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�is paper introduces a new generator family of distributions called the Gompertz Ampadu-G family. Based on the generator, the
Lomax distribution was modi�ed into Gompertz Ampadu Lomax.�e new distribution has a �exible hazard rate function that has
upside-down and bathtub shapes, including increasing and decreasing hazard rate functions. �e distribution comes with some
desirable statistical properties. �e distribution is applied to real-life data. Parameter estimates and test statistics show a better �t
for the competitive models.

1. Introduction

Several classical distributions have been modi�ed over the
last decade to cater to improved modeling in the �elds of
insurance, economics, actuarial, engineering, environmen-
tal, medical, biological studies, demography, sciences, and
�nance. In the attempt to develop these classical distribu-
tions, several generator families of distribution become
relevant and are used to modify existing distributions to
make them more �exible. Some generator families of dis-
tributions that have been employed over the years are: Beta-
G by Eugene et al., [1]; Marshall–Olkin generated family
(MO-G) by Marshall and Olkin [2]; proportional reversed
hazard rate family by Gupta and Gupta [3]; gamma-G (type
1) by Zografos and Balakrishanan [4]; logistic-G by Torabi
and Montazari [5]; Transformed-Transformer (T-X) by [6]
and Lomax-G by Cordeiro et al., [6]. Some other G family of
distributions include the new generalized two-sided class of
distributions with emphasis on two-sided generalized nor-
mal distribution by Kharazm and Zargari [7]; a new family of
the continuous distributions, the extendedWeibull-G family
by Mustafa et al. [8]; the odd power Lindley generator of

probability distributions by Mustafa et al. [9]; the
HJORTH’S IDB generator of distributions by Mustafa et al.
[10]; a new �exible family of continuous distributions by
Altun et al. [11], the type I quasi Lambert family by
Hamedani et al. [12] and the Fréchet Topp Leone-G Family
of Distributions by Hesham et al. [13].

Most of these distributions have a few parameters, which
restrict modeling �exibilities. In this study, the Gompertz
generator family [14] and that of the Ampadu-generator
family [15] are mutually improved to make them more
�exible. �e two distributions are combined to create three
parameters. Unlike Alizadeh et al. [16] with only one scale
parameter and Tahir et al. [17] with only two-scale pa-
rameters, the Korkmaz et al. [18] model also had the ad-
vantage of being capable of modeling various shapes but was
only applicable in aging and failure criteria. �e Gom-
perz–Ampadu has three scale parameters that have more
power in modeling data with highly dispersed
characteristics.

�e Gompertz G family CDF is given as

F(x) � 1 − eα/β 1− (1− H(x: τ))− β( ) α> 0, β> 0, x> 0 , (1)
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where H(x) and h(x) are CDF and the PDF of the baseline
distribution. &e Gompertz G family has two parameters α
and β . Differentiating (1) gives the PDF of Gompertz G
distribution as

f(x: α, β, τ) � αh(x: τ)(1 − H(x: τ))
− β− 1

e
α/β 1− (1− H(x: τ))− β( )􏼒 􏼓.

(2)

&e Ampadu G family CDF is given as

H(x: c, τ) �
1 − e

− c(G(x: τ)2

1 − e
− c , c> 0, x> 0, (3)

where G(x) and h(x) are the CDF and the PDF of the
baseline distribution. &e Ampadu G has one scale pa-
rameter without any shape parameter. &is means that the
distribution is limited with the control of skewness of which
shape parameters give.

Differentiating (3) gives the PDF of the Ampadu G

family as

h(x: c, τ) �
2cg(x: τ)G(x: τ)e

− c(G(x: τ)2

1 − e
− c . (4)

2. The Gompertz–Ampadu-Generator Family

&e absence of the shape parameter in Ampadu G motivates
combining it with Gompertz G, which has a shape pa-
rameter. &is arrives at the Gompertz Ampadu G, which has
both shape and scale parameters. Combining (1) and (3), we
obtain the Gompertz Ampadu-generator family of distri-
butions. In this regard, equation (3) is inserted in (1) to get
the CDF of the Gompertz Ampadu-G family as

F(x) � 1 − e
α/β 1− 1− 1− 1− e− c G(x: τ){ }2 /1− e− c( 􏼁( 􏼁

− β
􏼐 􏼑

, α> 0, β> 0, c> 0, x> 0.

(5)

&e Gompertz Ampadu G has three parameters, thus,
two-scale parameters α and c with one shape parameter β.

