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Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and
represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and
overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100%
categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also
compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the
linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data
modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity.
Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the
minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number,
and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF
performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF
predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable,
conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of
overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.

1. Introduction

Interest in modelling count data has increased significantly
over the past two decades. The Poisson distribution is still
the most widely used distribution for modelling count data
in many research areas, despite the violation of its well-
known property that the mean and variance are equal,
conditional on explanatory variables. However, the Poisson
distribution is inadequate to model overdispersed count data

[1, 2]. As a result, a multitude of alternative count data
models have been developed to address the shortcomings of
the Poisson regression in the presence of overdispersion,
including quasi-Poisson [3], generalized Poisson [4], neg-
ative binomial [5-7], zero-inflated Poisson [8], and zero-
truncated Poisson models [9].

Nevertheless, traditional count data models remain
limited as they may not be capable of detecting the presence
of complex nonlinear interactions between explanatory
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variables and outcomes [10]. In addition, traditional sta-
tistical models used to predict overdispersed data from
selected predictor variables are not suitable for “small-n-
large-p” problems [11].

The random forest (RF) is a good machine learning
approach to improving prediction accuracy and model in-
terpretation [12, 13]. RF is a “data-driven statistical method.”
It is an ensemble learning approach developed to increase
classification accuracy and regression tree prediction by
combining many decision trees [14]. The algorithm takes
advantage of two powerful techniques: random subspace
selection at each split (“classification and regression trees
(CART)-split criterion”) [15] and bagging (an abbreviation
of “bootstrap aggregating”) of unpruned decision tree
learners [16]. The nonlinear nature of RF gives it an edge
over linear algorithms [14, 17]. RF algorithms provide
variable importance measures for variable selection pur-
poses. Moreover, they involve complex high-order inter-
action effects and are user-friendly because they have few
parameters to set and are less demanding in preprocessing
[18]. Over the past 25 years, RF has been successfully applied
to a wide range of prediction problems, mainly for classi-
fication tasks [19-21]. RF has become an effective data
analysis tool that performs well compared to many standard
methods [22].

However, in a regression problem, the range of predic-
tions that RF can make is limited by the highest and lowest
values in the training dataset. When training and testing data
ranges differ, such as when predicting overdispersed response
variables, this behaviour becomes troublesome [23]. Over-
dispersion is one of the important constraints in statistical
analysis and may lead a variable to appear as a significant
predictor when it is not, by deflating or underestimating the
standard errors of the estimates [24]. As a result, it is essential
to fully understand the data’s nature. Furthermore, most of
the existing machine learning methods for regression tasks are
designed for continuous data, and their performance for
counted data is not well known [13].

The primary motivation for this study is thus to evaluate
the effectiveness of computer-based statistical approaches
known as machine learning, such as RF, in the presence of
overdispersed response variables. Since the performance of
an algorithm depends mainly on the characteristics of
datasets to be analysed (type of predictors, number of at-
tributes in the dataset, sample size, noise, and dispersion),
high performance requires the identification of the most
appropriate algorithm for a given problem and dataset [25].
RFs are considered data type-specific, insensitive to unim-
portant and noisy predictors, and dependent on the number
of informative variables [18, 19, 26].

The RF method has shown comparable or even better
prediction performance than other learning methods, such
as neural networks, partial least squares regression, and
support vector machines [14, 19, 22]. Unfortunately, the
impact of overdispersion on the RF performance for dif-
ferent data features has rarely been assessed [27-29]. Thus,
determining the impact of data features on RF parameters’
setting and accuracy is an avenue to explore as efforts are
needed to improve the accuracy of RF estimates [12].
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Therefore, this study aimed to assess the influence of data
features on RF regression performance and compare RF
regression to count data classic regressions. In addition,
datasets with varying magnitudes of overdispersion from
two real case studies are also analysed to examine RF per-
formance when the response variable is overdispersed.

2. Materials and Methods
2.1. Statistical Models

2.1.1. Random Forest Technique (RF). RF methods deal with
both supervised classification and regression tasks [14]. This
research was focused on regression analysis.

(i) Basic Principles. Assuming that we are given a training
sample D, = {(X,,Y));...; (X,,Y,)} of iid. [0,1]9xR
-valued random variables (d >2) with the same distribution
as the independent prototype pair D defined by (X,Y) of
size n satisfying the E[Y]? < co condition. The space [0, 1]% is
equipped with the standard Euclidean metric. For a given
x € [0,1], the regression function estimate m(x) can be
obtained by

m(x) = E[Y|X = x]. (1)

Regarding this, the regression function estimate m,, for
the dataset D,, is assumed consistent if

E[m, (X) -m(X)]" — 0, asn — oo. (2)

In RF, the final predictor is an average of M indepen-
dently randomized regression trees. For a given tree j
randomly generated, the prediction value at the query point
x is denoted m,, (X;©;, D,), where ©,,0,,...,0,, are the
outputs of a randomized variable ® (also known as inde-
pendent random variables).

In practice, the randomized variable ® is used to
resample the training set used in successive individual trees
building [18]. The finite forest estimate (combination of the
M trees grown) is obtained by

M
My (X;0,,...,0,,D,) = % Y m,(X;0,D,). (3
j=1

In the randomForest package, the default value of M is
500. Since M may be chosen arbitrarily large (“limited only
by available computing resources”), this estimate can be
generalized from a modelling point of view, letting M tend to
infinity by an infinite forest estimate [15], obtained by

Meon (X; Dn) =Eg [mn (X; 0, Dn)] (4)

It is noteworthy in practice that the above expectation is
evaluated by Monte Carlo, i.e., by generating M (usually
large) random trees and taking the average of individual
outcomes. This procedure is justified by the law of large
numbers [14, 30] which asserts that the almost surely
conditional on D,, is expressed as follows:

lim mM,n(X7®1"®M’Dn):moo,n(X’Dn) (5)

M—o0
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(ii) Algorithm. The whole process of the RF algorithm can be
summarized as follows:

Let M be the number of trees to grow in the forest and
mtry be the number of variables to select at each node. The
following steps are considered:

(i) We resample the training set to create new boot-
strap samples.

