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(e goal of this paper is to expand the explicit formula for the solutions of the Extended Skorokhod Problem developed earlier for
a special class of constraining domains in Rn with orthogonal reflection fields. We examine how affine transformations convert
solutions of the Extended Skorokhod Problem into solutions of the new problem for the transformed constraining system. We
obtain an explicit formula for the solutions of the Extended Skorokhod Problem for any Rn- valued càdlàg function with the
constraining set that changes in time and the reflection field naturally defined by any basis. (e evolving constraining set is a
region sandwiched between two graphs in the coordinate system generating the reflection field. We discuss the Lipschitz
properties of the extended Skorokhod map and derive Lipschitz constants in special cases of constraining sets of this type.

1. Introduction

(e Skorokhod Problem (SP) has its origin in [1], Skor-
okhod’s 1961 paper Stochastic equations for diffusions in a
bounded region. It was extended by Tanaka in [2] to simple
multidimensional cases and to more general cases by
Harrison and Reiman in [3] and by Lions and Sznitman in
[4].

Since then, it has been studied extensively in many di-
rections. (e Skorokhod map (SM), a part of its solution,
together with its slightly more general version, the extended
Skorokhod map (ESP), constitute a very important tool in
studying processes whose values are restricted to some
domain by a constraining force acting along directions
specified for each point on the boundary. (ey found the
most significant applications in studying reflected diffusion
processes and queueing networks. Two of the most recent
directions are particularly relevant to this work: the search
for an explicit formula for the solutions and the introduction
of time-dependent barriers. In the one-dimensional case, the
first explicit formulas were developed in [5] for the solutions
of the SP and in [6] for the solutions of the ESP. In addition,
the results in [6] allowed also for the constraining interval to

change in time. Somewhat different explicit formulas were
developed independently by the author in [7] for the so-
lutions of the SP and in [8] for ESP. In both papers, time-
dependent boundaries were considered.

(e Rn-valued case however is obviously much more
complicated. In [9], the author managed to derive an explicit
formula for solutions of the ESP for a special class of time-
dependent constraining domains called strata with or-
thogonal reflection fields. It is those results that we intend to
generalize now onto a much larger class of constraining
domains and more general reflection fields.

In [9], we have introduced a special kind of a con-
straining set called a stratum. We now introduce its gen-
eralization. Let E � e1, e2, . . . , en  be the standard
orthonormal basis and V � v1, v2, . . . , vn  be any basis of
Rn. We will use (x1, x2, . . . , xn)V to represent the vector x �

x1v1 + x2v2 + · · · + xnvn in terms of its coordinates with
respect to V. (e subscript will be omitted when V is the
standard orthonormal basis.

Definition 1. A closed set G in Rn will be called a quasis-
tratum if there is a basis V such that
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where ai ≤ bi for i � 1, 2, . . . , n − 1 and A, B are two real-
valued continuous functions defined on [a1, b1]

× · · · × [an− 1, bn− 1] such that A(x) ≤B(x) for every x. For
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(e superscript will be omitted when V is a standard
orthonormal basis. In the special case when A and B are
constant functions, G will be called a quasiblock.

In two dimensions, a quasiblock is simply a parallelo-
gram, and in three dimensions, it is a parallelepiped. In
general, a quasiblock in Rn is a parallelotope. (is perhaps
not quite popular name was introduced by H.S.M. Coxeter
in [10]. Alternatively, a quasiblock in Rn can be described as
an n-dimensional parallelepiped.

Note that, in the special case, when V is an orthonormal
basis, the quasistratum becomes a stratum and a quasiblock
becomes a block in the sense of Definition 2.1 in [9]. By TV,
we will denote the unique linear transformation
TV: Rn⟶ Rn mapping the standard orthonormal basis
onto V, such that TV(ei) � vi for i � 1, 2, . . . , n. (en,

S
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where G � S([a1, b1] × · · · × [an− 1, bn− 1], [A, B]). Note that
TV can be represented by a matrix whose columns are
v1, v2, . . . , vn. Any invertible affine transformation ofRn can
be represented as a composition of a translation with TV for
some basis V.

Definition 2. A family of pairs (Gt, dt(·)): t≥ 0  will be
called an evolving quasistratum constraining system if there
is a basis V such that Gt � SV([α1t , β1t ] × · · · ×

[αn− 1
t , βn− 1

t ], [At, Bt]), Gt: t≥ 0  is càdlàg with respect to the
Hausdorff distance between constraining sets, and dt sat-
isfies the following conditions.

For any x � (x1, x2, . . . , xn)V on the boundary of Gt,
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Finally, dt(x) � 0 for any x in the interior of Gt.
In the special case when Gt is a quasiblock for every t≥ 0,

the evolving quasistratum constraining system will be called
an evolving quasiblock constraining system.

(roughout this paper, D([0,∞),Rn) will denote the
space of Rn-valued right continuous functions with left
limits, the so-called càdlàg functions, defined on [0,∞). (e

subspace of D([0,∞),Rn) consisting of functions taking
values in G at t � 0 will be denoted by DG([0,∞),Rn).

Remark 1. Let (Gt, dt(·)): t≥ 0  be an orthogonal evolving
stratum constraining system with Gt � S

([α1t , β1t ] × · · · × [αn− 1
t , βn− 1

t ], [At, Bt]), let V be any basis, and
let dV

t (x) � TV(dt(T− 1
V (x))). (en, ((TVGt, dV
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quasistratum constraining system. In particular,

TVGt � S
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Proof. Equation (6) follows immediately from (3). Applying
(4) to both bases V and E leads to TV ∘dt(x) � dV

t ∘TV(x),
which implies (7).