Hence, (5) is differentiated to get the PDF of the
Gompertz Ampadu-G family as

f(x: α, β, τ) � 2αcg(x: τ)G(x: τ)e
− c(G(x:τ)2

1 − e
− c

( 􏼁
− 1 1 − e− c( ) − 1 − e− c(G(x: τ)2􏼐 􏼑

1 − e− c
⎛⎝ ⎞⎠

− β− 1

.

(6)

&e hazard function of the Gompertz Ampadu-gener-
ator is

d(x) �
2αcg(x: τ)G(x: τ)e

− c(G(x: τ)2 1 − e
− c

( 􏼁
− 1 1 − e

− c
( 􏼁 − 1 − e

− c(G(x: τ)2

􏼒 􏼓/1 − e
− c

􏼒 􏼓
− β− 1

1 − 1 − e
α/β 1− 1− 1− 1− e− c(G(x: τ)2 /1− e− c( 􏼁( 􏼁

− β
􏼐 􏼑

􏼠 􏼡

. (7)

3. Some Statistical Properties

Finding the inverse of (5), we obtain the quantile of
Gompertz Ampadu-generator as

xu � G
− 1

−
1
c
ln 1 + 1 − e

− c
( 􏼁 1 − 1 −

β
α
ln u + 1􏼠 􏼡

− 1/β
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/2

, α> 0, β> 0, c> 0, x> 0. (8)

&e quantile function generates random numbers to be
used for the simulation exercise. &is is about inverting the
CDF of the Gompertz Ampadu G.

3.1. Useful Expansion. It can be shown that the CDF of the
Gompertz Ampadu-G family depicts the partial expansion.
&e partial expansion helps in the derivation of the other
statistical properties like moments, entropy, stress reliability,
and more [18]. Given that G(x: τ) is the baseline distri-
bution of any model. &e expansion is as follows:

F(x) � 1 − 􏽘
∞

i�0
􏽘

i

j�0
􏽘

∞

k�0
cijkG(x: τ)

� 1 − 􏽘
∞

k�0
vkG(x: τ)

� 􏽘
∞

k�0
zkG(x: τ),

cijk �
(− 1)

1+k

i!

i

j
⎛⎝ ⎞⎠

− jy

k
⎛⎝ ⎞⎠

α
β

􏼠 􏼡

i

, vk � 􏽘
∞

i�0
􏽘

∞

j�0
cijk,

(9)
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z0 � 1 − v0 and zk � − vk for k � 1, 2, . . . With this
Fk(x) � G(x)k, which stands for exponentiated G cumu-
lative with power parameter k> 0. Some of the structural
properties of the exponentiated G are shown by Mudholkar
et al. [19]; Gupta and Kundu [20] and many other authors.
&e expansion will serve a good purpose for other desirable
properties of the Gompertz Ampadu-generator to be further
developed.

4. Estimation

&e maximum likelihood estimates (MLEs) of the param-
eters of a new family of distributions provide desirable
properties [21]. In this new family of distributions, assuming
x1, x2, . . . , xn are the observed values taken from the
Gompertz Ampadu generator with parameters ϖ, α, β, c and
τ, let ϖ � (α, λ, τT) represent the r × 1 parameter vector.
Hence the total log-likelihood function for ϖ is given by

ℓn � ℓn(ϖ) � n log + 􏽘
n

i�1
log g xi; τ( 􏼁􏼂 􏼃 − (β + 1) 􏽘

n

i�1
log 1 − 1 −

1 − e
− c(G(x: τ)2

1 − e
− c

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦+

α
β

􏽘

n

i�1
log 1 − 1 − 1 −

1 − e− c(G(x: τ)2

1 − e− c
􏼠 􏼡􏼠 􏼡

− β
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(10)

In respective of α, β, c, and τ, the mathematical software
was used to differentiate the total log function to get the
score function and estimate for the parameter values.