(ii) For each bootstrap sample, we create an unpruned
tree that is grown until all nodes contain observa-
tions no more than the maximal terminal node size
defined by the user (a prespecified parameter).

(iii) At each split node, a randomly selected subset of
predictors is uniformly chosen. In regression tasks
for p predictors, a value equal to p/3 is utilized as the
default value in the R package randomForest. Then,
the best split using only these predictors is deter-
mined or returned. In addition, all observations are
not used in tree construction, and a subset a,, is
picked from the whole sample D,. If a, = n, the
algorithm runs in a bootstrap mode, whereas a,, <n
corresponds to subsampling (with replacement).

(iv) The RF overall prediction value is the average (in
regression) of the results obtained from all M given
by individual trees [15].

(iii) Parameter Tuning. To date, there are limited studies
focusing on RF parameter tuning [31]. According to Probst
and Boulesteix [32], the most important parameters in RF
methods are as follows:

(i) Number of variables to possibly split in each node
(ii) Minimal terminal node size
(iii) Fraction of observations to sample in each tree

(iv) Number of trees

2.1.2. Poisson Regression Extensions Used to Predict Count
Data. The prediction performance of RF was compared
with that of the Poisson model and its extensions. It is
suggested that they be used for assessing count data. The
following models are utilized in this investigation and are
briefly described as follows:

(i) Linear Model. It is a linear function of the form:

P(Y =y |x zi) =

(1- wl-)Poisson(yi; i xl-),

Y = XB+ee~N(0,07), (6)

where Y is the vectorized form of the response variable, X is
a covariate matrix,  is a vector of coeflicients, and ¢ is a
vector of normally distributed errors with 0 mean and a
variance of o7 [33].

(ii) Poisson Model (Poisson). It is a special case of the
generalized linear model (GLM) with a log link function. Itis
the standard GLM for count data [34]. We assume that the
response variable (y;) follows the Poisson distribution with

the mean y;. Its probability mass function is written as
—HiYi
e H

il (7)

P(Y =y;u)=

= exp{[ylog u; — ;] —log(y,")},

wherg the conditional mean is obtained by y; = E(y;/x;) =
exp (xf) with x being the vector of covariates and f3 being the
vector of unknown parameters [35-37].

(iii) Negative Binomial Model (Neg.Bin). In the negative
binomial, a parameter of dispersion (K) is introduced to
accommodate unobserved heterogeneity in the count data.
Its probability density function is written as

K i
yi__ti+K) [ K b\ ()
x; i+ DT(K)\K+p) \K+u )~
! !
where K is a constant, 7 is a function of y;, y; = exp (xf3), x is

the vector of covariates, and f§ is the vector of unknown
parameters [38].

(iv) Quasi-Poisson. The generalized linear model is used to
define the quasi-Poisson model. Let Y be a random variable
such that

E(Y)=u,

Var(Y) = ¢ x 4, ©)

where Var (Y) is Y’s variance, >0, ¢ is the dispersion
parameter and ¢ >0, and E(Y) is Y’s expectation.

(v) Zero-Inflated Poisson model (ZIP). This model is ap-
propriate when there are zeros in excess. Its probability mass
function is written as [34, 36]

(w,z; + (1 - w, (z;))Poisson(; 0| x;), if y; =0,

(10)
if y;>0,



where z; is the vector of covariates, w; is the probability that
the response value is zero, Poisson(y;;0]|x;) = exp(—y;),
and Poisson (y;; y; | x;) = exp (—g;) (pi"/ y;!).

2.2. Simulation Studies

2.2.1. Effect of Dataset Characteristics on RF Algorithm
Parameters’ Setting and Accuracy. Three sample sizes
(N = 50,250, and 1250), three numbers of predictors (p = 8,
16, and 24), and five types of predictors (100, 75, 50, and 25%
continuous, and 100% categorical) were considered.
Schoénbrodt and Perugini [39] stated that n should approach
250 for stable estimates. Biau [18] showed that n>500 is
sufficiently large, while 50 represents a small population size.
Altogether, 45 data types were set. For each case, 1000
datasets were created. Three RF parameters were considered
to determine the best combination, while the number of
trees was maintained constant (500):

(i) Number of variables to be randomly selected at each
split (mtry): mtry=2, 3, ..., p, where p= the
number of predictors
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(ii) Proportion of samples for model training (sample
size) with four levels (55, 63.2,70, and 80%)

(iii) Minimal number of samples within each terminal
node (node size = 2, 3, 4, ..., 9)

Depending on the number of predictors, the combina-
tion of different parameters under study resulted in 224, 480,
and 736 different scenarios for each data type. Each scenario
was run 1000 times to find optimal parameter combinations.
For all datasets, the generated explanatory variables were not
correlated and were not informative. The dependent variable
was generated randomly from the Poisson distribution with
lambda equal to one, which is denoted as Poisson (A = 1).
Categorical predictors were randomly generated by varying
the number of levels from 2 to 8. Uncorrelated quantitative
covariates were generated from a multivariate normal dis-
tribution (MVN) y ~ N, (0, 1), whose density function in
the case of n dimensions is written as

2
01 Gln
FilwZ) = £l Gy ) | = (s o) 2 =
Gnl sz (11)
——exp( (-0 (- 0)
= ————exp( (i —) T (- ) ).
v (2n) X 2

The symbol |X| refers to the determinant of the matrix .
The matrix ¥ must be positive semidefinite to assure that the
most likely pointis y = (yy, 4y, - - - » 4,,) and that, as y; moves
away from y in any direction, then the probability of ob-
serving y; declines. The denominator in the formula for the
MVN is a normalizing constant, which assures that the
distribution integrates to 1.0 [40].