Given a time-dependent constraining system
(Gt, dt(·)): t≥ 0  inRn and anRn-valued càdlàg function ψ
such that ψ(0) ∈ G0, the Extended Skorokhod Problem
(ESP) is to find a pair of functions (ϕ, η), both from
D([0,∞),Rn) such that ϕ � ψ + η, and for every t≥ 0, the
following conditions are satisfied:

ϕ(t) ∈ Gt, (8)

η(t) − η(s) ∈ co ∪ u∈(s,t]du(ϕ(u)) , for every s ∈ [0, t],

(9)

η(t) − η(t− ) ∈ dt(ϕ(t)),

(10)

where η(t− ) is the limit from the left of η at t and co(A) is
the closure of the convex hull of the set A. (e function ϕ is
called the extended Skorokhod map (ESM).

(e ESP was introduced in [11] and is a generalization of
the SP originally introduced in [1] in the real-valued case and
further developed in the multidimensional case in [2]. (e
technical difference is that, in the Skorokhod Problem, the
constraining function η is required to have finite variation.
(e discussions in this paper are restricted to the ESP,
however, corresponding modified versions of all results
could be formulated for the SP as well. (e SP in time-
dependent domains was first studied by Constantini et al. in
[12]. Further work in time-dependent intervals was con-
tinued by Burdzy et al. in [13], by Burdzy et al. in [6], and by
Slominski and Wojciechowski in [14]. More general mul-
tidimensional time-dependent domains were studied by
Nyström and Önskog in [15].

(e explicit formula was first derived in [5] for the
solutions of the SP on [0, a]. Explicit formulas for the so-
lutions of ESP on the time-dependent interval in R were
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developed by Burdzy et al. in [6] and independently by the
author in [8]. In [9], the author further extended the explicit
formulas onto the solutions of ESP on strata in Rn with
orthogonal constraining fields.

(e SM and the ESM are natural tools used to study
reflected deterministic and stochastic processes. In partic-
ular, a lot of research was done in the area of reflected
diffusions, where the solutions of the SP or ESP are applied.
Some of the recent papers include [16–19].

Significant contributions on Lipschitz continuity prop-
erties of the SM came from Dupuis and Ishii in [20] and
Dupuis and Ramanan in [21, 22].

Very useful in working with ESP are projections onto the
constraining domains. In the one-dimensional case, we
define

πa,b �

a, if x≤ a,

x, if a≤x≤ b,

b, if x≥ b.

⎧⎪⎪⎨

⎪⎪⎩
(11)

We can use it then to define a projection on a quasiblock
in Rn. If G � SV([a1, b1] × · · · × [an, bn]), then
πG(x) � (πa1 ,b1(x1), πa2 ,b2(x2), . . . , πan,bn (xn))V. To define a
projection on a quasistratum, we need to extend first
functions A and B onto Rn− 1. An extension of A: [a1, b1] ×

· · · × [an− 1, bn− 1]⟶ R onto Rn− 1, denoted by A will be
defined by

At x
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Similarly, we define B, the extension of B onto Rn− 1.
Finally, we define the projection onto a quasistratum G �

SV([a1, b1] × · · · × [an− 1, bn− 1], [A, B]) by

πG(x) � πa1,b1 x
1
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n− 1

 , π
A x1,...,xn− 1( ),B x1,...,xn− 1( )

x
n

(  
V
.

(13)

(e solution of ESP for ψ is particularly easy to find when
ψ is a piecewise constant function with a finite number of
jumps. □

Example 1. Let V � v1, v2, . . . , vn  be any basis of Rn, let
0 � t0 < t1 < t2 < · · · < tm− 1 < tm �∞, and let Gt � SV

([α1t , β1t ] × · · · × [αn
t , βn

t ]), where αk
t � ak

i and βk
t � bk

i when
ti ≤ t< ti+1 for i � 0, 1, . . . , m − 1, and k � 1, 2, . . . , n.

(en, for any simple function ψ � 
m− 1
i�0 uiI[ti ,ti+1) with

u0 ∈ G0, the ESMwith respect to (Gt, dV
t ) can be constructed

as follows:

ϕ(t) � πGt
(ψ(t)) � u0, for 0≤ t< t1,

ϕ(t) � πGt
ϕ ti− 1(  + ψ ti(  − ψ ti− 1( ( ,

for ti ≤ t< ti+1, i � 1, 2, . . . , m − 1.

(14)

(e projections and the recursive construction shown
above are very well known and easily verifiable. (is tech-
nique has been used in [5, 9, 11, 15, 18, 20, 21, 23].

In [9], we obtained an explicit formula for the solution of
the ESP on an evolving orthogonal stratum constraining

system. In (eorem 2.1 of [9], we have shown that if
(Gt, dt(·)): t≥ 0  is an orthogonal evolving stratum con-
straining system with Gt � S([α1t , β1t ] × · · ·

[αn− 1
t , βn− 1

t ], [At, Bt]), then for any ψ ∈ DG0
([0,∞),Rn) the

solution (ϕ, η) of the evolving ESP on (Gt, dt(·)) is given by

η � − Ξα1 ,β1 ψ1
 , − Ξα2 ,β2 ψ2

 , . . . , − Ξαn,βn ψn
(  ,

ϕ � ψ + η,
(15)

where

αn
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 .
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In the above, for every i � 1, 2, . . . , n,

Ξαi ,βi ψi
 (t) � I τβi ≤ ταi 

I τβi
,∞ 

Hαi ,βi ψi
 (t)

+ I ταi < τβi 
I ταi ,∞[ ]Lαi ,βi ψi

 (t),
(18)

where IA is an indicator function of A,
τα � inf t> 0: α(t)>ψ(t) , τβ � inf t> 0: ψ(t)> β(t) ,

Hα,β(ψ)(t) � sup
0≤s≤t

(ψ(s) − β(s))∧ inf
s≤r≤t

(ψ(r) − α(r)) ,

Lα,β(ψ)(t) � inf
0≤s≤t

(ψ(s) − α(s))∨ sup
s≤r≤t

(ψ(r) − β(r)) .

