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In this paper, we introduce the R package NetDA, which aims to deal withmulticlassi�cation with network structures in predictors
accommodated. To address the natural feature of network structures, we apply Gaussian graphical models to characterize
dependence structures of the predictors and directly estimate the precision matrix. After that, the estimated precision matrix is
employed to linear discriminant functions and quadratic discriminant functions. �e R package NetDA is now available on
CRAN, and the demonstration of functions is summarized as a vignette in the online documentation.

1. Introduction

Multiclassi�cation, known as a classi�cation problem that
the number of classes is greater than two, is a great challenge
in data science. In supervised learning, discriminant analysis
has been a useful method to do classi�cation. In the con-
ventional method (e.g., Hastie et al. [1]; Section 4.3), linear
discriminant functions, which are formulated in terms of
mean vectors and the inverse of covariance matrices of the
predictors, are used to classify subjects. In addition, some
advanced methods have been proposed to address complex
settings in the past literature. For example, Guo et al. [2]
discussed the LDAmethod and its application in microarray
data analysis. Safo and Ahn [3] studied generalized sparse
linear discriminant analysis for multilabel responses. In the
presence of high-dimensional predictors, several advanced
approaches have also been explored (e.g., Clemmensen et al.
[4]; Witten and Tibshirani [5).

However, network structures of predictors, which re�ect
(pairwise) dependence among predictors, are ubiquitous in
data analysis [6]. In the recent developments, Chen et al. [7]
proposed a graphical-based logistic regression model. He
et al. [8] proposed surrogate variables that were transformed
from network structures and implemented them to the
support vector machine. Regarding the framework of

discriminant analysis, Cai et al. [9] and Liu et al. [10] de-
veloped graph-based linear discriminant analysis, but their
approaches are restricted to binary responses. Moreover, for
general data analysts, it is important for them to directly
implement existing software and do data analysis. However,
rare software related to classi�cation with network structure
accommodated has been available. While some R packages
related to discriminant analysis exist, such as MASS, spar-
seLDA, and penalizedLDA, they are not able to handle
network structures in predictors.

Motivated by these concerns and to address these
challenges, we follow the strategy proposed by Chen [11] and
develop an R package, which is called NetDA. Under the
normality assumption for predictors, we apply the graphical
lasso method to estimate precision matrices and the cor-
responding network structures for the predictors. Since
precision matrices are the inverse of covariance matrices, it
motivates us to directly implement them to linear/quadratic
discriminant functions. �is strategy is di£erent from the
conventional linear discriminant analysis that simply em-
ploys empirical estimates of covariance matrices. Moreover,
the other issue is prediction. Based on �tted models and
predicted values, we also develop a function that contains
several commonly used criteria to assess the performance of
classi�cation and prediction.
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+e article is organized as follows. Section 2 introduces
the data structure and outlines the methodology in our
package. Section 3 describes the usage of the package
NetDA. Section 4 illustrates the package by a real dataset.We
finally conclude the article in Section 5.

2. Overview of Methodology

In this section, we primarily overview the data structure and
network-based discriminant analysis proposed by Chen [11].

2.1. Data Structure. Suppose that the data contain n subjects
that come from I classes, where I is a fixed integer greater
than 2 and the classes are nominal. Let ni be the size in class
iwith i � 1, . . . , I, and hence, n � 􏽐

I
i�1 ni. Let Y denote the

n-dimensional vector of responses with the jth component
beingYj � i, which reflects the class membership that the jth
subject is in the ith class for i � 1, . . . , I and j � 1, . . . , n.

Let p> 1 denote the dimension of predictors for each
subject. Define X � [Xj,k] as the n × p matrix of predictors
for j � 1, . . . , n and k � 1, . . . , p, where the component Xj,k

represents the kth predictor for the jth subject. Furthermore,
let X·k � (X1,k, . . . , Xn,k)⊤ represent the n-dimensional
vector of the kth predictor in the kth column of X, and let
Xj· � (Xj,1, . . . , Xj,p)⊤ denote the p-dimensional predictor
vector for the jth subject in the jth row of X. Let
Xj·, Yj􏽮 􏽯: j � 1, . . . , n􏽮 􏽯 denote an independent and iden-

tically distributed (i.i.d.) sample. We let lower case letters
represent realized values for the corresponding random
variables. For example, xj· stands for a realized value of Xj·.

2.2. Gaussian Graphical Models. For i � 1, . . . , I and
j � 1, . . . , n, let fj|i(xj·) denote the conditional probability
density function of the predictor Xj· taking a value xj· given
that subject j comes from the i th class. We particularly
consider the case where the conditional distribution Xj·

given Yj � i is assumed to be a multivariate normal dis-
tribution with a mean vector μi and a positive-definite
covariance matrix Σi. +en, the conditional probability
density function is given by

fj|i xj·􏼐 􏼑 �
1

(2π)
p/2 Σi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2 exp −

1
2
xj· − μi􏼐 􏼑

⊤
Σ− 1

i xj· − μi􏼐 􏼑􏼚 􏼛.

(1)

Moreover, by the suitable reparametrization (e.g., Hastie
et al. [12]; p. 246), we can transfer (1) to the Gaussian
graphical model (GGM) based on class i. +e exact for-
mulation is given by

f xj·; βi,Θi􏼐 􏼑 � exp 􏽘
r∈V

βirxj,r −
1
2

􏽘
(s,t)∈E

θi,stxj,sxj,t −
1
2
log det

Θi

2π
􏼒 􏼓

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(2)

where V � 1, . . . , p􏼈 􏼉 includes all the indices and E ⊂ V × V

contains all pairs with unequal coordinates, which yields a
graph G≜ (V, E) (e.g., Hastie et al. [1]; Chapter 17); Θi �

[θi,st] is the p × p symmetric precision matrix with Θi ≜Σ− 1i ;

and βi � (βi1, . . . , βip)⊤ is the p-dimensional vector of pa-
rameters with μi ≜ − Θ− 1

i βi. Our main interest is to estimate
Θi, since, as we will see later, the main concern in dis-
criminant analysis is to estimate the inverse of the covariance
matrix. On the other hand, from the perspective of graphical
models, nonzero θi,st implies that Xj,s and Xj,t are condi-
tionally dependent given other variables in class i, while zero
value of θi,st gives conditional independence of Xj,s and Xj,t

given other variables. +us, the precision matrix Θi reflects
the network structure of the predictors.