2.2.2. Effect of Overdispersion on RF Parameters’ Setting and
Accuracy. In order to assess the effect of overdispersion on
the setting and performance of RF parameters, negative
binomial-distributed (Y,;,) and quasi-Poisson-approxi-
mated (Y,,) variables were randomly generated. The vari-
ance-to-mean relationship of Y,;, is quadratic, while the
variance-to-mean relationship of Y, is linear such as

E(Ynh) =W,

E(qu) =4
Var(Y,,) = p+ ¢ x 1%,
Var(YqP) =u+dxu,

(12)

where y > 0, ¢ is the dispersion parameter, and ¢ > 0. For this
objective, y = 3 with varying ¢ = 1, 3, and 5. Three different
samples (N = 50,250, and 1250) and five types of predictors
as in the first simulation design were considered. Figure 1
shows the shape and the distribution of randomly generated
overdispersed outcomes.

2.2.3. RF Performance Compared to Poisson Model
Extensions. Negative binomial-distributed variables (Y)
were generated with the linear and quadratic variance-to-
mean relationships. We let the mean y vary as a function of
two informative covariates m = 2 and different levels of the
dispersion parameter ¢. The mean of the outcome Y; of 1000
observations was obtained according to the model
log (E(Yim = )/|sz)) = 10g ([’lt) =at Zﬁq—l ﬁmXiiw where ﬁ
is a collection of parameters (f8; = 1,3, = 0.5) and a = 0.145.
In addition, three noninformative variables were added from
a multivariate normal distribution (MVN) ~ N, (0, 1).

All datasets were divided into two subsets: training and
validation. 70% of the data were randomly selected for model
calibration and the remaining 30% for model validation.

Poisson regression, negative binomial, zero-inflated
Poisson, and zero-inflated negative binomial were compared
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Fi1GURE 1: Histograms and density plots of some randomly generated overdispersed outcomes.
TaBLE 1: Average tick counts on two local goat breeds.
Breed 1 Breed 2
Age (months) . . . . . . . . . .
Billy 1 Billy 2 Billy 3 Billy 4 Billy 5 Billy 6 Billy 7 Billy 8 Billy 9 Billy 10
1 1 3 4 1 4 3 4 4 2 2
2 3 3 6 1 8 7 6 8 6 6
3 4 3 7 1 13 15 4 10 14 8
4 5 7 16 9 4 7 12 8 6 18
5 16 8 9 6 19 13 19 39 12 17
6 1 3 4 31 16 9 16 16 14 2
7 1 24 11 8 18 10 32 4 37 9
8 17 3 12 9 4 11 12 36 10 18

to the RF regression technique and linear regression applied
to the log-transformed response variable log(Y + 1), as it is
considered to be one of the alternatives when dealing with
overdispersion or count data [41, 42]. The analysis of var-
iance (ANOVA) test and Tukey’s honest significant differ-
ence test (Tukey HSD) were conducted to compare the
performance of methods.

2.2.4. Criteria for Methods’ Accuracy Assessment. The root
mean square error (RMSE) and biases were computed for
each model. These evaluation criteria are calculated as
follows:

(13)

1n
Bias =~ Y (E(P;) - 0,),
ias = 2 (E(P)-0))

where P; and O; are the predicted and observed values in the
subunit i, respectively, # is the number of samples (subunits)
[43], and E (P;) is the average of the predicted values [44].
The RMSE represents the overall quality of the prediction.
Predictions become increasingly optimal as the RMSE

approaches zero [43, 45]. All analyses were computed using
R 4.0.3 software [46].

2.3. Motivating Real Datasets. We used two datasets from
real case studies to examine RF performance at two mag-
nitudes of overdispersion caused by outliers or zero infla-
tion. The first example is tick burdens observed on two local
goat breeds. Ticks were counted monthly between birth and
the age of eight months on ten billy goats belonging to two
local breeds [47]. The results are shown in Table 1. The
dispersion statistic for this dataset is 3.050, caused by
outliers.

The second example is the dataset “NMES1988”: De-
mand for Medical Care in the National Medical Expenditure
Survey (NMES) conducted in 1987 and 1988 [48]. This
dataset contains 4406 observations on 19 variables. In this
example, we examined the relationship between the number
of physician office visits (response variable) and health
(factor indicating self-perceived health status), age in years
(divided by 10), gender, married (factor indicating that the
individual is married), income (family income in USD
10000), and insurance (factor indicating that the individual
is covered by private insurance) as predictors. The dispersion
statistic for this subset is 7.345, caused by outliers and zero
inflation.
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FIGURE 2: Best RF mutry as a function of the population size, number, and type of predictors (Numeric = 100% are quantitative predictors,
Mixt1_3 = 25% are quantitative predictors, Mixt1_2 = 50% are quantitative predictors, Mixt3_1 = 75% are quantitative predictors, and

Categorical = 100% are categorical predictors). (a) N =50,P =38, (b) N =250,P =38, (c) N =1250,P =8, (d) N=50,P =16, (e) N =
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FIGURE 3: Best RF node size as a function of the population size, number, and type of predictors (Numeric = 100% are quantitative
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FIGURE 4: Best RF sample size as a function of the population size, number, and type of predictors (Numeric = 100% are quantitative
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(e) N =250,P = 16, (f) N = 1250,P = 16, (g) N = 50, P = 24, (h) N = 250, P = 24, and (i) N = 1250, P = 24,

3. Results and Discussion
3.1. Results

3.1.1. Effect of Data Features on RF Regression’s Parameters’
Tuning. The effect of predictor types on RF parameter
settings for a response variable following a Poisson distri-
bution with the parameter is A = 1.

In most scenarios, as shown in Figure 2, the RF algo-
rithm performs better with the number of variables ran-
domly selected at each split (mtry), varying between two and
four when there are many observations and a few predictors.
Figure 2 shows that the number of variables to be randomly
selected at each split is independent of the type of data.
Nonetheless, the combination of various types of predictors
causes some variability in the mtry values that yield the
optimal predictive performance. When the sample size is
small (n =50) and the number of predictors is large (p =
24), there is a considerable fluctuation in mtry values
(Figure 2(g)).