(19)

It is our main goal here to extend the explicit formula
onto much more general constraining domains by dropping
the orthogonality condition.

2. Transformations of Constraining Systems

We now examine how the solutions of an ESP are affected by
affine mappings of Rn.

Proposition 1. Let (Gt, dt(·)): t≥ 0  be an orthogonal
evolving stratum constraining system, let T: Rn⟶ Rn be an
invertible affine transformation, and let T0 � T − T(0) be its
linear transformation component. For any ψ ∈
DG0

([0,∞),Rn), if (ϕ, η) is a solution of ESP for ψ with
respect to (Gt, dt(·)): t≥ 0 , then (Tϕ, T0η) is the unique
solution of ESP for Tψ with respect to (TGt, dV

t (·)): t≥ 0 ,
where V � T0(E) and E is the standard orthonormal basis.

Proof. Let ψ ∈ DG0
([0,∞),Rn), let (ϕ, η) be the solution of

ESP for ψ with respect to (Gt, dt(·)): t≥ 0 , and let T be an
affine transformation. Since ϕ(t) ∈ Gt, it follows immedi-
ately that Tϕ(t) ∈ TGt for every t≥ 0 and so (8) holds.

Let 0≤ s≤ t. Since η(t) − η(s) ∈ co[∪ u∈(s,t]du(ϕ(u))],
we have
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T0η(t) − T0η(s) � T0(η(t) − η(s)) ∈ T0 co ∪ u∈(s,t]du(ϕ(u))   � co T0 ∪ u∈(s,t]du(ϕ(u))  

� co ∪ u∈(s,t]T0 du(ϕ(u))(   � co ∪ u∈(s,t]d
V
u (Tϕ(u)) ,

(20)

where V � T0(E), by Remark 1. (us, (9) holds for every
s ∈ [0, t].

Finally, for t> 0, we have

T0η(t) − T0η(t− ) � T0[η(t) − η(t− )]

∈ T0 dt(ϕ(t))  � T0 dt(ϕ(t))  � d
V
t (Tϕ(t)).

(21)

(us, (Tϕ, T0η) is a solution of ESP for Tψ. Suppose
there is another solution (ϕ, η) of ESP for Tψ with respect to
(TGt, dV

t (·)): t≥ 0 . (en, (T− 1ϕ, T− 1
0 η) is a solution of ESP

for ψ with respect to (Gt, dt(·)): t≥ 0 .
Indeed, we will show that (T− 1ϕ, T− 1

0 η) satisfies condi-
tions (8)–(10).

Since Tψ � ϕ + η, we have T− 1ϕ + T− 1
0 η � T− 1

0 (ϕ − T

(0)) + T− 1
0 η � T− 1

0 (ϕ + η − T(0)) � T− 1(ϕ + η) � T− 1 (Tψ)

� ψ.
Since ϕ(t) ∈ TGt, it follows that T− 1ϕ(t) ∈ Gt for every

t≥ 0 and so (8) holds.
Since η(t) − η(s) ∈ co[∪ u∈(s,t]d

V
u (ϕ(u))] for every s ∈

[0, t], we have
T

− 1
0 η(t) − T

− 1
0 η(s) � T

− 1
0 (η(t) − η(s)) ∈ T

− 1
0 co ∪ u∈(s,t]d

V
u (ϕ(u))  

� co ∪ u∈(s,t]T
− 1
0 d

V
u (ϕ(u))  

� co ∪ u∈(s,t]du T
− 1ϕ(u)  ,

(22)

and so (9) holds.
Finally, since η(t) − η(t− ) ∈ dV

t (ϕ(t)), we get that T− 1
0 η

(t) − T− 1
0 η(t− ) � T− 1

0 (η(t) − η(t− )) ∈ T− 1
0 (dV

t (ϕ(t))) � dt

(T− 1ϕ(t)), which shows that (10) holds as well. By (eorem
2.1 of [9], the solution to the evolving ESP with respect to
(Gt, dt(·)): t≥ 0  is unique. (erefore, (T− 1

ϕ, T− 1
0 η) � (ϕ, η), which means that (Tϕ, T0η) � (ϕ, η) and

so the solution (Tϕ, T0η) is unique.
(e above result suggests that, through the use of affine

transformations, the orthogonal evolving constraining sys-
tems can generate a much larger class of constraining sys-
tems. Moreover, the affine transformation provides the link
between the solutions of ESP with respect to the image
constraining system and the solutions of ESP with respect to
the original orthogonal constraining system. □

Definition 3. A time-dependent constraining system
(Gt,

dt(·)): t≥ 0  in Rn is generated by an orthogonal
constraining system, if there is an orthogonal evolving
stratum constraining system (Gt, dt(·)): t≥ 0  and an affine
mapping T: Rn⟶ Rn such that, for every ψ ∈
DG0

([0,∞),Rn), if (ϕ, η) is the solution of ESP for ψ with
respect to (Gt, dt(·)): t≥ 0 , then (T ∘ ϕ, T0 ∘ η) is the so-
lution of ESP for T ∘ψ with respect to
T(Gt), T0(dt(T− 1

0 (·))): T≥ 0 . Such a mapping will be re-
ferred to as preserving the solutions of ESP.

(e next results will show that every quasistratum
constraining system is generated by an orthogonal con-
straining system.