In the past literature, graphical LASSO (GLASSO) [13] is
a common method to estimate Θi. +e key idea of GLASSO
is based on the likelihood function. To see this, we follow the
similar discussion in page 247 of Hastie et al. [12] and write
the log-likelihood function of Θi based on (2) with βi � 0:

L Θi( 􏼁 �
1
ni

􏽘

ni

j�1
log f xj·;Θi􏼐 􏼑􏽮 􏽯 � log det Θi( 􏼁 − trace SiΘi( 􏼁, (3)

where Si � (1/ni) 􏽐
ni

j�1 xj·x⊤j·, and trace(·) is the sum of di-
agonal entries for a square matrix, and

logdet Θi( 􏼁 �
􏽘

p

k�1
log λ Θi( 􏼁􏼈 􏼉, if Θi is positive definite,

− ∞, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

(4)

with λ(Θi) being the jth eigenvalue of Θi. Assume that the
precision matrix Θi is sparse. To estimate θi,st and identify
network structures by retaining dependent pairs of vertices
and removing independent ones, we apply the L1-norm as a
constraint to achieve the desired result. In other words, the
estimator of Θi can be obtained by the following
optimization:

􏽢Θi � argmax
Θi

logdet Θi( 􏼁 − trace SiΘi( 􏼁 − ζρ Θi( 􏼁􏼈 􏼉, (5)

where ρ(Θi)≜􏽐s≠t|θi,st| is the penalty function and ζ is a
tuning parameter. +e optimization problem (5) is called
GLASSO [13]. +e detailed algorithm can be found in page
248 of Hastie et al. [12], and the estimator of ζ can be
determined by Bayesian information criterion (BIC). By the
similar discussion in Yuan and Lin [14], the estimated
network structure determined by (5) is equal to the true
graph with probability approaching one under suitable
conditions. For the computation, the R package glasso can be
implemented to derive the estimate 􏽢Θi.

2.3.DiscriminantAnalysis. +e idea of discriminant analysis
is to model the distribution of the predictors Xj· separately
for each of the response classes Yj, and then to use the Bayes
theorem to describe the conditional probabilities P(Yj �

i|Xj· � xj·) (e.g., James et al. [15]).
Specifically, let πi ≜P(Yj � i) denote the probability that

the j th subject is randomly selected from class i so that
􏽐

I
i�1 πi � 1. Moreover, applying the Bayes theorem to the

conditional density function fj|i(xj·) and π gives the pos-
terior probability as
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P Yj � i|Xj· � xj·􏼐 􏼑 �
fj|i xj·􏼐 􏼑πi

􏽐
I
l�1 fj|l xj·􏼐 􏼑πl

, (6)

for i � 1, . . . , I and j � 1, . . . , n.
To compare two classes i and l with i≠ l, we calculate the

log-ratio of (6), given by

log
P Yj � i|Xj· � xj·􏼐 􏼑

P Yj � l|Xj· � xj·􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭ � log
fj|i xj·􏼐 􏼑

fj|l xj·􏼐 􏼑
⎛⎝ ⎞⎠ + log

πi

πl

􏼠 􏼡. (7)

With a distribution assumption (1) imposed, we now
have two scenarios for the first term in the right-hand side of
(7), say log(fj|i(xj·)/fj|l(xj·)).

Scenario 1. If the covariance matrices Σi in (1) are assumed
to be common, that is, Σi � Σ for every i with Σ being a
positive definite matrix, (7) becomes

log
πi

πl

􏼠 􏼡 −
1
2
μi + μl( 􏼁

⊤Σ− 1 μi + μl( 􏼁 + x⊤j·Σ
− 1 μi + μl( 􏼁. (8)

If equation (8) >0, then P(Yj � i|Xj· � xj·)>
P(Yj � l|Xj· � xj·), showing that subject j with predictors
Xj· � xj· is more likely selected from class i than from class l.
Consequently, (8) defines a boundary between classes i and l

in the sense that there is a linear function in xj· separating
classes i and l.

Motivated by the form of (8), we consider a linear
function in x as

δi(x)≜ log πi( 􏼁 −
1
2
μ⊤i Σ

− 1μi + x⊤Σ− 1μi. (9)

Moreover, μi and πi can be empirically estimated, re-
spectively, as

􏽢μi �
1
ni

􏽘
Yj�i

xj·,

􏽢πi �
ni

n
.

(10)

For the estimation of Σ− 1, or equivalentlyΘ, we adopt (5)
by pooling all subjects in the dataset and denote 􏽥Θ as the
estimator of Θ. +erefore, (9) can be estimated as

􏽥δi(x) � log 􏽢πi( 􏼁 −
1
2

􏽢μ⊤i 􏽥Θ􏽢μi + x⊤ 􏽥Θ􏽢μi, (11)

and we call (11) the network-based linear discriminant
function (NetLDA) and it is used to determine the class label
for a new observation. For the prediction of a new subject
with the predictor 􏽥x, we first calculate 􏽥δi(􏽥x) using (11) for
i � 1, . . . , I. Next, we find i∗ that is defined as

i
∗

� argmax
i�1,...,I

􏽥δi(􏽥x); (12)

and the class label for this subject is then predicted as i∗.

Scenario 2. We allow Σi ≠Σl, or equivalently, Θi ≠Θl, for
any i≠ l and i, l � 1, . . . , I. +en, under a distribution as-
sumption (1), we have

log
fj|i xj·􏼐 􏼑

fj|l xj·􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭ � log
1/(2π)

p/2 Σi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2

􏼒 􏼓exp − (1/2) xj· − μi􏼐 􏼑
⊤
Θi xj· − μi􏼐 􏼑􏼚 􏼛

1/(2π)
p/2 Σl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2

􏼒 􏼓exp − (1/2) xj· − μl􏼐 􏼑
⊤
Θl xj· − μl􏼐 􏼑􏼚 􏼛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� log
Θl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− (1/2)

Θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− (1/2)

⎛⎝ ⎞⎠ +
1
2

xj· − μl􏼐 􏼑
⊤
Θl xj· − μl􏼐 􏼑 − xj· − μi􏼐 􏼑

⊤
Θi xj· − μi􏼐 􏼑􏼚 􏼛.