Figure 3 indicates that when the sample size is large
(n=1250) and the number of predictors is small (8), the RF
algorithm performs better in the majority of cases with the
highest minimum number of observations in each terminal
node (between seven and nine). Furthermore, when the
fraction of qualitative predictors was high, even for large
sample sizes and a small number of predictors, the proportion
of scenarios that achieved the optimal predictive performance
with high values of the minimum number of observations in
each terminal node (best node size >) also increased. Small
sample sizes (n = 50) showed a considerable variation in the
number of observations in terminal nodes.

Figure 4 shows that, in most circumstances, the RF
method performs better when 55 percent of the whole
sample size is used, followed by 63.2 percent. However, it
turns out that the variation in this parameter depends on the
ratio of the sample size to the number of predictors. The
greater the ratio, the better the algorithm performs with
fewer observations, whereas the lower the ratio, the more
observations are used.

3.1.2. Effect of Overdispersion on the RF Parameter Settings
for Various Predictor Types. As shown in Table 2, the RF
algorithm works similarly for all types of predictors and
magnitudes of dispersion. In most cases, regardless of the
number of predictors or the extent of overdispersion, the
optimal performance of RF is obtained by setting the
number of variables to randomly sample at each split equal
to two (mainly a small number of variables between two and
four). Overall, for all types of predictors and observation
sizes, it is observed that dispersion does not influence RF
parameters’ tuning.

According to Table 3, when predictors are categorical,
for the same number of observations, the RF algorithm tends
to use smaller samples to train the model as the number of
predictors decreases. Thus, when eight predictors were
considered, regardless of their type or level of over-
dispersion, the best performance was obtained in most cases
using 55% of the total number of observations. In most
scenarios, this proportion is followed by 63.2%. Further-
more, as the number of predictors increases, the 55%
proportion loses dominance. As a result, the likelihood of
obtaining the best performance with a large proportion of
samples to train the model increases.

However, when all predictors are quantitative contin-
uous or mixed with qualitative predictors, no trend was
observed for the best size of the sample to draw and the
minimum size of terminal nodes in RF, regardless of the
complexity of the response variable.

In most cases, the best performance of RF is obtained
with a minimum terminal node size greater than five, the
default value used for regression. Table 4 shows that, re-
gardless of the degree of overdispersion of the dependent
variable, the RF algorithm performs best with a minimum
terminal node size greater than five. For qualitative pre-
dictors, the preponderance of the high number of obser-
vations per node decreases as the number of predictors
increases. However, as the number of predictors increases,
the fraction of cases, where the best performance is achieved
with a large number of observations per node, decreases.
Thus, it turns out that globally, irrespective of the type of
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predictors, for the same number of observations, the higher
the number of predictors, the smaller the minimum size of
the terminal nodes. However, it should be noted that the
number of predictors is not always inversely proportional to
the minimum size of terminal nodes. In some scenarios, the
minimum size of terminal nodes does not vary with the
number of predictors. In contrast, in others, the best per-
formance is obtained with small minimum sizes of terminal
nodes, even when there are few predictors. Thus, when there
are a few observations and many predictors, no trend is
predictable, and the parameter will depend only on the
complexity of the relationship between the data F.

3.1.3. Impact of Overdispersion on the RF Predictive Per-
formance for Different Types of Predictors. There was no
difference among the types of covariates considered to be
part of this simulation study. Using the best combination of
parameters, RF performed similarly for all types of cova-
riates regardless of the level of dispersion in the response
variable. However, the performance of the RF for the sample
size n =50 varied enormously for different levels of dis-
persion, whereas the values were stable for large sample sizes
(in our case n = 1250). RF performance was impacted by the
magnitude of overdispersion, but relatively more accurate
results were obtained when the population size was large in
comparison to a small population size, where the RMSE
varied enormously for different levels of dispersion
(Figures 5(a) and 5(b)).

3.1.4. Assessment of the RF Performance Compared to Tra-
ditional Approaches for Count Data Prediction. In this
section, we analyse the performance of RF regression
compared to classical log-linear, Poisson, quasi-Poisson,
negative binomial, and zero-inflated Poisson models for
different sample sizes and overdispersion degrees. Table 5
and Figure 5 show that linear regression applied to the log-
transformed response variable has the lowest performance.
However, in most scenarios, the biases and RMSE obtained
using the RF approach to predict the results of the over-
dispersed count are not statistically different from the biases
and RMSE obtained using traditional Poisson family
methods. Furthermore, no statistical difference was observed
when the variance-mean relationship was quadratic, with
some exceptions for low overdispersion. However, for the
linear variance-to-mean relationship, the mean RMSE of RF
is higher than that of GLMs, i.e., less accurate with higher
variability. As a result, while predicting overdispersed
outcomes, the most accurate and precise method will have to
be identified case by case, depending on the available data. In
some situations, RF will be the best performing method,
while in others, it will not. Figures 6(a) and 6(b) present RF
compared to the biases of GLM family models and RMSE
regression lines as a function of dispersion and indicate the
95% confidence interval (range), represented by the grey
zone in which the biases and RMSE would be if the ex-
periment were repeated. Globally, the mean of the RMSE
and the biases of RF tend to increase as dispersion increases.
Consequently, the slope of the regression of the RMSE in the
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function of dispersion and the range of RMSE values are
lower for outcomes with linear variance-to-mean relation-
ships than for those with quadratic variance-to-mean
relationships.