Proposition 2. Let (Gt,
dt): t≥ 0  be an evolving quasis-

tratum constraining system inRn, let V be the associated basis
as described in Definition 2, and let TV: Rn⟶ Rn be the
linear mapping such that TV(ei) � vi for i � 1, 2, . . . , n. <en,
(Gt,

dt): t≥ 0  is generated by an orthogonal evolving
stratum constraining system and TV is preserving the solu-
tions of the ESP.

Proof. By Definition 2, there are functions αi ≤
βi, i � 1, 2, . . . , n − 1, and A≤B such that, for every t≥ 0,
Gt � GV

t � SV([α1t , β1t ] × · · · × [αn− 1
t , βn− 1

t ], [At, Bt]) and
dt(x) � dV

t (x) as defined in (4).
Let Gt � S([α1t , β1t ] × · · · × [αn− 1

t , βn− 1
t ], [At, Bt]) and let

dt � dE
t be the associated orthogonal constraining field.

(en, Gt � TV(Gt) and dV
t (x) � TV(dt(T− 1

V (x))) for every
x, as seen in Remark 1. □

3. Explicit Solutions of ESP

(e relationship between the solutions of the ESP on an
evolving orthogonal constraining system (Gt, dt) and the
corresponding solutions of the ESP on a constraining system
(Gt,

dt) generated by it as described in Propositions 1 and 2
permits now an extension of the explicit formulas (15).

Theorem 1. Let (G, d) be an evolving quasistratum con-
straining system in Rn; that is, there is a basis
V � v1, v1, . . . , vn , such that Gt � SV([α1t , β1t ] × · · ·

×[αn− 1
t , βn− 1

t ], [At, Bt]) and dt � dV
t , for every t≥ 0. <en, for

any ψ ∈ DG0
([0,∞),Rn), the evolving ESP on (G, d) has the

unique solution (ϕ, η) given by

η � TV − Ξα1 ,β1 ψ1
 , − Ξα2 ,β2 ψ2

 , . . . , − Ξαn,βn ψn
(  ,

ϕ � ψ + η,
(23)

where TV: Rn⟶ Rn is the linear transformation defined by
TV(ei) � vi for every i � 1, 2, . . . , n,

ψ(t) � ψ1
(t),ψ2

(t), . . . ,ψn
(t)  � TV( 

− 1

ψ1
(t), ψ2

(t), . . . , ψn
(t) 

V
  � TV( 

− 1
(ψ(t)),

(24)

αn
t � At ψ1

(t)− Ξα1t ,β1t
,ψ2

(t)− Ξα2t ,β2t
, . . . ,ψn− 1

(t)− Ξαn− 1
t ,βn− 1

t
 ,

(25)

βn
t � Bt ψ1

(t) − Ξα1t ,β1t
,ψ2

(t)− Ξα2t ,β2t
, . . . ,ψn− 1

(t)− Ξαn− 1
t ,βn− 1

t
 .

(26)
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In the above, for every i � 1, 2, . . . , n,

Ξαi ,βi ψi
 (t) � I τβi≤ταi 

I τβi
,∞ 

Hαi ,βi ψi
 (t)

+ I ταi<τβi 
I ταi ,∞[ )Lαi ,βi ψi

 (t),
(27)

where ταi � inf t> 0 | αi(t) − ψi(t)> 0 , τβ
i

� inf t> 0 |ψi

(t) − βi(t)> 0}, while

Hα,β(ψ)(t) � sup
0≤s≤t

(ψ(s) − β(s))∧ inf
s≤r≤t

(ψ(r) − α(r)) ,

Lα,β(ψ)(t) � inf
0≤s≤t

(ψ(s) − α(s))∨ sup
s≤r≤t

(ψ(r) − β(r)) .

(28)

Proof. Let (G, d) be an evolving quasistratum constraining
system in Rn. By Proposition 2, there is a basis V of Rn such
that Gt � TV(Gt) and dt(x) � dV

t (x) � TV(dt(T− 1
V (x))),

where (Gt, dt) is an orthogonal stratum constraining system
having a representation S([α1t , β1t ] × · · · × [αn− 1

t ,

βn− 1
t ], [At, Bt]). Let ψ(t) � (ψ1(t),ψ2(t), . . . ,ψn(t)) �

T− 1
V (ψ(t)). (en, ψ ∈ DG0

([0,∞),Rn) and by (eorem 2.1
in [9], as shown in (15), the ESP for ψ on (G, d) has a unique
solution (ϕ, η) given by

η � − Ξα1 ,β1 ψ1
 , − Ξα2 ,β2 ψ2

 , . . . , − Ξαn,βn ψn
(  ,

ϕ � ψ + η,
(29)

where αn, βn are defined by (16), (17), and Ξαi ,βi is defined by
(18) for i � 1, 2, . . . , n. Hence, by Proposition 1, (TVϕ, TVη)

is a solution of ESP for ψ on (G, d). (e uniqueness of (ϕ, η)

follows immediately from the uniqueness of (ϕ, η). □

4. Lipschitz Properties

Lipschitz continuity is the most desirable property of the
ESM. Unfortunately, establishing the best Lipschitz condi-
tions tends to get very technical. In this paper, the discussion
of this property will be limited to quasiblocks under two
different norms.

Given any invertible linear operator A: Rn⟶ Rn and
the associated basis V � v1, v1, . . . , vn , where vi �

A(ei), i � 1, 2, . . . , n, we define a V norm on Rn by

‖x‖V � A
− 1

(x)
����

����. (30)

Note that ‖x1v1 + x2v2 + · · · + xnvn‖V � ‖x1e1 + x2e2 +

· · · + xnen‖. (is norm induces a corresponding norm on
D([0,∞),Rn) defined by

‖ψ‖V � sup
t≥0

‖ψ(t)‖V, forψ ∈ D [0,∞),R
n

( . (31)

Some easily obtainable Lipschitz conditions for solutions
of the ESP on evolving quasistratum and quasiblock con-
straining systems are inherited from the evolving orthogonal
stratum or block constraining systems via the linear
transformation.