(13)

Replacing the first term in the right-hand side of (7) by
(13) yields

log
πi

πl

􏼠 􏼡 + log
Θl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− (1/2)

Θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− (1/2)

⎛⎝ ⎞⎠ +
1
2

xj· − μl􏼐 􏼑
⊤
Θl xj· − μl􏼐 􏼑 − xj· − μi􏼐 􏼑

⊤
Θi xj· − μi􏼐 􏼑􏼚 􏼛. (14)

+erefore, based on (14), we further define a quadratic
function of x based on the class i:

φi(x)≜ log πi( 􏼁 +
1
2
log Θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

1
2
x − μi( 􏼁

⊤Θi x − μi( 􏼁. (15)

For i � 1, . . . , I, the estimator of the precision matrix Θi,
denoted as 􏽢Θi, is obtained by (5) based on the predictor
information in class i; μi and πi can be estimated by (10).
+erefore, (15) can be estimated by

Journal of Probability and Statistics 3



􏽢φi(x) � log 􏽢πi( 􏼁 +
1
2
log 􏽢Θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

1
2
x − 􏽢μi( 􏼁

⊤ 􏽢Θi x − 􏽢μi( 􏼁. (16)

+e function (16) is called the network-based quadratic
discriminant function (NetQDA) and is used to determine
the class label for a new observation. For the prediction of a
new subject with the predictor 􏽥x, we first calculate 􏽢φi(􏽥x)

using (16) for i � 1, . . . , I. Next, we find i∗ that is defined as

i
∗

� argmax
i�1,...,I

􏽢φi(􏽥x); (17)

and the class label for this subject is then predicted as i∗.

2.4. Assessment of Classification and Prediction. We first
introduce micro-averaged metrics (e.g., Chen et al. [7]). Let
V and T represent the classes of the subject indexes for
validation and training datasets, respectively. Let n � |T|

and m � |V| denote the sizes of the training and validation
data, respectively. We use the training data T to fit models
and then apply fitted models to compute predicted values 􏽢Yj

for j ∈ V. After that, for i � 1, . . . , I, we calculate the
number of the true positives (TP), the number of the false
positives (FP), and the number of the false negatives (FN)
under the validation data V, respectively:

TPi � 􏽘
j∈V

I Yj � i, 􏽢Yj � i􏼐 􏼑,

FPi � 􏽘
j∈V

I Yj ≠ i, 􏽢Yj � i􏼐 􏼑,

FNi � 􏽘
j∈V

I Yj � i, 􏽢Yj ≠ i􏼐 􏼑,

(18)

where I(·) is the indicator function.

We define precision (PRE) and recall (REC) under the
validation data V, respectively, as

PRE �
􏽐

I
i�1 TPi

􏽐
I
i�1 TPi + 􏽐

I
i�1 FPi

,

REC �
􏽐

I
i�1 TPi

􏽐
I
i�1 TPi + 􏽐

I
i�1 FNi

.

(19)

+en, micro-F-score is defined as

F � 2 ×
PRE × REC
PRE + REC

. (20)

According to definitions in (19), when all subjects are
correctly classified, FP and FN are equal to zero, yielding that
PRE and REC are equal to one; if all subjects are falsely
classified, then TP is equal to zero, and thus, PRE and REC
are equal to zero. +erefore, values of PRE and REC are
between zero and one. Moreover, under the range [0, 1], the
F-score falls in [0, 1] as well by treating 0/0 as zero. In
principle, the higher values of PRE, REC, and F-score reflect
the better performance and the more accurate classification
(e.g., Chen et al. [7]).

In addition to criteria above, the other commonly used
criterion is the adjusted Rand index (ARI). For i, i′ � 1, . . . , I

and under the validation data V, we define

nii′ � 􏽘
j∈V

I Yj � i, 􏽢Yj � i′􏼐 􏼑.
(21)

Moreover, we define ai � 􏽐
I
i′�1 nii′ for i � 1, . . . , I and

bi′ � 􏽐
I
i�1 nii′ for i′ � 1, . . . , I. +en, ARI under the valida-

tion data V is defined as Hubert and Arabie [16].

ARI �

􏽐i,i′

nii′

2
⎛⎝ ⎞⎠ − 􏽐i

ai

2
⎛⎝ ⎞⎠􏽐i′

bi′

2
⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
/

n

2
⎛⎝ ⎞⎠⎛⎜⎝ ⎞⎟⎠

􏽐i

ai

2
⎛⎝ ⎞⎠ + 􏽐i′

bi′

2
⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
/2⎛⎜⎝ ⎞⎟⎠ − 􏽐i

ai

2
⎛⎝ ⎞⎠􏽐i′

bi′

2
⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
/

n

2
⎛⎝ ⎞⎠⎛⎜⎝ ⎞⎟⎠

. (22)

As mentioned in Hubert and Arabie [16], ARI is
bounded above by one, and the higher value of ARI indicates
the more accurate classification.

2.5. Benchmark of NetDA. +e conventional linear dis-
criminant methods (e.g., MASS, sparseLDA, and penal-
izedLDA) aim to adopt (9) with Θ estimated by the inverse
of the empirical estimator of Σ. However, this approach may
encounter cumbersome computation or possible singularity
when calculating inverse matrices. In addition, ifΘ is sparse,
all entries in empirical estimators of Θ are nonzero, and it
indicates that some unconnected pairs of predictors may be

falsely included. As a result, imprecise estimator of Θ may
implicitly affect the performance of classification.

Unlike existing methods, the first contribution of NetDA
is to estimateΘ directly. +e graphical lasso method is a tool
to identify zero entries inΘ and estimate nonzero ones. +is
approach enables us to retain connected pairs of predictors
and exclude unconnected ones. Moreover, our imple-
mentation can avoid computing inverse of Σ.

+e second contribution of NetDA is to handle het-
erogeneous network structure that stratifies the predictor
information by class when characterizing the predictor
network structures, and is able to deal with multi-
classification by adopting network structure in each class.
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3. Details of NetDA

In this section, we first overview the technique that we need
in the existing package. After that, we describe functions in
our package.