3.1.5. Real Dataset Results. RF yielded the lowest mean of
the absolute values of biases (1.51 + 1.16) compared to
linear regression applied to the logarithmic transformation
of tick burden (8.24 + 1.43), negative binomial (1.56 +
1.19), quasi-Poisson (1.52 + 1.17), and Poisson (1.52 +
1.17) regressions for the dataset with overdispersion caused
by outliers (Figure 7(a)). However, the difference between
the mean absolute values of biases is not significant. Quasi-
Poisson and Poisson (7.72 + 1.32) have the lowest RMSE
values, followed by the RF (7.75 + 1.34) and negative bi-
nomial (7.82 + 1.29) but are not significantly different
according to the Tukey HSD test (Figures 7(a) and 7(b)).
For the NMES1988 dataset with overdispersion caused
by outliers and zero inflation, quasi-Poisson, Poisson, zero-
inflated Poisson, and negative binomial produced the lowest
absolute value of biases (0.18 + 0.14), followed by RF
(0.19 + 0.14). Furthermore, the zero-inflated Poisson model
(6.56 + 0.39) yielded the lowest RMSE, followed by quasi-
Poisson (6.57 + 0.39), negative binomial (6.57 + 0.39), and
RF (6.59 + 0.4). As for the tick burden dataset, no statis-
tically significant difference was observed between RF and
traditional Poisson family models (Figures 7(c) and 7(d)).

3.2. Discussion

3.2.1. Impact of Data Features on RF Regression. One of the
characteristics of many databases that practitioners consider
is the complex relationship among data, which typically yields
enormous noise. In some situations, this complexity may
directly or indirectly result from variables at the hand and
affect many statistical procedures. Computer-based statistical
methods are more appropriate than traditional statistical
models for effectively solving this complex problem and
dealing with large-scale issues. However, despite an increasing
interest and practical use, computer-based methods have
rarely been evaluated [18]. There is a growing trend of
replacing traditional statistical models with machine learning
in several research areas to improve predictive accuracy. In
addition, these techniques are now used to model data that do
not fit into the “small-n-large-p” category.

The RF method works well for all covariates (categorical,
continuous, or their mixture) in regression with or without
overdispersion in the response variable. No original pre-
dictor transformation is required for the predictive task
when encoding categorical covariates. Furthermore, RF
accuracy is not significantly affected by covariate types.
Singh et al. [25] found similar results in classification,
suggesting that RF performs equally well with numeric-only
or text-only datasets. However, fluctuations in RF parameter
settings were observed for exclusively categorical predictors
when the number of observations or the relation (ratio)
between the number of observations and the number of
predictors was low.
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FIGURE 5: Impact of the response variable overdispersion on RF accuracy (relation is the outcome’s variance-to-mean relationship).
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FiGure 6: Effect of overdispersion on RF predictive performance compared to GLM models (relation is the outcome’s variance-to-mean

relationship). (a) |Bias| and (b) RMSE.

Frequently, empirical studies on classification find that
the default RF’s parameter values yield good prediction
accuracy [19, 49].However, among all possible combina-
tions, in most scenarios, the best RF performance was not
observed with the default parameters in Breiman and
Cutler’s random forests for the classification and regression
package (randomForest), widely used in R software [44]. For
regression tasks, the number of variables to select in each
split should equal the number of predictors divided by 3.
Our results support the findings of Han and Kim [50], which
imply that the default mtry of p/3 cannot guarantee the
highest level of accuracy in regression. Additionally, Strobl
et al. [51] argued that various mtry values should be taken
into account.

For all types of covariates, RF performed better when a
small number of variables were selected at each split
(mtry =2), regardless of the response variable over-
dispersion, while for some scenarios, mtry = (p/3) was too
small. RF prediction accuracy is expected to be higher for
smaller values of mtry in general, according to Strobl et al.
[51]. Smaller mtry values are preferred if the dataset’s
features have similar relevance. If not, greater mtry values
are preferred [50]. Furthermore, a small number of pre-
dictors in each split can better utilize the available infor-
mation in many informative predictors with different
strengths [52].

However, for a variable to have a chance to appear in a
sufficient number of trees, a large number of preselected
predictors are required when there are many predictor
variables. Therefore, the average variable importance mea-
sure will be accurate and not just a random fluctuation based

on enough trials [51]. However, Svetnik et al. [49] claimed
that RF performance changes very little over a wide range of
mtry values, except for extremes (mtry = 1 and mtry = p).

RF was relatively insensitive to changes in the minimum
number of observations in each terminal node. The mini-
mum node size was adjusted to speed up the computation
for large datasets. Our findings suggest that the minimum
node size behaviour is influenced by the relationship be-
tween the total sample size and the number of predictors.
The best RF performance was obtained with many obser-
vations in each end node for large n and small p (between
seven and nine). When dealing with situations with many
observations and a few variables, increasing the terminal
node size with the sample size improved the convergence
rate of the prediction accuracy [53]. There was no discernible
pattern for small n and large p. Although the minimum node
size appears to have a minor impact on predictive accuracy,
it is necessary to consider this parameter when tuning RF.
When determining the ideal combination of the best pa-
rameters of RF, the prevalence of specific values can indicate
the stability of estimates, avoiding the effect of random
fluctuations. According to Lin and Jeon [53], growing large
trees, that is, using small observations in each terminal node,
generally results in the highest performance for “small-n-
large-p” situations.

We observed that sample size behaviour is also influ-
enced by the relationship between the number of observa-
tions and predictors. When the ratio of the number of
observations to the number of predictors is high, RF pro-
duces the best results with fewer observations (55 percent or
63.2 percent of the total sample size). Buja and Stuetzle [54]
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FIGURE 7: Predictive performance of RF compared to GLM:s for tick burden and NMES1988 datasets. (a) Tick burden dataset: BIAS, (b) tick
burden dataset: RMSE, (c) NMES1988 dataset: BIAS, and (d) NMES1988 dataset: RMSE.

argued that half-sampling might be more suited because
bootstrap sampling shares several theoretical traits.
Waosthoft [55] claimed that the subsample size is not a
critical parameter as the results of sizes 0.5 and the default
value (0.632) are nearly identical. For permutation impor-
tance estimation in classification, significant predictor var-
iables may not be recognized if the sample size is too small.
The variability of the importance measure tends to increase if
the subsample size is so large that the out-of-bag sample
becomes very small [55].

