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Machine learning algorithms, especially random forests (RFs), have become an integrated part of themodern scientifcmethodology and
represent an efcient alternative to conventional parametric algorithms. Tis study aimed to assess the infuence of data features and
overdispersion on RF regression performance. We assessed the efect of types of predictors (100, 75, 50, and 20% continuous, and 100%
categorical), the number of predictors (p� 816 and 24), and the sample size (N� 50, 250, and 1250) on RF parameter settings. We also
compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-infated Poisson) and the
linearmodel applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data
modelling. Goodness-of-ft statistics such as rootmean square error (RMSE) and biases were used to determineRF accuracy and validity.
Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the
minimal number of samples within each terminal node, and RF regression performance are not infuenced by the sample size, number,
and type of predictors. However, the ratio of observations to the number of predictors afects the stability of the best RF parameters. RF
performswell for all types of covariates and diferent levels of dispersion.Temagnitude of dispersion does not signifcantly infuence RF
predictive validity. In contrast, its predictive accuracy is signifcantly infuenced by the magnitude of dispersion in the response variable,
conditional on the explanatory variables. RF has performed almost as well as themodels of the classical Poisson family in the presence of
overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.

1. Introduction

Interest in modelling count data has increased signifcantly
over the past two decades. Te Poisson distribution is still
the most widely used distribution for modelling count data
in many research areas, despite the violation of its well-
known property that the mean and variance are equal,
conditional on explanatory variables. However, the Poisson
distribution is inadequate tomodel overdispersed count data

[1, 2]. As a result, a multitude of alternative count data
models have been developed to address the shortcomings of
the Poisson regression in the presence of overdispersion,
including quasi-Poisson [3], generalized Poisson [4], neg-
ative binomial [5–7], zero-infated Poisson [8], and zero-
truncated Poisson models [9].

Nevertheless, traditional count data models remain
limited as they may not be capable of detecting the presence
of complex nonlinear interactions between explanatory
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variables and outcomes [10]. In addition, traditional sta-
tistical models used to predict overdispersed data from
selected predictor variables are not suitable for “small-n-
large-p” problems [11].

Te random forest (RF) is a good machine learning
approach to improving prediction accuracy and model in-
terpretation [12, 13]. RF is a “data-driven statistical method.”
It is an ensemble learning approach developed to increase
classifcation accuracy and regression tree prediction by
combining many decision trees [14]. Te algorithm takes
advantage of two powerful techniques: random subspace
selection at each split (“classifcation and regression trees
(CART)-split criterion”) [15] and bagging (an abbreviation
of “bootstrap aggregating”) of unpruned decision tree
learners [16]. Te nonlinear nature of RF gives it an edge
over linear algorithms [14, 17]. RF algorithms provide
variable importance measures for variable selection pur-
poses. Moreover, they involve complex high-order inter-
action efects and are user-friendly because they have few
parameters to set and are less demanding in preprocessing
[18]. Over the past 25 years, RF has been successfully applied
to a wide range of prediction problems, mainly for classi-
fcation tasks [19–21]. RF has become an efective data
analysis tool that performs well compared to many standard
methods [22].

However, in a regression problem, the range of predic-
tions that RF can make is limited by the highest and lowest
values in the training dataset. When training and testing data
ranges difer, such as when predicting overdispersed response
variables, this behaviour becomes troublesome [23]. Over-
dispersion is one of the important constraints in statistical
analysis and may lead a variable to appear as a signifcant
predictor when it is not, by defating or underestimating the
standard errors of the estimates [24]. As a result, it is essential
to fully understand the data’s nature. Furthermore, most of
the existingmachine learningmethods for regression tasks are
designed for continuous data, and their performance for
counted data is not well known [13].

Te primary motivation for this study is thus to evaluate
the efectiveness of computer-based statistical approaches
known as machine learning, such as RF, in the presence of
overdispersed response variables. Since the performance of
an algorithm depends mainly on the characteristics of
datasets to be analysed (type of predictors, number of at-
tributes in the dataset, sample size, noise, and dispersion),
high performance requires the identifcation of the most
appropriate algorithm for a given problem and dataset [25].
RFs are considered data type-specifc, insensitive to unim-
portant and noisy predictors, and dependent on the number
of informative variables [18, 19, 26].