Proposition 3. Let (G, d) be an evolving quasiblock con-
straining system in Rn that can be represented as an image of
an orthogonal evolving block constraining system via an
invertible linear transformation TV, where V is the image of
the orthonormal basis through TV. If (ϕ1, η1) and (ϕ2, η2) are
the solutions of the ESP for ψ1 and ψ2 with respect to (G, d),
then the following Lipschitz conditions hold:

η1 − η2
����

����V
≤

�
n

√
ψ1 − ψ2

����
����V

, (32)

ϕ1 − ϕ2
����

����V
≤ (1 +

�
n

√
) ψ1 − ψ2
����

����V
. (33)

Proof. Let (G, d) be an evolving quasiblock constraining
system in Rn. (en, by Proposition 2, there is a basis V and
an evolving block constraining system (G, d) whose image
through TV is (G, d). Let ψ1 � T− 1

V ∘ ψ1 and ψ2 � T− 1
V ∘ ψ2.

(en, by Proposition 1, the solutions of the ESP for ψ1 and
ψ2 with respect to (G, d) are (ϕ1, η1) and (ϕ2, η2), where
ϕi � T− 1

V ∘ ϕi, ηi � T− 1
V ∘ ηi for i � 1, 2. By Proposition 3.1 in

[9],

η1 − η2
����

����≤
�
n

√
ψ1 − ψ2

����
����. (34)

(erefore,

η1 − η2
����

����V
� sup

t≥0
η1(t) − η2(t)

����
����V

� sup
t≥0

TV η1(t)(  − TV η2(t)( 
����

����V
� sup

t≥0
TV η1(t) − η2(t)( 

����
����V

� sup
t≥0

η1(t) − η2(t)
����

���� � η1 − η2
����

����≤
�
n

√
ψ1 − ψ2

����
���� �

�
n

√
sup
t≥0

ψ1(t) − ψ2(t)
����

����

�
�
n

√
sup
t≥0

‖ TV ψ1(t) − ψ2(t)( 
����

����V
�

�
n

√
sup
t≥0

TV ψ1(t)(  − TV ψ2(t)( 
����

����V

�
�
n

√
sup
t≥0

ψ1(t) − ψ2(t)
����

����V
�

�
n

√
ψ1 − ψ2

����
����V

,

(35)
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and so (32) is proven. (e Lipschitz condition (33) follows
now immediately via the triangle inequality:

ϕ1 − ϕ2
����

����V
� ψ1 − ψ2 + η1 − η2

����
����V

≤ ψ1 − ψ2
����

����V
+ η1 − η2

����
����V

� (1 +
�
n

√
) ψ1 − ψ2
����

����V
.

(36)

(e Lipschitz constants in Proposition 3 are tight as the
Lipschitz constant in Proposition 3.1 in [9] is tight.

More useful for applications of the ESM is Lipschitz
continuity in the standard norm on D([0,∞),Rn) gener-
ated by the Euclidean norm on Rn.

We shall use ‖T‖ to denote the norm of T as a linear
operator. (us,

‖T‖ � sup
‖x‖≤1

‖Tx‖ � inf K: ‖Tx‖≤K‖x‖ for all x{ }. (37)
□

Remark 2. Let T: Rn⟶ Rn be a linear transformation
such that Tei � vi, i � 1, 2, . . . , n. (en, for every
x � (x1, x2, . . . , xn) ∈ Rn,



n

i�1
x

ivi

���������

���������
≤ ‖T‖‖x‖. (38)

Proof



n

i�1
x

ivi

���������

���������
� 

n

i�1
x

i
T ei( 

���������

���������
� ‖Tx‖≤ ‖T‖‖x‖. (39)

One easy way to obtain a Lipschitz constant for the ESM
is to use the operator norms of TV and T− 1

V . □

Proposition 4. Let (G, d) be an evolving quasiblock con-
straining system in Rn that can be represented as an image of
an orthogonal block constraining system via an invertible
linear transformation T and let V be the image of the or-
thonormal basis through T. If (ϕ1, η1) and (ϕ2, η2) are the
solutions of the ESP for ψ1 and ψ2 with respect to (G, d), then
the following Lipschitz conditions hold:

η1 − η2
����

����≤
�
n

√
· ‖T‖ · T

− 1����
���� · ψ1 − ψ2

����
����, (40)

ϕ1 − ϕ2
����

����≤ 1 +
�
n

√
· ‖T‖ · T

− 1����
����  ψ1 − ψ2

����
����. (41)

Proof. Let ψi � T− 1ψi, ϕi � T− 1ϕi, and ηi � T− 1ηi for
i � 1, 2. For every t≥ 0, by Proposition 3.1 in [9],

η1(t) − η2(t)
����

���� � Tη1(t) − Tη2(t)
����

���� � T η1(t) − η2(t)( 
����

����≤ ‖T‖ · η1(t) − η2(t)
����

����

≤ ‖T‖ ·
�
n

√
· sup
0≤t≤∞

ψ1(t) − ψ2(t)
����

���� � ‖T‖ ·
�
n

√
· sup
0≤t≤∞

T
− 1 ψ1(t) − ψ2(t)( 

����
����

≤
�
n

√
· ‖T‖ · T

− 1����
���� sup
0≤t≤∞

ψ1(t) − ψ2(t)
����

���� �
�
n

√
· ‖T‖ · T

− 1����
���� · ψ1 − ψ2

����
����,

(42)

which ends the proof of (40). Now, we obtain (41) by triangle
inequality. Indeed, for any t≥ 0,