3.1. Library Overview. In our package, we use the package
glasso in R software. Specifically, the package glasso follows
from the graphical lasso method proposed by Friedman et al.
[13]. +e purpose of glasso is to detect network structures of
random vectors that follow multivariate normal distribu-
tions. In particular, under multivariate normal distributions
and operations in glasso, the detection of network structures
is equivalent to the estimation of precision matrix.

3.2.WineData. In our package, we take the wine dataset as
an example, which is available in https://archive.ics.uci.
edu/ml/datasets/wine. +ese data were collected based on a
chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars. In this dataset,
there are three types of wines and 13 constituents, in-
cluding alcohol (Alcohol), malic acid (Malic acid), ash
(Ash), alkalinity of ash (Alkalinity), magnesium (Magne-
sium), total phenols (phenols), flavanoids (Flavanoids),
nonflavanoid phenols (Nonflavanoid), proanthocyanins
(Proanthocyanins), color intensity (Color), hue (Hue),
OD280/OD315 of diluted wines (OD280), and proline
(Proline).

In the following analysis, the response is types of wines
that are labeled as 1, 2, and 3; constituents are treated as
predictors that are continuous. +e goal is to adopt the
information of constituents to construct predictive models
and then use them to classify type of wines for a given
subject.

3.3.NetDA. NetDA contains two methods. +e first method
is called NetLDA, which aims to estimate the precision
matrix by pooling all individuals in the data, and the cor-
responding discriminant function is given by (11). +e
second approach is called NetQDA, whose strategy is to
estimate precision matrices based on individuals in different
classes, and then use class-dependent estimated precision
matrices to define quadratic discriminant functions in (16).
Unlike NetLDA, NetQDA takes possibly class-dependent
network structures of the predicted variables into account
and uses network structures in different classes to determine
which classes individuals belong to. When either linear
discriminant functions or quadratic discriminant functions
are obtained, they can be used to determine the class for a
new subject.

To implement the NetLDA and NetQDA methods, we
use the following command:

NetDA (X, Y, method, X_test) where the meaning of
each argument is described as follows:

(i) X: this is an n × p matrix of the predictors from the
training data

(ii) Y: this is an n-dimensional vector of the response
from the training data, whose elements are positive
integers and reflect class-labels

(iii) Method: it is a scalar to determine the classification
method: method = 1 represents NetLDA in (11), and
method = 2 represents NetQDA in (16)

(iv) X_test: this is an m × p matrix of the predictors
from the validation data

+e purpose of NetDA is to apply the training data “X”
and “Y” to determine a fitted model that is specified by the
argument “method.” After that, we use “X_test and a fitted
model to determine the predicted class for subjects in the
validation data. +erefore, the function NetDA returns a list
of components:

(i) yhat: it is a vector of predicted responses obtained by
NetLDA or NetQDA based on the predictors in the
validation data (X_test).

(ii) Network: this is the estimators of precision matrices.
If “method = 1” is chosen, then there is one precision
matrix; if “method = 2” is given, then there are I

precision matrices.

3.4. Metrics. +e function Metrics is utilized to assess the
performance of classification and prediction based on some
commonly used criteria that are introduced in the Section
2.4. Specifically, given responses from the validation data
and predicted values obtained by NetDA, we first derive a
confusion matrix to see the classification result. To further
assess the performance of prediction, we evaluate precision,
recall, F-score, and ARI defined in (19), (20), and (22),
respectively.

To obtain the desired results, we use the following
command:

Metrics (yhat, Y_test) where the meaning of each ar-
gument is described as follows:

(i) yhat: this is an m-dimensional vector of the pre-
dicted responses determined by NetDA or other
methods

(ii) Y_test: this is an m-dimensional vector of the re-
sponse from the validation data

+e function metrics returns a list of components:

(i) Confusion matrix: a confusion matrix based on
predicted values (yhat) and responses from the
validation data (Y_test)

(ii) (PRE, REC, F-score): values of precision,
recall, and F-score defined in (19) and (20),
respectively

(iii) ARI: values of the ARI defined in (22)

4. Demonstration of NetDA

In this section, we demonstrate standard analysis of clas-
sification and prediction based on two functions in the
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package. To show the advantage of NetDA, we compare with
existing packages MASS, sparseLDA, and penalizedLDA.

4.1. Simulation. Let I � 3 denote the number of classes, and
let p � 12 denote the dimension of predictors. We specify
the sample size n � 600, in which the size of the ith class is
given by ni � (n/I) for i � 1, . . . , I. For each class, we
consider different network structures of predictors. Specif-
ically, for class i � 1, . . . , I, let Ωo,i denote a p × p matrix
whose diagonal entries are zero and off-diagonal entries are
specified as either one or zero to reflect edges of the cor-
responding two nodes in Figure 1. +at is, for s≠ t, entry
(s, t) in Ωo,i is 1 if the edge exists between X·s and X·t and 0
otherwise. In addition, we further define a p × p diagonal

matrix Ωd,i whose nonzero entries are taken as the common
value 0.1 + |Λmin(Ωo,i)|, where Λmin(Ωo,i) represents the
smallest eigenvalue of Ωo,i. Finally, we define the precision
matrix as Θi ≜Ωo,i + Ωd,i that is invertible. +erefore, based
on Gaussian graphical models, the p-dimensional vector of
predictors in class i is generated from a multivariate normal
distribution with mean zero and the covariance matrix Σi �

Θ− 1
i for i � 1, . . . , I.
Let +eta1, +eta2, and +eta3 denote p × p matrices

that reflect network structures in left, middle, and right
panels of Figure 1, respectively, and one can specify those
three matrices as follows:

>+eta1

[1, ] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12]

[1, ] 0 1 1 0 0 0 0 0 0 0 0 0

[2, ] 1 0 0 1 0 0 0 0 0 0 0 0

[3, ] 1 0 0 1 1 0 0 0 0 0 0 0

[4, ] 0 1 1 0 0 1 0 0 0 0 0 0

[5, ] 0 0 1 0 0 1 0 0 0 0 0 0

[6, ] 0 0 0 1 1 0 0 0 0 0 0 0

[7, ] 0 0 0 0 0 0 0 1 1 0 0 0

[8, ] 0 0 0 0 0 0 1 0 0 1 0 0

[9, ] 0 0 0 0 0 0 1 0 0 1 1 0

[10, ] 0 0 0 0 0 0 0 1 1 0 0 1

[11, ] 0 0 0 0 0 0 0 0 1 0 0 1

[12, ] 0 0 0 0 0 0 0 0 0 1 1 0

. (23)
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Figure 1: Predictor network structures for four different classes.