Te RF method has shown comparable or even better
prediction performance than other learning methods, such
as neural networks, partial least squares regression, and
support vector machines [14, 19, 22]. Unfortunately, the
impact of overdispersion on the RF performance for dif-
ferent data features has rarely been assessed [27–29]. Tus,
determining the impact of data features on RF parameters’
setting and accuracy is an avenue to explore as eforts are
needed to improve the accuracy of RF estimates [12].

Terefore, this study aimed to assess the infuence of data
features on RF regression performance and compare RF
regression to count data classic regressions. In addition,
datasets with varying magnitudes of overdispersion from
two real case studies are also analysed to examine RF per-
formance when the response variable is overdispersed.

2. Materials and Methods

2.1. Statistical Models

2.1.1. Random Forest Technique (RF). RF methods deal with
both supervised classifcation and regression tasks [14]. Tis
research was focused on regression analysis.

(i) Basic Principles. Assuming that we are given a training
sample Dn � (X1, Y1); . . . ; (Xn, Yn)􏼈 􏼉 of i.i.d. [0, 1]d × R

-valued random variables (d≥ 2) with the same distribution
as the independent prototype pair D defned by (X, Y) of
size n satisfying the E[Y]2 <∞ condition.Te space [0, 1]d is
equipped with the standard Euclidean metric. For a given
x ∈ [0, 1]d, the regression function estimate m(x) can be
obtained by

m(x) � E[Y X| � x]. (1)

Regarding this, the regression function estimate mn for
the dataset Dn is assumed consistent if

E mn(X) − m(X)􏼂 􏼃
2⟶ 0, as n⟶∞. (2)

In RF, the fnal predictor is an average of M indepen-
dently randomized regression trees. For a given tree j

randomly generated, the prediction value at the query point
x is denoted mn(X;Θj, Dn), where Θ1,Θ2, . . . ,ΘM are the
outputs of a randomized variable Θ (also known as inde-
pendent random variables).

In practice, the randomized variable Θ is used to
resample the training set used in successive individual trees
building [18]. Te fnite forest estimate (combination of the
M trees grown) is obtained by

mM,n X;Θ1, . . . ,ΘM, Dn( 􏼁 �
1

M
􏽘

M

j�1
mn X;Θj, Dn􏼐 􏼑. (3)

In the randomForest package, the default value of M is
500. Since M may be chosen arbitrarily large (“limited only
by available computing resources”), this estimate can be
generalized from amodelling point of view, lettingM tend to
infnity by an infnite forest estimate [15], obtained by

m∞,n X; Dn( 􏼁 � EΘ mn X;Θ, Dn( 􏼁􏼂 􏼃. (4)

It is noteworthy in practice that the above expectation is
evaluated by Monte Carlo, i.e., by generating M (usually
large) random trees and taking the average of individual
outcomes. Tis procedure is justifed by the law of large
numbers [14, 30] which asserts that the almost surely
conditional on Dn is expressed as follows:

lim
M⟶∞

mM,n X;Θ1, . . . ,ΘM, Dn( 􏼁 � m∞,n X; Dn( 􏼁. (5)
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(ii) Algorithm. Te whole process of the RF algorithm can be
summarized as follows:

Let M be the number of trees to grow in the forest and
mtry be the number of variables to select at each node. Te
following steps are considered:

(i) We resample the training set to create new boot-
strap samples.

(ii) For each bootstrap sample, we create an unpruned
tree that is grown until all nodes contain observa-
tions no more than the maximal terminal node size
defned by the user (a prespecifed parameter).

(iii) At each split node, a randomly selected subset of
predictors is uniformly chosen. In regression tasks
for p predictors, a value equal to p/3 is utilized as the
default value in the R package randomForest. Ten,
the best split using only these predictors is deter-
mined or returned. In addition, all observations are
not used in tree construction, and a subset an is
picked from the whole sample Dn. If an � n, the
algorithm runs in a bootstrap mode, whereas an < n

corresponds to subsampling (with replacement).
(iv) Te RF overall prediction value is the average (in

regression) of the results obtained from all M given
by individual trees [15].