ϕ1(t) − ϕ2(t)
����

����≤ η1(t) − η2(t)
����

���� + ψ1(t) − ψ2(t)
����

����≤
�
n

√
· ‖T‖ · T

− 1����
���� · ψ1 − ψ2

����
���� + ψ1 − ψ2

����
����

≤ 1 +
�
n

√
· ‖T‖ · T

− 1����
����  ψ1 − ψ2

����
����,

(43)

ending the proof of (41).
(e Lipschitz constants in Proposition 4 are not tight as

will be seen in Example 3. Unfortunately, the author’s at-
tempts to derive the best constants seem to produce inad-
vertently very technical results. (e Lipschitz constant
derived for the ESM with an orthogonal evolving stratum
constraining system in (eorem 4.1 of [9] was tight but it
was not simple and rather technical to derive.(at is why the
results in this section are limited to quasiblock restraining
systems. Still, we are going to improve the results of
Proposition 4 and produce smaller constants.

We shall need some technical inequalities involving
vectors and angles between vectors. We will use ∠(x, y) to
denote the smallest angle between vectors x and y. (us, if
∠(x, y) � θ, then 0≤ θ≤ π. □

Lemma 1. If x, y ∈ Rn and ∠(x, y) � θ, where 0< θ< π, then

‖x − y‖≤ tan
θ
2

· ‖x + y‖. (44)

Furthermore, if ‖x‖ � ‖y‖, then

‖x − y‖ � tan
θ
2

· ‖x + y‖. (45)

Proof. Because the two independent vectors span a two-
dimensional space, it is enough to prove (44) in R2. We
can also assume without loss of generality that x � (r, 0)

for some r> 0 and y � (cos θ, sin θ), where 0< θ< π.
(en, ‖x + y‖2 � ‖(r + cos θ, sin θ)‖2 � r2 + 2r cos θ + 1 and
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‖x − y‖2 � ‖(r − cos θ, − sin θ)‖2 � r2 − 2r cos θ + 1. We de-
fine a function g: (0,∞)⟶ (0,∞) by

g(r) �
‖x − y‖

2

‖x + y‖
2 �

r
2

− 2r cos θ + 1
r
2

+ 2r cos θ + 1
. (46)

A quick analysis of its derivative

g′(r) �
4 cos θ r

2
− 1 

r
2

+ 2r cos θ + 1 
2, (47)

shows that the maximum value of g(r) occurs when r � 1
and g(1) � tan2(θ/2). Since 0< θ< π, tan(θ/2)> 0, and
therefore,

max
‖x − y‖

‖x + y‖
: ∠(x, y) � θ  �

����

g(1)



� tan
θ
2
. (48)

We need to introduce now some necessary notations. Let
Λ be the set of all permutations λ: 1, 2, . . . ,{

n}⟶ 1, 2, . . . , n{ }. Given any sequence of n independent
vectors v1, v2, . . . , vn and any λ ∈ Λ, we define

C
λ
k(V) � tan

1
2
∠ 

k

i�1
vλ(i), 

n

i�k+1
vλ(i)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

for k � 1, 2, . . . , n − 1,

C
λ
k(V) � 1, for k � n.

(49)

Finally, we set

CV � max
1≤k≤n

max
λ∈Λ

C
λ
k(V). (50)

□

Lemma 2. For any sequence v1, v2, . . . , vn of independent
vectors in Rn,

max 
n

i�1
tivi

���������

���������
: − 1≤ ti ≤ 1, i � 1, 2, . . . , n

⎧⎨

⎩

⎫⎬

⎭ � CV 

n

i�1
vi

���������

���������
.

(51)

Proof. Let g: [− 1, 1]n⟶ [0,∞) be a function defined by
g(t1, t2, . . . , tn) � ‖ 

n
i�1 tivi‖. (en, g is a convex nonneg-

ative function and it attains maximum value at some ex-
treme point of [− 1, 1]n; that is, there are n values ε1, ε2, . . . , εn

such that εi ∈ − 1, 1{ } for i � 1, 2, . . . , n and

max g t1, t2, . . . , tn( : ti ∈ [− 1, 1], i � 1, 2, . . . , n  � g ε1, ε2, . . . , εn
 .

(52)

Let k be the number of coordinates of (ε1, ε2, . . . , εn) that
are positive and let λ be a permutation in Λ such that ελ(1) �

ελ(2) � · · · � ελ(k) � 1 while ελ(i) � − 1 for i � k + 1, . . . , n.
(en, by Lemma 1,



n

i�1
ελ(i)vλ(i)

���������

���������
� 

k

i�1
vλ(i) − 

n

i�k+1
vλ(i)

���������

���������
≤C

λ
k(V) 

n

i�1
vλ(i)

���������

���������
≤C(V) 

n

i�1
vi

���������

���������
.

(53)

Lemma 3. Let x, y be two independent vectors in Rn and let
∠(x, y) � θ. <en,

max ‖x‖, ‖y‖ ≤
1

sin(θ)
‖x + y‖. (54)

Proof. We can assume without loss of generality that n � 2.
Consider the parallelogram with vertices at 0, x, y and x + y.
In any parallelogram, the distance between the parallel lines
through the opposite sides cannot exceed the length of each
diagonal. (e distance from x to the line through 0 and y is
‖x‖sin θ and so it cannot exceed ‖x + y‖. Similarly, the
distance from y to the line through 0 and x is ‖y‖sin θ and it
cannot exceed ‖x + y‖. (erefore, ‖x‖≤ (‖x + y‖/sin θ) and
‖y‖≤ (‖x + y‖/sin θ).