Considering overdispersion, we realized that, for small
sizes (less than 250), the best mtry value was randomly
selected among possible values. In contrast, for large pop-
ulation sizes, this value was maintained constant (mtry =2)
for all types of covariates. According to Svetnik et al. [49],
this parameter is the main RF tuning parameter. Further-
more, the sample size influenced the RF accuracy level. For
small sample sizes (less than 250), the effect of over-
dispersion resulted in an erratic trend, challenging to in-
terpret. In contrast, the trend was linear for large population
sizes, illustrating the overdispersion effect.

Although RF parameters seemed insensitive to the de-
gree of overdispersion of the response variable, RF accuracy
was affected. Thus, despite being an essential step in RF
analyses, parameter tuning did not affect the best parameter
selection when the response variable was overdispersed.
Some authors have recommended data transformation for

RF analyses, especially population estimation. Transforming
the response variable allows the RF algorithm to find good
splits in data as the relationship between distance-based
covariates and the population is, in most cases, more uni-
formly distributed [56]. Transformation methods may be
applied to observed response variables before RF model
fitting for higher prediction accuracy. However, O’'Hara and
Kotze [57] stated that we should not transform count data
because, in addition to performing poorly, they can lead to
impossible predictions.

3.2.2. RF Performance Compared to Poisson Model
Extensions. According to Anderson et al. [33], one of the
most critical decisions in the population modelling process is
understanding and selecting the appropriate model structure
based on the available data. RF regression is an efficient and
credible alternative in prediction tasks, as reported by previous
studies [12]. The results obtained in this study suggest that RF
is as accurate as Poisson, zero-inflated Poisson, and negative
binomial regressions when dealing with overdispersed count
data. The tick burden dataset confirmed this statement. Novel
methods such as RF are more efficient for predicting spatial
patterns in species distribution models than more traditional
linear models [58]. Furthermore, they consistently outperform
more established methods. RF’s consistency and predictive
performance could be an additional point to explore and
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reorient the debate on modelling count data. Some researchers
suggest using the Poisson model and its extensions [57].
Others recommend using the linear model when the objective
is to test the significance of estimates [41]. On the contrary,
others think there is no best solution because it depends on the
database in the presence [42]. However, these models have
shown similar performance for different levels of over-
dispersion. Considering GLMs, RF is robust to mis-
specification of the relationship between the mean and
variance [57]. Anderson et al. [33] claimed that traditional
regression-based models may not be the most effective model,
depending on the available census data (for example, presence
of sampling bias, missing data, outliers, and imperfect de-
tection). Given the predictive accuracy demonstrated by RF, its
flexibility in dealing with covariates of various natures, and
other recognised advantages such as the ability to deal with
complex interaction structures, highly correlated variables and
the measurement of variable significance, RF is an effective
alternative method for predicting count outcomes [52]. RF
may be a tool of capital importance for decision and poli-
cymakers working in limited data areas or with unreliable
census data, especially in developing countries. Furthermore,
producing accurate and reliable estimates is a problem of
interest for resource allocation, public health, outbreak early
detection, food security, conservation policy, environmental
planning, and others [33, 56, 59].

4. Conclusion

RF has become a popular analysis tool in many application
fields and will probably remain relevant in the future due to
its high flexibility and many advantages. This study evaluated
the impact of different characteristics of the dataset and the
magnitude of overdispersion on the settings of RF param-
eters and predictive performance through simulated and
real-life datasets. We found that the RF algorithm performs
relatively well for all types of predictors. Data features do not
influence the setting of RF parameters and, consequently, its
predictive accuracy. However, the ratio of observations to
the number of predictors influences the stability of the
optimal RF parameters for a given dataset. Although the
degree of overdispersion of the response variable did not
significantly influence RF predictive validity, the magnitude
of dispersion influenced RF predictive accuracy. The RF
algorithm performed almost equally well as standard count
data models such as quasi-Poisson, zero-inflated Poisson,
and negative binomial models for the outcomes with linear
and quadratic variance-to-mean relationships. However, for
some scenarios, RF sometimes had a higher bias or RMSE,
sometimes a lower bias or RMSE compared to Poisson
family models. Furthermore, for the same scenario,
depending on the selected subsample, a model may appear to
perform better when it does not perform well overall. Thus,
the best model choice should be based on data. RF is a
reliable method when the assumptions for GLMs are not
satisfied. Therefore, despite the sensitivity of RF to the
overdispersion of the response variable, it is an efficient
method for predicting count outcomes. Thereby, it is a tool
of capital importance for decisions and policymakers
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working in limited data areas. Therefore, research should
focus on decreasing the sensitivity of predictive accuracy to
overdispersion.

Data Availability

The data supporting this study are from previously reported
studies and datasets, which have been cited. The simulated
data used to support the findings of this study are available
from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this study.

Acknowledgments

This work was supported by the Regional Universities Fo-
rum for Capacity Building in Agriculture through the
Graduate Training Assistantship Program supported by the
Carnegie Corporation in New York (Grant no. RU/2020/
GTA/DRG/019), the DAAD In-Country/In-Region Schol-
arship Programme FSA/UAC (Grant no. 57546598, 2020),
and the International Development Research Centre (IDRC)
and the Swedish International Development Cooperation
Agency (SIDA) through the Artificial Intelligence for De-
velopment (AI4D) Africa Programme, managed by the
Africa Center for Technology Studies (ACTS) (Grant no.
ACTS/AI4D_2022/109651/006).

References

[1] E. Altun, “A new model for over-dispersed count data:
Poisson quasi-lindley regression model,” Mathematical Sci-
ences, vol. 13, pp. 241-247, 2019.