(iii) Parameter Tuning. To date, there are limited studies
focusing on RF parameter tuning [31]. According to Probst
and Boulesteix [32], the most important parameters in RF
methods are as follows:

(i) Number of variables to possibly split in each node
(ii) Minimal terminal node size
(iii) Fraction of observations to sample in each tree
(iv) Number of trees

2.1.2. Poisson Regression Extensions Used to Predict Count
Data. Te prediction performance of RF was compared
with that of the Poisson model and its extensions. It is
suggested that they be used for assessing count data. Te
following models are utilized in this investigation and are
briefy described as follows:

(i) Linear Model. It is a linear function of the form:

Y � Xβ + ε; ε ∼ N 0, σ2ε􏼐 􏼑, (6)

where Y is the vectorized form of the response variable, X is
a covariate matrix, β is a vector of coefcients, and ε is a
vector of normally distributed errors with 0 mean and a
variance of σ2ε [33].

(ii) Poisson Model (Poisson). It is a special case of the
generalized linear model (GLM) with a log link function. It is
the standard GLM for count data [34]. We assume that the
response variable (yi) follows the Poisson distribution with
the mean μi. Its probability mass function is written as

P Y � yi; μi( 􏼁 �
e

− μiμyi

i

yi!

� exp yilog μi − μi􏼂 􏼃 − log yi!( 􏼁􏼈 􏼉,

(7)

where the conditional mean is obtained by μi � E(yi/xi) �

exp(x
′β) with x

′ being the vector of covariates and β being the
vector of unknown parameters [35–37].

(iii) Negative Binomial Model (Neg.Bin). In the negative
binomial, a parameter of dispersion (K) is introduced to
accommodate unobserved heterogeneity in the count data.
Its probability density function is written as

f
yi

xi

�
τ yi + K( 􏼁

τ yi + 1( 􏼁τ(K)

K

K + μi

􏼠 􏼡

K μi

K + μi

􏼠 􏼡

yi

, (8)

where K is a constant, τ is a function of yi, μi � exp(x
′β), x
′ is

the vector of covariates, and β is the vector of unknown
parameters [38].

(iv) Quasi-Poisson. Te generalized linear model is used to
defne the quasi-Poisson model. Let Y be a random variable
such that

E(Y) � μ,

Var(Y) � ϕ × μ,
(9)

where Var (Y) is Y’s variance, μ> 0, ϕ is the dispersion
parameter and ϕ> 0, and E(Y) is Y’s expectation.

(v) Zero-Infated Poisson model (ZIP). Tis model is ap-
propriate when there are zeros in excess. Its probability mass
function is written as [34, 36]

P Y � yi xi

􏼌􏼌􏼌􏼌 , zi􏼐 􏼑 �
wizi + 1 − wi zi( 􏼁( 􏼁Poisson μi; 0 xi

􏼌􏼌􏼌􏼌􏼐 􏼑,􏼐 if yi � 0,

1 − wi( 􏼁Poisson μi; yi xi

􏼌􏼌􏼌􏼌􏼐 􏼑, if yi > 0,

⎧⎪⎨

⎪⎩
(10)
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where zi is the vector of covariates, wi is the probability that
the response value is zero, Poisson(μi; 0 | xi) � exp(−μi),
and Poisson(μi; yi | xi) � exp(−μi)(μ

yi

i /yi!).

2.2. Simulation Studies

2.2.1. Efect of Dataset Characteristics on RF Algorithm
Parameters’ Setting and Accuracy. Tree sample sizes
(N � 50, 250, and 1250), three numbers of predictors (p � 8,
16, and 24), and fve types of predictors (100, 75, 50, and 25%
continuous, and 100% categorical) were considered.
Schönbrodt and Perugini [39] stated that n should approach
250 for stable estimates. Biau [18] showed that n> 500 is
sufciently large, while 50 represents a small population size.
Altogether, 45 data types were set. For each case, 1000
datasets were created. Tree RF parameters were considered
to determine the best combination, while the number of
trees was maintained constant (500):

(i) Number of variables to be randomly selected at each
split (mtry): mtry� 2, 3, . . ., p, where p� the
number of predictors

(ii) Proportion of samples for model training (sample
size) with four levels (55, 63.2, 70, and 80%)

(iii) Minimal number of samples within each terminal
node (node size � 2, 3, 4, . . ., 9)