6 Journal of Probability and Statistics



> +eta2

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12]

[1, ] 0 1 1 0 0 0 0 0 0 0 0 0

[2, ] 1 0 0 1 0 0 0 0 0 0 0 0

[3, ] 1 0 0 1 0 0 0 0 0 0 0 0

[4, ] 0 1 1 0 0 0 0 0 0 0 0 0

[5, ] 0 0 0 0 0 1 1 0 0 0 0 0

[6, ] 0 0 0 0 1 0 0 1 0 0 0 0

[7, ] 0 0 0 0 1 0 0 1 0 0 0 0

[8, ] 0 0 0 0 0 1 1 0 0 0 0 0

[9, ] 0 0 0 0 0 0 0 0 0 1 1 0

[10, ] 0 0 0 0 0 0 0 0 1 0 0 1

[11, ] 0 0 0 0 0 0 0 0 1 0 0 1

[12, ] 0 0 0 0 0 0 0 0 0 1 1 0

. (24)

> +eta3

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12]

[1, ] 0 1 0 0 0 0 0 0 0 0 0 0

[2, ] 1 0 1 0 0 0 0 0 0 0 0 0

[3, ] 0 1 0 0 0 0 0 0 0 0 0 0

[4, ] 0 0 0 0 1 0 0 0 0 0 0 0

[5, ] 0 0 0 1 0 1 0 0 0 0 0 0

[6, ] 0 0 0 0 1 0 0 0 0 0 0 0

[7, ] 0 0 0 0 0 0 0 1 0 0 0 0

[8, ] 0 0 0 0 0 0 1 0 1 0 0 0

[9, ] 0 0 0 0 0 0 0 1 0 0 0 0

[10, ] 0 0 0 0 0 0 0 0 0 0 1 0

[11, ] 0 0 0 0 0 0 0 0 0 1 0 1

[12, ] 0 0 0 0 0 0 0 0 0 0 1 0

. (25)

Following the description above, we generate the n × p

dimensional matrix for predictors and then determine the
simulated data:

>+eta1�+eta1 + diag (0.1 + abs (min (eigen (+eta1)
$value)), p)
>Sigma1� cov2cor (solve (+eta1))
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>X1�mvrnorm (n� (n/I), rep (0, p), Sigma1,
tol� 1e − 6, empirical� FALSE)
>
>+eta2�+eta2 + diag (0.1 + abs (min (eigen (+eta2)
$value)), p)
>Sigma2� cov2cor (solve (+eta2))
>X2�mvrnorm (n� (n/I), rep (0, p), Sigma2,
tol� 1e − 6, empirical� FALSE)
>
>+eta3�+eta3 + diag (0.1 + abs (min (eigen (+eta3)
$value)), p)
>Sigma3� cov2cor (solve (+eta3))
>X3�mvrnorm (n� (n/I), rep (0, p), Sigma3,
tol� 1e − 6, empirical� FALSE)
>data� cbind (c (rep (1, n/I), rep (2, n/I), rep (3, n/I)),
rbind (X1, X2, X3))

To perform classification, we implement NetDA func-
tion with two different scenarios described in Section 2.3. In
addition, we demonstrate three existing methods labeled as
lda (MASS), sda (sparseLDA), and pda (penalizedLDA),
respectively. Detailed descriptions are given below:

>Y=data [, 1]
>X=data [, 2 :13]
>#Demonstration of MASS
>lda = lda (Y·X, prior = c (length (which (Y== 1)),
length (which (Y== 2)), ++length (which (Y== 3)))/
length (Y))
>yhat_lda = predict (lda, data.frame (X)) $class
>
>#Demonstration of sparseLDA
>y=matrix (0, n, I)
>y [1 : 200, 1] = 1
>y [201 : 400, 2] = 1
>y [401 : 600, 3] = 1
>colnames (y)< − c (“1,” “2,” “3”)
>sda = sda (data.frame (X), y, lambda = 1e − 6,
stop = − 1, maxIte = 25, +trace =TRUE)
>yhat_sda = as.numeric (unlist (predict (sda, data.-
frame (X)) $class))
>#Demonstration of penalizedLDA
>pda = PenalizedLDA (X, Y, lambda = 0.14, K= 2)

>yhat_pda = as.numeric (unlist (predict (pda, data.-
frame (X)))) [1 : n]
>#Demonstration of NetDA
>yhat_netlda =NetDA (X, Y, method = 1, X) $yhat
>yhat_netqda =NetDA (X, Y, method= 2, X) $yhat

After that, to assess the performance of classification, we
adopt the function Metrics to compute values of criteria (19)
and (20) as shown by [2] and (22) indicated by [3].

>F_lda�Metrics (yhat_lda, Y) [2]
>F_sda�Metrics (yhat_sda, Y) [2]
>F_pda�Metrics (yhat_pda, Y) [2]
>F_netlda�Metrics (yhat_netlda, Y) [2]
>F_netqda�Metrics (yhat_netqda, Y) [2]
>ARI_lda�Metrics (yhat_lda, Y) [3]
>ARI_sda�Metrics (yhat_sda, Y) [3]
>ARI_pda�Metrics (yhat_pda, Y) [3]
>ARI_netlda�Metrics (yhat_netlda, Y) [3]
>ARI_netqda�Metrics (yhat_netqda, Y) [3]

We repeat above simulations 500 times and summarize
numerical results in Table 1. We observe that the package
NetDA provides higher values of PRE, REC, F-score, and
adn ARI, showing that the classification obtained by the
NetDA method is more accurate than that determined by
other methods. Specifically, compare with MASS and
NetLDA, we can see that the latter outperforms the former
method, which is due to the incorporation of network
structure with irrelevant pairs of predictors removed from
Θ. On the other hand, for the comparison between NetLDA
and NetQDA, we can see that the NetQDA is much better
than the NetLDA method, because the NetQDA method
successfully detects network structures from each class, and
those detected network structures are valid to do classifi-
cation. +ose numerical findings verify the discussion in
Subsection “Benchmark of NetDA.”