5. Application of Gompertz–Ampadu Family to
Lomax Distribution

&e Gompertz AMPADU-generator was applied on the
Lomax distribution of CDF G(x) � 1 − (1 + λx)− θ,

x> 0, λ> 0, θ> 0, and PDF: g(x) � θλ(1 + θx)− θ− 1, x> 0 to
obtain Gompertz Ampadu Lomax distribution (GA_L). &e
CDF, PDF, and hazard functions of the new distribution
respectively follow as

F(x) � 1 − e
α/β(1− (1− (1− 1− e− c(1−(1+λx)− θ )2 /1− e− c))− β)

, α> 0, β> 0, c> 0, λ> 0, θ > 0, x> 0. (11)

Hence, (5) is differentiated to get the PDF of the
Gompertz Ampadu-G family as

f(x: α, β, τ) �
2αcθλe

− c 1− (1+λx)− θ( )
2

1 − (1 + λx)
− θ

􏼐 􏼑

1 − e
− c

( 􏼁(1 + θx)
θ+1

1 − e− c( ) − 1 − e− c 1− (1+λx)− θ( )
2

􏼒 􏼓

1 − e− c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

− β− 1

, α> 0, β> 0, c> 0, λ> 0, θ> 0, x> 0 (12)

Some selected parameter values of the GA_L, whose
shapes are presented in Figure 1 as follows, show more
flexible shapes. &e flexible nature of the distribution means

that it can model data that is right-skewed, left-skewed, and
symmetrical.

&e hazard(H) function of the GA_L distribution is
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d(x: α, β, τ) �
2αcθλe− c 1− (1+λx)− θ( )2 1 − (1 + λx)− θ( )/ 1 − e− c( )(1 + θx)θ+1 1 − e− c( ) − 1 − e− c 1− (1+λx)− θ( )2( )/1 − e− c( )

− β− 1

1 − 1 − eα/β(1− (1− (1− 1− e
− c(1−(1+λx)− θ )2 /1− e− c))− β)( )

,

α> 0, β> 0, c> 0, λ> 0, θ> 0, x> 0.
(13)

�e hazard function can be used to model the failure rate
of a system.�e hazard plot of some parameter values of the

hazard function is displayed in Figure 2 as follows. �e
GA_L shows increasing and decreasing bathtub shapes.

�e quantile function of the GA_L distribution is

xu � 1 − (1 + λx)− θ( )
− 1

−
1
c
ln 1 + 1 − e− c( ) 1 − 1 −

β
α
ln u + 1( )

− 1/β
     

1/2

, α> 0, β> 0, c> 0, λ> 0, θ> 0, x> 0.

(14)

�e quantile function was used to generate random
numbers for the simulation exercise. �e function was
derived by inverting the CDF of the GA_L distribution.

6. Simulation Study

In assessing the performance of the MLEs, this was done
through the Monte Carlo simulation. In this case, 1000
replications were performed using the R software (stats4
package). �e results in Table 1 show decreasing standard
errors (SE) and root mean square errors (RMSE) with in-
creasing sample sizes.

7. Application of Gompertz–Ampadu–Lomax to
Myelogenous Leukaemia Data

�is study used the survival times data in the weeks of 33
patients su«ering from acute myelogenous leukaemia. �e
data was �rst used by Feigl and Zelen [22]. �e dataset is
represented in Table 2; Table 3 gives the estimates and
standard deviations of the di«erent models used; and Table 4
also gives the AIC, BIC, Kolmogorov–Smirnov test, and the
p-values. �e results show smaller AIC, BIC, and Kolmo-
gorov–Smirnov values than the competing models. �is
means that the Gompertz Ampadu Lomax is better than the
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Figure 1: PDF plot of GA_L distribution.
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Figure 2: Hazard plot of some parameter values for GA_L.

Table 1: Monte Carlo simulation results of GA_L.

True parameter value ABIASS RMSE
α β c λ θ̂ n α̂ β̂ ĉ λ̂ θ̂ α̂ β̂ ĉ λ̂ θ̂
0.3 0.3 0.4 0.5 0.2 50 4.267 0.235 0.027 0.356 0.027 4.786 0.143 1.440 0.379 2.443

100 3.973 0.230 0.026 0.324 0.026 5.552 0.236 0.478 0.339 1.378
150 3.324 0.253 0.021 0.302 0.021 5.122 0.228 0.822 0.340 2.722
200 3.240 0.321 0.021 0.295 0.021 3.084 0.226 0.290 0.305 1.191
500 3.240 0.321 0.021 0.295 0.021 3.084 0.226 0.290 0.305 1.191
1000 0.240 0.001 0.001 0.095 0.001 1.084 0.006 0.090 0.005 0.091