[2] J. Li, A. D. Heap, A. Potter, Z. Huang, and J. J. Daniell, “Can
we improve the spatial predictions of seabed sediments? a case
study of spatial interpolation of mud content across the
southwest australian margin,” Continental Shelf Research,
vol. 31, no. 13, pp. 1365-1376, 2011.

[3] R. W. M. Wedderburn, “Quasi-likelihood functions, gener-
alized linear models, and the Gauss—Newton method,”
Biometrika, vol. 61, no. 3, pp. 439-447, 1974.

[4] P. C. Consul, Generalized Poisson Distributions: Properties
and Applications. Statistics, Textbooks and Monographs,
Marcel Dekker, New York, NY, USA, 1989.

[5] A. L. Bailey, “Credibility procedures: laplace’s generalization
of bayes’ rule and the combination of collateral knowledge
with observed data,” Proceedings of the Casualty Actuarial
Society, vol. 37, pp. 7-23, 1950.

[6] M. Greenwood and G. U. Yule, “An inquiry into the nature of
frequency distributions representative of multiple happenings
with particular reference to the occurrence of multiple attacks
of disease or of repeated accidents,” Journal of the Royal
Statistical Society, vol. 83, no. 2, pp. 255-279, 1920.

[7] R. Keffer, “An experience rating formula,” Transactions of the
Actuarial Society of America, vol. 30, pp. 130-139, 1929.

[8] D. Lambert, “Zero-inflated Poisson regression, with an ap-
plication to defects in manufacturing,” Technometrics, vol. 34,
no. 1, pp. 1-14, 1992.



20

[9] M. E. Haque, T. S. Mallick, and W. Bari, “Zero truncated
Poisson model: an alternative approach for analyzing count
data with excess zeros,” Journal of Statistical Computation and
Simulation, vol. 92, no. 3, pp. 476-487, 2022.

[10] A. Araldi, “Towards an integrated methodology for model and
variable selection using count data: an application to micro-
retail distribution in urban studies,” Urban Science, vol. 4,
no. 2, p. 21, 2020.

[11] Domino, Analyzing Large P Small N Data-Examples from
Microbiome, Public Library of Science, San Franscisco, CA,
USA, 2020.

[12] G. Nicolas, T. P. Robinson, G. R. W. Wint, G. Conchedda,
G. Cinardi, and M. Gilbert, “Using random forest to improve
the downscaling of global livestock census data,” PLoS One,
vol. 11, no. 3, pp. 01504244-¢150516, 2016.

[13] T.Rahman, H.-E. Huang, A.-S. Tai, W. P. Hsieh, and G. Tseng,
“A sparse negative binomial classifier with covariate adjust-
ment for rna-seq data,” 2019, https://www.biorxiv.org/
content/10.1101/636340v1.

[14] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5-32, 2001.

[15] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classifi-
cation and Regression Trees, Chapman and Hall/CRC Press,
London, UK, 1984.

[16] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123-140, 1996.

[17] K. Arun and C. Langmead, “Structure-based chemical shift
prediction using random non-linear regression,” in Pro-
ceedings of the 4th Asia-Pacific Bioinformatics Conference,
pp- 317-326, Taipei, Taiwan, February 2006.

[18] G. Biau, “Analysis of a random forests model,” Journal of
Machine Learning Research, vol. 13, pp. 1063-1095, 2012.

[19] R.Diaz-Uriarte and S. Alvarez de Andrés, “Gene selection and
classification of microarray data using random forest,” BMC
Bioinformatics, vol. 7, no. 1, p. 3, 2006.

[20] X. Han, B. Yang, and S. Lee, “Application of random forest
algorithm in machine fault diagnosis,” Engineering Asset
Management, Springer, Berlin, Germany, 2006.

[21] S. Janitza, E. Celik, and A. L. Boulesteix, “A computationally
fast variable importance test for random forests for high-
dimensional data,” Advances in Data Analysis and Classifi-
cation, vol. 12, no. 4, pp. 885-915, 2018.

[22] H. Pang, A. Lin, M. Holford et al., “Pathway analysis using
random forests classification and regression,” Bioinformatics,
vol. 22, no. 16, pp. 2028-2036, 2006.

[23] B. Thompson, A Limitation of Random Forest Regression,
2019.

[24] J. M. Hilbe, Negative Binomial Regression: Modeling, Cam-
bridge University Press, Cambridge, UK, 2011.

[25] A.Singh, M. N. Halgamuge, and R. Lakshmiganthan, “Impact
of different data types on classifier performance of random
forest, naive bayes, and k-nearest neighbors algorithms,”
International Journal of Advanced Computer Science and
Applications, vol. 8, no. 12, 2017.

[26] O. Okun and H. Priisalu, “Random forest for gene expression
based cancer classification: overlooked issues,” in Pattern
Recognition and Image Analysis. IbPRIA 2007, J. Marti,
J. Benedi, A. M. Mendonga, and J. Serrat, Eds., pp. 483-490,
Springer, Berlin, Germany, 2007.

[27] M. 1. Love, W. Huber, and S. Anders, “Moderated estimation
of fold change and dispersion for rna-seq data with deseq2,”
Genome Biology, vol. 15, no. 12, p. 550, 2014.

[28] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “Edger: a
bioconductor package for differential expression analysis of

Journal of Probability and Statistics

digital gene expression data,” Bioinformatics, vol. 26, no. 1,
pp. 139-140, 2010.

[29] M. D. Robinson and A. Oshlack, “A scaling normalization
method for differential expression analysis of rna-seq data,”
Genome Biology, vol. 11, no. 3, p. 25, 2010.

[30] E. Scornet, G. Biau, and J. P. Vert, “Consistency of random
forests,” Annals of Statistics, vol. 43, no. 4, pp. 1716-1741,
2015.

[31] G. Biau and E. Scornet, “A random forest guided tour,” Test,
vol. 25, no. 2, pp. 197-227, 2016.

[32] P. Probst and A.-L. Boulesteix, “To tune or not to tune the
number of trees in random forest?,” 2017, https://arxiv.org/
abs/1705.05654.