4.2. Real Data Analysis. In this study, we take the wine
dataset as an example, which is introduced in Section 3, to
demonstrate the package NetDA. To demonstrate the
functions and perform classification and prediction, we first
split the full data into the training data and the validation
data. In our example, we take the first 45 samples in each
class to obtain the training data and use the remaining
samples in each class to form the validation data.

Table 1: Simulation results.

MASS sparseLDA penalizedLDA NetDA (NetLDA) NetDA (NetQDA)
PRE 0.627 0.686 0.669 0.729 0.891
REC 0.627 0.686 0.669 0.729 0.891
F-score 0.627 0.686 0.669 0.729 0.891
ARI 0.521 0.543 0.530 0.622 0.707
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>data (WineData)
>Y=WineData [, 1] #the response
>X=WineData [, 2 :14] #the predictors
>D1=WineData [which (Y== 1), ]
>D2=WineData [which (Y== 2), ]
>D3=WineData [which (Y== 3), ]
>#An example of user-specific training data and vali-
dation data
>#“Train” represents the training data and “Test”
represents validation data in our example.
>Train = rbind (D1 [1 : 45, ], D2 [1 : 45, ], D3 [1 : 45, ])
>Test = rbind (D1 [46 : dim (D1) [1], ], D2 [46 : dim
(D2) [1], ], D3 [46 : dim (D3) [1], ])
>#+e response (Y) and predictors (X) in the training
data
>X=Train [, 2 : 14]>Y=Train [, 1]
>#+e response (Y_test) and predictors (X_test) in the
validation data

>X_test = Test [, 2 : 14]>Y_test = Test [, 1]

When the training data and the validation data are
determined, we employ the function NetDA to perform
classification. We insert “X,”“Y,” and “X_test” to the func-
tion NetDA, and we denote “NetLDA” and “NetQDA” as the
argument method= 1 and method = 2, respectively. +e
resulting vectors of predicted classes and estimated precision
matrices are given by “$yhat” and “$Network,” respectively.

>NetDA (X, Y, method = 1, X_test) ->NetLDA
>yhat_lda =NetLDA$yhat
>Net_lda =NetLDA$Network
>yhat_lda
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
2 2 2 2 2 2 2
[39] 2 2 2 2 3 3 3 3
>round (Net_lda, 3)

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12] [, 13]

[1, ] 3.739 − 0.415 − 0.665 0.107 0.004 0.000 − 0.444 0.000 0.000 − 0.508 0.000 − 0.291 − 0.004

[2, ] − 0.415 1.247 − 0.511 − 0.035 0.000 0.109 0.324 − 0.225 0.065 0.000 1.413 0.017 0.000

[3, ] − 0.665 − 0.511 19.463 − 0.936 − 0.059 − 0.055 − 0.619 0.000 0.000 − 0.087 0.000 0.000 − 0.005

[4, ] 0.107 − 0.035 − 0.936 0.167 0.001 − 0.048 0.152 − 0.160 − 0.038 − 0.023 − 0.035 − 0.013 0.000

[5, ] 0.004 0.000 − 0.059 0.001 0.006 0.000 0.007 0.087 − 0.036 0.003 0.007 0.013 0.000

[6, ] 0.000 0.109 − 0.055 − 0.048 0.000 8.774 − 3.847 0.000 − 0.364 − 0.249 0.000 − 1.274 − 0.001

[7, ] − 0.444 0.324 − 0.619 0.152 0.007 − 3.847 6.127 2.104 − 1.800 0.016 − 2.845 − 1.877 − 0.002

[8, ] 0.000 − 0.225 0.000 − 0.160 0.087 0.000 2.104 46.879 0.000 − 0.084 0.000 0.762 − 0.002

[9, ] 0.000 0.065 0.000 − 0.038 − 0.036 − 0.365 − 1.800 0.000 5.582 − 0.216 0.000 − 0.391 0.001

[10, ] − 0.508 0.000 − 0.087 − 0.023 0.003 − 0.249 0.016 − 0.084 − 0.216 0.467 1.663 0.606 0.000

[11, ] 0.000 1.413 0.000 − 0.035 0.007 0.000 − 2.845 0.000 0.000 1.662 32.850 0.000 − 0.002

[12, ] − 0.291 0.017 0.000 − 0.013 0.013 − 1.274 − 1.877 0.762 − 0.391 0.606 0.000 5.667 − 0.001

[13, ] − 0.004 0.000 − 0.005 0.000 0.000 − 0.001 − 0.002 − 0.002 0.001 0.000 − 0.002 − 0.001 0.000

.

(26)

#############
>NetDA (X, Y, method = 2, X_test) ->NetQDA
>yhat_qda =NetQDA$yhat
>Net_qda =NetQDA$Network
>yhat_qda

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
[42] 2 3 3 3 3
>round (Net_qda [[1]], 3)
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[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12] [, 13]

[1, ] 7.176 0.011 0.000 0.470 − 0.073 0.000 − 0.404 0.000 − 1.754 − 0.175 0.000 − 0.159 − 0.005

[2, ] 0.012 2.721 0.000 0.005 − 0.007 0.000 0.000 0.051 − 0.171 0.000 2.039 0.000 0.003

[3, ] 0.000 0.000 23.194 − 0.959 − 0.161 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

[4, ] 0.470 0.005 − 0.959 0.236 − 0.011 0.138 0.076 − 0.397 − 0.101 0.046 − 0.244 0.170 0.000

[5, ] − 0.073 − 0.007 − 0.161 − 0.011 0.013 − 0.097 0.008 − 0.085 0.049 − 0.042 − 0.029 − 0.023 0.000

[6, ] 0.000 0.000 0.000 0.138 − 0.097 22.439 − 7.472 0.000 − 0.680 − 2.326 0.000 − 0.330 0.002

[7, ] − 0.405 0.000 0.000 0.076 0.008 − 7.471 16.520 0.000 − 3.594 − 2.131 0.000 0.000 0.001

[8, ] 0.000 0.051 0.000 − 0.397 − 0.085 0.000 0.000 69.356 0.000 0.056 0.000 0.159 0.000

[9, ] − 1.754 − 0.171 0.000 − 0.101 0.049 − 0.680 − 3.594 0.000 8.449 − 0.246 0.000 0.000 0.003

[10, ] − 0.175 0.000 0.000 0.046 − 0.042 − 2.326 − 2.131 0.056 − 0.246 2.509 0.566 0.000 − 0.006

[11, ] 0.000 2.039 0.000 − 0.244 − 0.029 0.000 0.000 0.000 0.000 0.563 48.139 0.000 − 0.008

[12, ] − 0.158 0.000 0.000 0.170 − 0.023 0.328 0.000 0.159 0.000 0.000 0.000 7.213 0.004

[13, ] − 0.005 0.003 0.000 0.000 0.000 0.002 0.001 0.000 0.003 − 0.006 − 0.008 0.004 0.000

.