Given a sequence of n independent vectors
V � v1, v2, . . . , vn , let Vj denote the linear subspace
spanned by vectors V\ vj , let Kj � sin∠(vj, Vj), and let
KV � min1≤j≤nKj. It will be also convenient to use the
following notations: v � (v/‖v‖) and V � v1, v2, . . . , vn . It
is important to notice two things. First,

KV ≤Kj � sin ∠ vj, Vj  ≤ sin ∠ vj, 
n

i�1
vi − vj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

for every j � 1, 2, . . . , n.

(55)
Second, KV depends only on the directions of vectors in

V and not on their magnitudes, that is,
KV � KV. (56)

□

Lemma 4. Let v1, v2, . . . , vn be independent vectors in Rn.
<en, for every j � 1, 2, . . . , n,

vj
�����

�����≤
1

KV



n

i�1
vi

���������

���������
. (57)

Proof. Let j ∈ 1, 2, . . . , n{ }. Applying Lemma 3 to vectors vj
and 

n
i�1 vi − vj and using (55) and (56), we can see that

vj
�����

�����≤
1

Kj

vj + 
n

i�1
vi − vj

���������

���������
≤

1
KV



n

i�1
vi

���������

���������
. (58)

□

Theorem 2. Let (G, d) be an evolving quasiblock con-
straining system in Rn that can be represented as an image of
an orthogonal evolving block constraining system via an
invertible linear transformation T and let V be the image of
the orthonormal basis through T. If (ϕ1, η1) and (ϕ2, η2) are
the solutions of the ESP for ψ1 and ψ2 with respect to (G, d),
then the following Lipschitz conditions hold

η1 − η2
����

����≤LV · ψ1 − ψ2
����

����, (59)

ϕ1 − ϕ2
����

����≤ 1 + LV(  ψ1 − ψ2
����

����, (60)

where
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LV �
CV

KV



n

i�1
vi

���������

���������
. (61)

Proof. For any t≥ 0,

η1(t) − η2(t)
����

���� � 
n

i�1
ηi
1(t) − ηi

2(t) vi

���������

���������

� 

n

i�1
ηi
1(t) − ηi

2(t)  vi

����
���� ·

vi

vi

����
����

���������

���������
,

(62)

where, by (3.2) of [9], for every i � 1, 2, . . . , n,

ηi
1(t) − ηi

2(t)


 · vi

����
����≤ max

1≤i≤n
max
0≤s≤t

ψi
1(s) − ψi

2(s)


 · vi

����
����.

(63)

(us, by Lemma 2,

η1(t) − η2(t)
����

����≤ max
1≤i≤n

max
0≤s≤t

ψi
1(s) − ψi

2(s)


 · vi

����
����  · CV · 

n

i�1

vi

vi

����
����

���������

���������

� max
0≤s≤t

max
1≤i≤n

ψi
1(s) − ψi

2(s)


 · vi

����
����   · CV · 

n

i�1
vi

���������

���������
.

(64)

By Lemma 4, for every 0≤ s≤ t,

max
1≤i≤n

ψi
1(s) − ψi

2(s)


 · vi

����
���� ≤

1
KV



n

i�1
ψi
1(s) − ψi

2(s) vi

���������

���������

�
1

KV

ψ1(s) − ψ2(s)
����

����.

(65)
(erefore, for every t≥ 0,

η1(t) − η2(t)
����

����≤ max
0≤s≤t

CV

KV



n

i�1
vi

���������

���������
· ψ1(s) − ψ2(s)
����

����

�
CV

KV



n

i�1
vi

���������

���������
· ψ1 − ψ2
����

����,

(66)

which ends the proof of (59).
To prove (60), we use (59) and the triangle inequality:
ϕ1 − ϕ2

����
���� � ψ1 − ψ2 + η1 − η2

����
����≤ ψ1 − ψ2

����
���� + η1 − η2

����
����

≤ 1 +
CV

KV



n

i�1
vi

���������

���������
⎛⎝ ⎞⎠ ψ1 − ψ2

����
����.

(67)

Remark 3. (e Lipschitz constants of (eorem 2 depend
only on the angles defining the shape of the quasiblock and
not on its size.

Remark 4. In the special case of an orthogonal block con-
straining system, all the relevant angles are right angles and
therefore CV � 1 and KV � 1.(us, the Lipschitz constant in

(59) becomes ‖ 
n
i�1 vi‖ �

�
n

√
matching the result of Prop-

osition 3.1 in [9].
(e following example will show that the Lipschitz

constant LV in (59) is tight in R2. Essentially, it will dem-
onstrate that for any quasiblock constraining system in R2,
there are functions ψ1 and ψ2 such that
‖η1 − η2‖ � LV‖ψ1 − ψ2‖.

Example 2. Let (G, d) be an arbitrary nonevolving quasi-
block constraining system in R2. (en, G is a parallelogram.
Let α be the obtuse angle in G and let α � π − α. We can
assume without the loss of generality that (G, d) is generated
by vectors v1 � ae1 and v2 � b(cos αe1 + sin αe2). More
specifically, we assume that G has vertices at 0, v1, v2, and
v1 + v2.(en, CV � max tan(α/2), 1{ } � tan(α/2) � cot(α/2),

KV � sin α � sin α � 2 sin(α/2)cos(α/2), and ‖v1 + v2‖ � 2
cos(α/2) � 2 sin(α/2) and so LV � csc(α/2).

Let ψ1 � − r(cot αv1I[0,1) + csc αv1I[1,∞)) and ψ2 � − r

(csc αv2I[0,1) + cot αv2I[1,∞)), where r<min − a tan α, b{

cot(α/2)}. (en, using projections as in Example 1, we can
evaluate ϕ1 and ϕ2.