[33] W. Anderson, S. Guikema, B. Zaitchik, and W. Pan, “Methods
for estimating population density in data-limited areas:
evaluating regression and tree-based models in Peru,” PLoS
One, vol. 9, no. 7, pp. 1-15, 2014.

[34] P.S.Dewi, Y.S. Dewi, and L. Amaliana, “Zero inflated poisson
and geographically weighted zero- inflated Poisson regression
model: application to elephantiasis (filariasis) counts data,”
Journal of Mathematics and Statistics, vol. 11, no. 2, pp. 52-60,
2015.

[35] A. Cameron and K. Trivedi, Micro Econometrics: Methods and
Applications, Cambridge University Press, Cambridge, UK,
2005.

[36] Y. Mouatassim and E. H. Ezzahid, “Poisson regression and
zero-inflated poisson regression: application to private health
insurance data,” European Actuarial Journal, vol. 2,
pp. 187-204, 2012.

[37] R. Myers, D. Montgomery, G. Vining, and T. Robinson,
“Generalized linear models: with applications in engineering
and the sciences,” Wiley Series in Probability and Statistics,
Wiley, New York, NY, USA, 2010.

[38] B. Lokonon and R. Glele Kakai, “Effect of overdispersion and
sample size on the performance of Poisson model and its
extensions in frame of generalized linear models (glms),”
Interntional Journal of Applied Mathematics and Statistics,
vol. 57, pp. 40-53, 2018.

[39] F. D. Schonbrodt and M. Perugini, “At what sample size do
correlations stabilize?” Journal of Research in Personality,
vol. 47, no. 5, pp. 609-612, 2013.

[40] A. Gut, “The multivariate normal distribution,” An Inter-
mediate Course in Probability, vol. 2, pp. 117-145, 2009.

[41] A. R. Ives, “For testing the significance of regression coefhi-
cients, go ahead and log-transform count data,” Methods in
Ecology and Evolution, vol. 6, no. 7, pp. 828-835, 2015.

[42] D. I. Warton, M. Lyons, J. Stoklosa, and A. R. Ives, “Three
points to consider when choosing alm or glm test for count
data,” Methods in Ecology and Evolution, vol. 7, no. 8,
pp. 882-890, 2016.

[43] R. M. Yang, G. L. Zhang, F. Liu et al., “Comparison of boosted
regression tree and random forest models for mapping topsoil
organic carbon concentration in an alpine ecosystem,” Eco-
logical Indicators, vol. 60, pp. 870-878, 2016.

[44] A. Liaw and M. Wiener, “Classification and regression by
random-forest,” R News, vol. 2, pp. 18-22, 2002.

[45] B. A. Walther andJ. L. Moore, “The concepts of bias, precision
and accuracy, and their use in testing the performance of
species richness estimators, with a literature review of esti-
mator performance,” Ecography, vol. 28, no. 6, pp. 815-829,
2005.

[46] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2020.


https://www.biorxiv.org/content/10.1101/636340v1
https://www.biorxiv.org/content/10.1101/636340v1
https://arxiv.org/abs/1705.05654
https://arxiv.org/abs/1705.05654

Journal of Probability and Statistics

[47] B. Dirk, Advanced Epidemiology Course, the Institute of
Tropical Medicine (Itm)-Antwerpen, 2017.

[48] A. Cameron and P. K. Trivedi, “Regression-based tests for
overdispersion in the Poisson model,” Journal of Economet-
rics, vol. 46, no. 3, pp. 347-364, 1990.

[49] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan,
and B. P. Feuston, “Random forest: a classification and re-
gression tool for compound classification and gsar modeling,”
Journal of Chemical Information and Computer Sciences,
vol. 43, no. 6, pp. 1947-1958, 2003.

[50] S.Han and H. Kim, “Optimal feature set size in random forest
regression,” Applied Sciences, vol. 11, no. 8, p. 3428, 2021.

[51] C. Strobl, A. L. Boulesteix, T. Kneib, T. Augustin, and
A. Zeileis, “Conditional variable importance for random
forests,” BMC Bioinformatics, vol. 9, no. 1, p. 307, 2008.

[52] A. L. Boulesteix, S. Janitza, J. Kruppa, and I. R. Konig,
“Overview of random forest methodology and practical
guidance with emphasis on computational biology and bio-
informatics,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 2, no. 6, pp. 493-507, 2012.

[53] Y. Lin and Y. Jeon, “Random forests and adaptive nearest
neighbors,” Journal of the American Statistical Association,
vol. 101, no. 474, pp. 578-590, 2006.

[54] A.Bujaand W. Stuetzle, “Observations on bagging,” Statistica
Sinica, vol. 16, no. 2, pp. 323-351, 2006.

[55] J. Wosthoff, Moderne Klassifikationsverfahren in der Bio-
metrie-Einfluss der Stichprobengrosse Beim Resampling in
Random Forests, Ludwig Maximilians-Universitit Minchen,
Munich, Germany, 2008.

[56] F. R. Stevens, A. E. Gaughan, C. Linard, and A. J. Tatem,
“Disaggregating census data for population mapping using
random forests with remotely-sensed and ancillary data,”
PLoS Ome, vol. 10, no. 2, pp. 01070422-e107122, 2015.

[57] R. B. O’'Hara and D. J. Kotze, “Do not log-transform count
data,” Methods in Ecology and Evolution, vol. 1, no. 2,
pp. 118-122, 2010.

[58] J. Elith, C. H Graham, R. P Anderson et al., “Novel methods
improve prediction of species’ distributions from occurrence
data,” Ecography, vol. 29, no. 2, pp. 129-151, 2006.

[59] M. Salvatore, F. Pozzi, E. Ataman, B. Huddleston, and
M. Bloise, Mapping Global Urban and Rural Population
Distributions, Food and Agriculture Organization of the
United Nations, Rome, Italy, 2005.

21





