))
{albe_lb(l - e_kb)o‘ﬁ1 [1 —(1 - e_Ab)az] + (xzbe_M’(l - e“lb)azil[l —(1 - e_M’)m1 ”»
(1= (™)) (1= ™))
) [1 —(1 - e_M’)m2 = (ay/ (o + (xz))<1 —(1 - e_Ab)aﬁal)]
(-(-™)M-(-e®))
IR _ [(—(oczl(ocl + ocz))<1 —(1 - ef’w)azﬂxl) +(1 - ef’w)%m1 ln(l - eilh) (oty/ () + 0(2))>]
Z (OG-0 )
(-0 {0 (e ) -(1-e 7))

X (30)
(1-(1-e™)™")(-(1- e*Ab)“z))Z
[1 (=™~ (o g + (xz))<1 (1- e—)Lh)Otzﬂxl)]
(1-(1-e™)")(-(1- ef)w)%))z .
ORI [(1 —e ) In(1- ) o/ (0 + @)’ (1 - e*lb)“zﬂxl (o) (@, + a,))in(1 - e )1 - e,%)azml]

- 2

oo (- Y- e ))
(1 =(1=e)") (1 -(1-e)) |- [(1=e ) (1= e ) (1= (1-e)")]
(1-(1=e™)") (1= (1= ™))y
[1 —(1 - ef)‘b)oc2 = (oy/ (0y + ocz))<1 —(1 - e’u’)azﬂxl)].
(1-(= ™)) (1= (1= ™))y

X

Case 2. a<b.
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oRe [anbe (1= )" =g (1= ) (1 (1= e ) ) (1= (1= )]
A (1= (1= )= (1= ™))y

[1—(1—@ M’) —(txz/(oc1+0c2))<1—(1—e_’w) aaaaa >]
(1= (1= )" (- (1= ™))
R [(—(oczl(ocl + ocz))<1 —(1 -e Ab) ) +(1 e M’) S ln(l - eilh)(oczl(oc1 + (xz))>]
o (G-

(31)

orr (1) (1 =) (o (o 4 ) )(1 =€) s (ot (o + ) (1 = &) (1= &)

Case 3. a>b.
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aRl*b . [oclaef}m(l - ef'w)almz_l - oczbeflb(l - eiAb)aZ_l(l —(1 - ef’w)al) + oclaef)‘“(l - ef"“)lxl_l(l - eiAb)az]
A (=0 )= (=)
(1-(1=)") (1= (1= 7)) - [mae (1) (1=(1-)") + anbe (1
(1= (=)= (1= ™))

(ol +a))(1-(1=7)") =((1- )" (1= (1-¢)"))
(= (1= ™)) -0 e)")) ’

OR'*? B [(062/(061 + az)z)(l _(1 - e_/\a)o‘lﬂ’(Z) + (o / (o + 0‘2))(1 - e_m)almz ln(l - e_ha) _((1 -

o (1-(1-e™)")a-(1-e)™))

L)) [ =) (- )= (- )"
(=) (- )

:(al/(oc1+oc2))(17(1 A)) (1-e™)*(1-(1- e-w)“'))]
(1-(-))a- (- ™)) ’

o[t a))(1-(1- ) e ) (1) (1) (1) (- ) (1 (1)) |

S (-]

e_)m)al ln(l - e_M)(l - e_M’)az)]

2 (-0

(== ") (a=(1-e)™)] <[ (1) (1 -

-
)1 -(1- )

)

(-(-
[1 —(1 —e‘f\b)“z = (ay/ (o + ocz))(l _(1 _ e—,\b)azml)]
((1 - (1 - e_/\h)al)(l _ (1 _ e—Ab)az))Z

Equation (28) can be used for finding the confidence
interval of R*?, however, by using of estimates of asymptotic
variance. From this theorem, the (1 —«) x 100 percentage
confidence interval of R** is given by

la,b =lab ~  =lab ~
R E(R = Z1 w201 R + 214201 |lapr

>|a<b’

+ zl—(a/2)03>|a>h'

(33)

S

la,b =la,b ~  slab
R™ € (R —Zi(w2)02> R+ 2

la,b =la.b ~  plab
R™ € <R = Zy_(42)03>R

In the abovementloned equations, G;i=1,2,3 are
similar to cr i=1,2,3 in equation (28) w1th substitution 1,
@, and @, instead of A, a;, and «,.

3. Bayesian Method for Estimation

In this section, we provide a Bayes estimator for R%*, All
priors for &, a,, and A are considered Gamma distribution.
We more exactly denoted

)= (- e )))

(32)
dy oiled
m(a |&,,d T
( 1151 ) r(f)
dy goled
(e, | &y, 2 (34)
( 2152 2) F(E ) o
E §1,-di)
m(A1€s, AP e
( 3 3) 1'*(53)
Now, the joint posterior density of 6 is given by
L(O]x, }’) o« am+fl 1“;&52 Am+n+§;
n
-1 in+2yj+d3 —d,a,—dya,
we \idl j=1 (35)

-] [fe-em]

i=1 j=1

Equation (35) is complicated, and it does not belong to a
known distrinution. Therefore, we use Gibs sampler to
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TaBLE 1: Results for R?*? = 0.50061 and some values of sample sizes n and .