0.3 0.3 0.2 0.5 0.2 50 5.302 0.325 0.029 0.032 0.021 3.058 0.354 0.196 0.260 1.096
100 4.507 0.309 0.027 0.041 0.008 5.810 0.332 0.182 0.242 1.082
150 4.200 0.301 0.046 0.023 0.036 5.472 0.321 0.254 0.237 0.255
200 3.892 0.388 0.054 0.025 0.035 5.115 0.308 0.233 0.268 0.233
500 3.092 0.088 0.044 0.015 0.025 5.015 0.208 0.133 0.168 0.133
1000 0.092 0.008 0.004 0.005 0.005 4.015 0.008 0.033 0.068 0.033

0.6 0.3 0.3 0.4 0.1 50 1.061 0.113 0.049 0.012 0.038 5.337 0.359 0.256 0.203 0.356
100 1.021 0.111 0.035 0.012 0.026 5.167 0.345 0.289 0.203 0.389
150 1.012 0.108 0.030 0.012 0.021 5.087 0.336 0.131 0.202 0.333
200 1.006 0.110 0.031 0.012 0.022 5.066 0.439 0.374 0.302 0.374
500 1.005 0.010 0.021 0.010 0.012 5.056 0.339 0.274 0.202 0.274
1000 0.005 0.000 0.001 0.000 0.002 2.056 0.039 0.074 0.002 0.074

0.3 0.1 0.4 0.2 0.5 50 4.002 0.152 0.088 0.047 0.079 3.853 0.467 0.143 0.454 0.643
100 2.277 0.126 0.191 0.025 0.182 3.205 0.548 0.312 0.333 3.313
150 1.697 0.115 0.045 0.019 0.036 3.548 0.536 0.116 0.523 4.116
200 1.336 0.188 0.037 0.042 0.028 3.028 0.526 0.227 0.516 5.127
500 1.036 0.088 0.027 0.032 0.018 3.018 0.426 0.127 0.416 5.027
1000 0.036 0.008 0.007 0.002 0.008 1.018 0.006 0.027 0.016 2.027

Values in bold are the true parameter values of the GA_L.
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Gompertz Lomax, Ampadu Lomax, and the Lomax itself for
modeling survival data.

Figure 3 gives the goodness-of-�t histogram plots of the
competing models with the survival data. �e plot shows
Gompertz Ampadu Lomax (GA_L) to be better than the
other models.

8. Conclusion

�e Gompertz Ampadu-G family is derived in this study.
Based on the generator, the Lomax distributions were also
modi�ed into Gompertz Ampadu Lomax. �e new distri-
bution has a �exible hazard rate function, which has upside-

Table 2: Survival times of acute myelogenous leukaemia data.
65 156 100 134 16 108 121 4 39 143
56 26 22 1 1 5 65 56 65 17
7 16 22 3 4 2 3 8 4 3
30 4 43

Table 3: �e estimates and standard errors (in parentheses) for survival times.

Estimates
Model α β c λ θ
GA_L 21.2360 1.2438 1.0388 0.1042 0.5467

(0.3494) (4.9349) (0.1233) (0.0122) (0.2121)
Ampadu_L 1.0961 0.0312 1.2483

(6.7061) (0.3646) (1.6000)
Gompertz_L 11.4014 3.9896 0.0151 0.0506

(8.51 × 10− 1) (1.08 × 10− 1) (6.10 × 10− 2) (2.56 × 10− 3)
L 1.3090 0.0175

(2.0548) (0.0054)

Table 4: Goodness-of-�t for dataset survival times.

Model -L AIC BIC K–S P value
GA_L 139.2600 308.0033 315.5959 0.2073 0.7415
Ampadu_L 143.4200 314.0132 320.0194 0.2365 0.4701
Gompertz_L 142.4200 311.0141 315.0044 0.2288 0.5446
L 143.6700 323.1425 316.6324 0.2366 0.4697
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Figure 3: Histogram plot of models with survival times data.
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down and bathtub shapes, including increasing, decreasing
hazard rate functions. &e distribution comes with some
desirable statistical properties and is applied to a real-life
data. Parameter estimates and test statistics show a better fit
than competitive models. However, it is recommended that
the Gompertz Ampadu-generator family of distributions be
used to develop classical distributions like Weibull, expo-
nential, Fréchet, and many more distributions.

Data Availability

&e data used for the evaluation of the generator is from a
previously used data set by Feigl
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼amp; Zelen (1965) which
has been duly cited in the manuscript. &e description of the
data is available in Feigl: Leukaemia survival times-Feigl
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼amp; Zelen in SMIR:
Companion to Statistical Modeling in R (rdrr.io). &e
processed data can be accessed from the R package survival.
&e data has also been uploaded as a supplementary file.
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