Since r< − a tan α, we have that ψ1(0) � − r cot αv1 ∈ G

and so ϕ1(0) � πG
(ψ1(0)) � ψ1 (0) � − r cot αv1. On the

other hand, ϕ2(0) � πG
(ψ2(0)) � 0. (erefore, η1(0)

� ϕ1(0) − ψ1(0) � 0 and η2(0) � ϕ2(0) − ψ2(0) � r csc αv2.
Since ϕ1(0) + ψ1(1) − ψ1(0) � ψ1(1) � − r csc αv1 ∉ G,

ϕ1(1) � πG
(− r csc αv1) � 0 and η1(1) � − ψ1(1) � r csc αv1.

Since r< b cot(α/2), we have that ϕ2(0) + ψ2(1) − ψ2
(0) � r(csc αv2 − cot αv2) � r tan(α/2)v2 ∈ G, ϕ2(1) � πG
(r tan(α/2)v2) � r tan(α/2)v2, and η2(1) � ϕ2(1)

− ψ2(1) � r csc αv2.
Now, ‖η1(0) − η2(0)‖ � ‖r csc αv2‖ � r csc α and ‖η1 (1)

− η2(1)‖ � ‖r csc αv1 − r csc αv2‖ � r‖(tan(α/2), − 1)‖ � r sec
(α/2) � r csc(α/2). (us, ‖η1 − η2‖ � rmax csc α, csc{

(α/2)} � r csc(α/2). On the other hand, ‖ψ1(0) − ψ2(0)‖ �

‖ − r cot αv1 + r csc αv2‖ � r‖e2‖ � r and ‖ψ 1(1) − ψ2(1)‖ �

‖ − r csc αv1 + r cot α v2‖ � r‖(− sin α, cos α)‖ � r. (ere-
fore, ‖ψ1 − ψ2‖ � r and so ‖η1 − η2‖ � csc( α/2)‖ψ1 − ψ2‖.

In other words, in this case, ‖η1 − η2‖ � LV‖ψ1 − ψ2‖.
Because G represents an arbitrary quasiblock constraining
system in R2, LV is a tight Lipschitz constant in R2.

(e next example will demonstrate that the Lipschitz
constant in (eorem 2 is not only smaller than the one in
Proposition 4 but also exhibits other desirable qualities.

Example 3. We consider a simple example of a quasiblock
constraining system in R2, where G � (x1 +

(1/2)x2, (
�
3

√
/2)x2): 0≤x1 ≤ 1, 0≤ x2 ≤ 1}. In other words,

(G, d) is generated by vectors v1 � e1 and v2 � (1/2)e1 +

(
�
3

√
/2)e2 or by a linear transformation:

T �

1
1
2

0
�
3

√

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (68)

(en, ∠(v1, v2) � (π/3), Cλ
1(V) � tan(π/6) � (

�
3

√
/3),

Cλ
2(V) � 1 for any λ and so CV � 1;
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KV � sin(π/3) � (
�
3

√
/2) and ‖v1 + v2‖ � ‖((3/2),

(
�
3

√
/2))‖ �

�
3

√
. (us, the Lipschitz constant given in (59) is

LV �
�
3

√
/(

�
3

√
/2) � 2.

We can compare it to the Lipschitz constant in (40) of
Proposition 4. Since

‖T‖ � max
‖x‖≤1

‖Tx‖ � max
0≤α≤2π

‖T(cos α, sin α)‖

� max
0≤α≤2π

cos α +
1
2
sin α,

�
3

√

2
sin α 

��������

��������
,

(69)

it is enough to maximize the function

g(α) � cos α +
1
2
sin α 

2
+

�
3

√

2
sin α 

2

� sin α cos α + 1.

(70)

Since max g(α): 0≤ α≤ 2π  � g(π/4) � (3/2), we get
‖T‖ �

�
6

√
/2.

(e inverse of T is defined by

T
− 1

x
1
, x

2
  � x

1
−

�
3

√

3
x
2
,
2

�
3

√

3
x
2

 . (71)

A similar analysis to the above shows that

T
− 1����

���� � max
0≤α≤2π

T
− 1

(cos α, sin α)
����

����

� max
0≤α≤2π

cos α −

�
3

√

3
sin α,

2
�
3

√

3
sin α 

��������

��������

� cos
2π
3

−

�
3

√

3
sin

2π
3

,
2

�
3

√

3
sin

2π
3

 

��������

��������
�

�
2

√
.

(72)
Hence, the Lipschitz constant described in (40) is�

n
√

· ‖T‖ · ‖T− 1‖ �
�
6

√
.

(us, for this particular quasiblock constraining system,
(eorem 2 provides a better Lipschitz constant than
Proposition 4. Moreover, as pointed out in Remark 3, the
constant in Proposition 4 depends also on the size of vectors
in V. In fact, let us examine what happens when ‖v1‖
changes. We consider now a quasiblock constraining system
generated by V � re1, (1/2)e1 + (

�
3

√
/2)e2 , where r> 0.

(is time

Tx � T x
1
, x

2
  � rx

1
+
1
2
x
2
,

�
3

√

2
x
2

 ,

T
− 1x � T

− 1
x
1
, x

2
  �

1
r
x
1

−

�
3

√

3r
x
2
,
2

�
3

√

3
x
2

 .

(73)

(erefore,

‖T‖≥ ‖T(1, 0)‖ � ‖(r, 0)‖ � r,

T
− 1����

����≥ T
− 1

(0, 1)
����

���� � 0,
2

�
3

√

3
 

��������

��������
�
2

�
3

√

3
,

(74)

and so the Lipschitz constant described in (40) of Propo-
sition 4 is

�
n

√
· ‖T‖ · ‖T− 1‖≥

�
2

√
· r · (2

�
3

√
/3)> r. In other

words, this Lipschitz constant increases without bounds as
the magnitude of v1 increases. On the other hand, the
Lipschitz constant given in (59) remains unchanged.
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