n 15 25 100 40 25 30 20

m 15 25 100 10 45 60 80

R‘“’b 0.500656 0.5006194 0.5006128 0.500839 0.500552 0.50056 0.500506

Bias —-0.00117 -6x107° —-0.0007875 0.000149 -0.00067 0.00082 0.000148

MSE 1.37E-06 3.6x107° 6.2x 1077 2.2E-08 4.4x1077 6.7 % 1077 2x1078

CP 0.00472 0.0033517 0.0016044 0.004563 0.002777 0.002506 0.002723

LCI 0.924 0.92 0.9478 0.9254 0.936 0.9439 0.9577
TABLE 2: Results for R = 0.5 and different values of sample sizes # and m.

n 15 25 100 15 25 100

m 15 25 100 15 25 100

R‘“’b 0.500656 0.5006194 0.5006128 0.500656 0.500619 0.5006128

Bias —-0.00117 -6x107° —-0.0007875 -0.00117 -6x107° —-0.0007875

MSE 1.4x10°° 3.6x107° 6.2x 1077 1.4x10°¢ 3.6x107° 6.20 x 1077

CP 0.00472 0.0033518 0.00160437 0.00472 0.0033518 0.00160437

LCI 0.924 0.92 0.9478 0.924 0.92 0.9478

generate samples from (35). By (35), the full posterior Z}OOOOR[a,b

density functions are R =&l i (38)

10000

—a <d1+ iln(l - e_)tx")>
m+51*1 i=1

L(aylaydx,y)oca) ™ e ‘ ,

- )

-a, <d2+
L(a, | (xl,/\,x,y)ocagﬁfle ] ,
(36)

—A<§xi + Zn:yj +d3>
i=1 j=1

n

L(A @y, @y %,y) oc A" e

-] [fo-em]

i=1 j=1
(37)

It is clear that the posteriors of a; and &, are Gamma
distribution while (37) does not have a known distribution.
Henceforth, we use Metropolis-Hastigs (M-H) algorithm to
generate data from (37). The proposal distribution for M-H
algorithm is considered Gamma with the shape parameter
m+n+&; and scale parameter 3", x; + Y7, y; +d;.

4. Simulation Study

In this section, we conduct a simulation study in order to
survey quality and efficiency of the introduced model and its
estimator. All results are the mean of 10000 iteration. To put
it more clearly, note that we have iterated our simulation
10000 times. In the i iteration, two random samples with
size n and m are generated and R™" is computed. The values
of R demonstrated in the tables are the mean of these
10000 computed estimates as follows:

Four criteria containing bias, Mean Square Error (MSE),
Coverage Probability (CP), and Length of Confidence In-
terval (LCI) are used in order to investigate the effectiveness
and potentialities of the method. The results are demon-
strated in Table 1 for values of parameters «; = 2, a, = 1.6,
A=2,a=2,and b = 2. Also, the results are represented in
Table 2 for values of parameters a; =3, a, =3, A = 1.5,
a=1,and b=3.

As these tables show two criteria MSE and bias are very
small; therefore, our estimation method is appropriate. Also,
values of CP and LCI as cover of probability and length of
confidence interval for R>? represent the same findings.

5. Application

In this section, two real datasets reported by Lawless [9] (data
A) and Linhardt and Zucchini [10] (data B), respectively, are
analyzed. We fit the GE distribution to the two datasets sep-
arately. The first dataset arose in tests on endurance of deep
groove ball bearings and is the number of million revolutions
before failure for each of the 23 ball bearings in the life test. The
other dataset denotes the failure times of the air-conditioning
system of an airplane (in hours).

Gupta and Kundu [7] and Gupta and Kundu [11] studied
the validity of GE distribution for these two datasets, re-
spectively. In Table 3, the Kolmogorov-Smirnov distance
and its corresponding P value are provided for these data
which confirm that the generalized exponential model fits
quite well to both the datasets where data I: 17.88, 28.92, 33,
41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.8,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, and 173.40 and data II: 23, 261, 87, 7, 120, 14,
62,47, 225,71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14,
11, 16, 90, 1, 16, and 52, 95.
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TaBLE 3: Results of goodness-of-fit tests for fitting GE distribution [6]
to two datasets.
Data K-S P value (7]
I 0.1058 0.9592
II 0.1744 0.2926
~ab ) , (8]
TaBLE 4: R and its corresponding C.I for real datasets.
R =05371 R =05662 R" =05126 R™"™ = 0.6843
(0.5125, (0.5231, (0.5037,
9
0.5616) 0.609) 0.5215) (0.5856, 0.7828) (9]
(10]
Using the results previously presented in Section 2, we
can obtain the MLE of parameters «;, «,, and A. Our (1]
computations show that @, =2.8082, @, = 1.|0967, and
Y . =14, .
A =0.5036. For these estimated parameters, R~ and its [12]
corresponding confidence interval have been computed for
some values of a and b, as in Table 4.
(13]

6. Conclusions

In this paper, a new extension of the stress-strength model is
defined, studied, and applied under many particular cases.
The novel stress-strength model is applied under the gen-
eralized exponential distribution. The maximum likelihood
estimator, asymptotic distribution, and Bayesian estimation
are obtained with details. A simulation study along with
analysis of two real datasets is also performed for illustrative
purposes. We hope that the proposed method would enable
engineers and system designers to design better products.
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