(27)

>round (Net_qda [[2]], 3)

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12] [, 13]

[1, ] 4.060 0.019 0.710 − 0.128 − 0.005 0.000 − 0.527 0.000 0.432 − 0.783 0.000 0.169 − 0.001

[2, ] 0.021 2.357 0.000 − 0.173 − 0.017 0.018 − 0.015 − 1.439 − 0.359 0.138 0.912 0.122 0.004

[3, ] 0.708 0.000 18.423 − 1.213 − 0.044 0.000 − 0.006 0.000 0.000 0.000 0.000 0.826 0.004

[4, ] − 0.128 − 0.173 − 1.213 0.208 0.007 0.082 − 0.043 − 0.214 0.059 0.056 − 0.160 − 0.393 − 0.001

[5, ] − 0.005 − 0.017 − 0.044 0.007 0.005 − 0.033 0.063 0.090 − 0.066 0.000 − 0.049 0.014 0.000

[6, ] 0.000 0.017 0.000 0.082 − 0.033 7.713 − 5.999 0.866 1.732 0.443 0.000 − 0.822 − 0.002

[7, ] − 0.527 − 0.015 − 0.006 − 0.043 0.063 − 5.999 10.017 0.181 − 3.932 − 1.565 − 1.637 − 1.902 0.002

[8, ] 0.000 1.440 0.000 − 0.214 0.090 0.869 0.173 46.367 0.000 0.000 0.000 5.077 − 0.003

[9, ] 0.432 − 0.359 0.000 0.059 − 0.066 1.733 − 3.932 0.000 5.282 0.506 0.000 − 0.648 − 0.001

[10, ] − 0.783 0.137 0.000 0.056 0.000 0.443 − 1.565 0.000 0.506 1.733 0.542 0.763 − 0.001

[11, ] 0.000 0.912 0.000 − 0.160 − 0.049 0.000 − 1.634 0.000 0.000 0.542 29.109 0.000 0.008

[12, ] 0.170 0.121 0.826 − 0.393 0.014 − 0.822 − 1.902 5.077 − 0.648 0.763 0.000 7.293 0.002

[13, ] − 0.001 0.004 0.004 − 0.001 0.000 − 0.002 0.002 − 0.003 − 0.001 − 0.001 0.008 0.002 0.000

.

(28)

>round (Net_qda [[3]], 3)
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[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10] [, 11] [, 12] [, 13]

[1, ] 4.261 − 0.254 0.000 − 0.072 0.020 0.000 0.000 0.000 − 1.200 − 0.202 − 0.098 − 0.832 0.003

[2, ] − 0.254 0.951 0.000 − 0.096 0.017 0.350 0.336 0.000 0.302 0.050 0.000 0.146 0.000

[3, ] 0.000 0.000 39.923 − 2.076 − 0.119 − 1.713 0.000 0.000 0.000 0.000 0.000 − 1.640 0.006

[4, ] − 0.072 − 0.096 − 2.076 0.359 − 0.010 − 0.326 − 0.073 − 0.193 − 0.115 − 0.010 − 0.178 − 0.055 0.000

[5, ] 0.020 0.017 − 0.119 − 0.010 0.022 0.060 − 0.431 0.371 − 0.011 0.021 − 0.034 0.040 − 0.001

[6, ] 0.000 0.350 − 1.713 − 0.326 0.060 10.790 − 0.498 − 0.740 − 4.461 0.055 0.000 − 1.173 0.000

[7, ] 0.000 0.336 0.000 − 0.073 − 0.431 − 0.498 24.098 0.000 − 1.503 − 0.930 0.000 2.400 0.018

[8, ] 0.000 0.000 0.000 − 0.193 0.371 − 0.740 0.000 50.622 0.000 0.000 0.000 0.000 − 0.014

[9, ] − 1.200 0.302 0.000 − 0.115 − 0.011 − 4.461 − 1.503 0.000 12.612 − 1.032 0.000 0.846 − 0.008

[10, ] − 0.202 0.050 0.000 − 0.010 0.021 0.055 − 0.930 0.000 − 1.032 0.410 1.353 0.070 − 0.001

[11, ] − 0.098 0.000 0.000 − 0.178 − 0.034 0.000 0.000 0.000 0.000 1.353 50.699 0.000 − 0.005

[12, ] − 0.832 0.146 − 1.640 − 0.055 0.040 − 1.173 2.400 0.000 0.846 0.070 0.000 13.312 − 0.008

[13, ] 0.003 0.000 0.006 0.000 − 0.001 0.000 0.018 − 0.014 − 0.008 − 0.001 − 0.005 − 0.008 0.000

.

(29)

Moreover, for the visualization of estimated network
structures, we further apply the packages network, GGally
and sna, to draw the network structure based on the esti-
mated precision matrices. +e following commands are
implemented to draw network structures, and the corre-
sponding figures determined by NetDA with the arguments
method� 1 and method� 2 are displayed in Figures 2 and 3,
respectively.

>library (network)
>library (GGally)
>library (sna)
>material_name� c (“Alcohol,” “Malic acid,” “Ash,”
“Alkalinity,” “Magnesium,” “phenols,” + “Flavanoids,”
“Nonflavanoid,” “Proanthocyanins,” “Color,” “Hue,”
“OD280,” “Proline”)
>ggnet2 (Net_lda, mode� “circle,” size� 8, label-
�material_name, label.size� 5)
>ggnet2 (Net_qda [[1]], mode� “circle,” size� 8,
label�material_name, label.size� 5)
>ggnet2 (Net_qda [[2]], mode� “circle,” size� 8,
label�material_name, label.size� 5)
>ggnet2 (Net_qda [[3]], mode� “circle,” size� 8,
label�material_name, label.size� 5)

From Figures 2 and 3, we can observe that precision
matrices provide complex network structures in predictors.
In particular, in Figure 3, we can see that the estimated class-
dependent network structures are different from each other,
and the network structure in class 2 looks more complex
than others. To assess the performance of prediction, we
input predicted values (yhat_lda or yhat_qda) and responses
in the validation data (Y_test) to the function Metrics, and
the resulting values are displayed below.

>Metrics (yhat_lda, Y_test)
$“Confusion matrix”

[, 1] [, 2] [, 3]
[1, ] 15 0 0
[2, ] 0 26 0
[3, ] 0 1 4
$“(PRE, REC, F-score)”
[1] 0.9782609 0.9782609 0.9782609
$ARI
[1] 0.9410827
#############
>Metrics (yhat_qda, Y_test)
$“Confusion matrix”
[, 1] [, 2] [, 3]
[1, ] 15 0 0
[2, ] 0 27 0
[3, ] 0 0 4
$“(PRE, REC, F-score)”
[1] 1 1 1
$ARI
[1] 1

Finally, we further adopt the function lda in the packages
MASS, sparseLDA, and penalizedLDA to perform the
conventional discriminant methods and compare them with
our NetDA. Detailed implementations and numerical results
are given below:

>Wine� data.frame (cbind (Y, X))
>##Demonstration of MASS
>lda� lda (Y., Wine, prior� c (length (which (Y� � 1)),
length (which (Y� � 2)), +length (which (Y� � 3)))/
length (Y))
>predict (lda, X_test) $class -> lda_pred
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>
>Metrics (lda_pred, Y_test)
$“Confusion matrix”
[, 1] [, 2] [, 3]
[1, ] 15 1 0
[2, ] 0 26 0
[3, ] 0 0 4
$“(PRE, REC, F-score)”

[1] 0.9782609 0.9782609 0.9782609
$ARI
[1] 0.9196658
>#Demonstration of sparseLDA
>n� length (Y)
>I�max (Y)
>y�matrix (0, n, I)
>y [1 : 45, 1]� 1

Figure 2: Pooled subject-based network structures obtained by NetDA under the argument method� 1.

Figure 3: Class-dependent network structures obtained by NetDA under the argument method� 2. Left, middle, and right panels are based
on predictors in classes 1, 2, and 3, respectively.
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>y [46 : 90, 2]� 1
>y [91 :135, 3]� 1
>colnames (y)<- c (“1,” “2,” “3”)
>sda� sda (data.frame (X), y, lambda� 1e − 6,
stop� − 1, maxIte� 25, +trace�TRUE)
ite: 1 ridge cost: 101.1419 |b|1: 0.001636884
ite: 2 ridge cost: 47.61608 |b|1: 0.002647311
ite: 3 ridge cost: 47.61608 |b|1: 0.002647311
ite: 1 ridge cost: 129.1129 |b|1: 0.01364973
ite: 2 ridge cost: 129.1129 |b|1: 0.01364973
final update, total ridge cost: 176.729 |b|1: 0.01629704
>sda_pred� as.numeric (unlist (predict (sda, data.-
frame (X_test)) $class))
>Metrics (sda_pred, Y_test)
$“Confusion matrix”
[, 1] [, 2] [, 3]
[1, ] 14 26 2
[2, ] 0 0 0
[3, ] 0 0 1
$“(PRE, REC, F-score)”
[1] 0.3488372 0.3488372 0.3488372
$ARI
[1] 0.07272024
>#Demonstration of penalizedLDA
>pda�PenalizedLDA (X, Y, lambda� 0.14, K� 2)
>pda_pred� as.numeric (unlist (predict (pda, data.-
frame (X_test)))) [1 : 46]
>Metrics (pda_pred, Y_test)
$“Confusion matrix”
[, 1] [, 2] [, 3]
[1, ] 14 4 0
[2, ] 0 21 0
[3, ] 0 1 3
$“(PRE, REC, F-score)”
[1] 0.8837209 0.8837209 0.8837209
$ARI
[1] 0.6229476

In general, we can see that NetLDA and NetQDA have
the satisfactory performance in prediction. For the NetLDA
method, there is one misclassification as shown in the
confusion matrix, while the predicted classes determined
by NetQDA are all equal to the responses in the validation
data. From the comparison to NetDA, we observe from a
confusion matrix determined by the conventional linear
discriminant analysis (lda) is comparable to that obtained
by the NetLDA method, but it is interesting to see that the
value of ARI determined by NetLDA is slightly larger than
that based on lda. In addition, it is clear to see that the
NetQDA method is better than lda. On the contrary, it is

surprising to see that two penalized methods sparseLDA
and penalizedLDA do not have satisfactory performance of
classification and prediction, especially that sparseLDA has
the most unexpected result. In summary, the numerical
results in this data analysis show (a) the importance of
incorporating predictor network structures in the classi-
fication procedure, and (b) the advantage of adopting class-
dependent network structures.

5. Summary

Classification and prediction have been important topics in
supervised learning, and discriminant analysis is a useful
method in statistical learning. While many methods have
been developed, little method has been available to handle
potential network structures in predictors when building
predictive models. In addition, rare relevant software has
been developed for statistical analysts whose interest is to
incorporate network structures and obtain precise
classification.

To address this concern, we develop an R package
NetDA for public use. Our package provides two functions.
+e function NetDA aims to incorporate the information of
network structures in predictors to do linear or quadratic
discriminant functions. +e other function Metrics sum-
marizes some useful and informative criteria to assess the
performance of classification and prediction. A detailed
documentation and concrete examples illustrate the validity
of the methods in this package. Finally, some further de-
velopments can be explored based on the current package,
including the alternative approaches of detection of network
structures (e.g., Hastie et al. [12]; Section 9.4), nonpara-
metric discriminant analysis with network structure ac-
commodated (e.g., Chen [17]), and analysis of noisy data,
such as measurement error models (e.g., Chen and Yi [18];
Chen and Yi [19]).
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