Depending on the number of predictors, the combina-
tion of diferent parameters under study resulted in 224, 480,
and 736 diferent scenarios for each data type. Each scenario
was run 1000 times to fnd optimal parameter combinations.
For all datasets, the generated explanatory variables were not
correlated and were not informative.Te dependent variable
was generated randomly from the Poisson distribution with
lambda equal to one, which is denoted as Poisson(λ � 1).
Categorical predictors were randomly generated by varying
the number of levels from 2 to 8. Uncorrelated quantitative
covariates were generated from a multivariate normal dis-
tribution (MVN) y ∼ Nn(0, 1), whose density function in
the case of n dimensions is written as

f yi μ
􏼌􏼌􏼌􏼌 ,Σ􏼐 􏼑 � f yi1, yi2, . . . , yin( 􏼁′ μ

􏼌􏼌􏼌􏼌 � μ1, . . . , μn( 􏼁′,Σ �

σ21 σ1n

⋱

σn1 σ2n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1

�������
(2π)

n
|Σ|

􏽰 exp −
1
2

yi − μ( 􏼁′Σ− 1
yi − μ( 􏼁􏼒 􏼓.

(11)

Te symbol |Σ| refers to the determinant of the matrix Σ.
Te matrix Σmust be positive semidefnite to assure that the
most likely point is μ � (μ1, μ2, . . . , μn) and that, as yi moves
away from μ in any direction, then the probability of ob-
serving yi declines. Te denominator in the formula for the
MVN is a normalizing constant, which assures that the
distribution integrates to 1.0 [40].

2.2.2. Efect of Overdispersion on RF Parameters’ Setting and
Accuracy. In order to assess the efect of overdispersion on
the setting and performance of RF parameters, negative
binomial-distributed (Ynb) and quasi-Poisson-approxi-
mated (Yqp) variables were randomly generated. Te vari-
ance-to-mean relationship of Ynb is quadratic, while the
variance-to-mean relationship of Yqp is linear such as

E Ynb( 􏼁 � μ,

E Yqp􏼐 􏼑 � μ,

Var Ynb( 􏼁 � μ + ϕ × μ2,

Var Yqp􏼐 􏼑 � μ + ϕ × μ,

(12)

where μ> 0, ϕ is the dispersion parameter, and ϕ> 0. For this
objective, μ � 3 with varying ϕ � 1, 3, and 5. Tree diferent
samples (N � 50, 250, and 1250) and fve types of predictors
as in the frst simulation design were considered. Figure 1
shows the shape and the distribution of randomly generated
overdispersed outcomes.

2.2.3. RF Performance Compared to Poisson Model
Extensions. Negative binomial-distributed variables (Yi)

were generated with the linear and quadratic variance-to-
mean relationships. We let the mean μ vary as a function of
two informative covariates m � 2 and diferent levels of the
dispersion parameter ϕ. Te mean of the outcome Yi of 1000
observations was obtained according to the model
log(E(Yim � y|Xim)) � log(μi) � α + 􏽐

2
m−1 βmXim, where β

is a collection of parameters (β1 � 1, β2 � 0.5) and α � 0.145.
In addition, three noninformative variables were added from
a multivariate normal distribution (MVN) ∼ Nn(0, 1).

All datasets were divided into two subsets: training and
validation. 70% of the data were randomly selected formodel
calibration and the remaining 30% for model validation.

Poisson regression, negative binomial, zero-infated
Poisson, and zero-infated negative binomial were compared
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to the RF regression technique and linear regression applied
to the log-transformed response variable log(Y + 1), as it is
considered to be one of the alternatives when dealing with
overdispersion or count data [41, 42]. Te analysis of var-
iance (ANOVA) test and Tukey’s honest signifcant difer-
ence test (Tukey HSD) were conducted to compare the
performance of methods.

2.2.4. Criteria for Methods’ Accuracy Assessment. Te root
mean square error (RMSE) and biases were computed for
each model. Tese evaluation criteria are calculated as
follows:

RMSE �

�������������

1
n

􏽘

n

i�1
Pi − Oi( 􏼁

2

􏽶
􏽴

,

Bias �
1
n

􏽘

n

i�1
E Pi( 􏼁 − Oi( 􏼁,

(13)

where Pi and Oi are the predicted and observed values in the
subunit i, respectively, n is the number of samples (subunits)
[43], and E(Pi) is the average of the predicted values [44].
Te RMSE represents the overall quality of the prediction.
Predictions become increasingly optimal as the RMSE

approaches zero [43, 45]. All analyses were computed using
R 4.0.3 software [46].

2.3. Motivating Real Datasets. We used two datasets from
real case studies to examine RF performance at two mag-
nitudes of overdispersion caused by outliers or zero infa-
tion. Te frst example is tick burdens observed on two local
goat breeds. Ticks were counted monthly between birth and
the age of eight months on ten billy goats belonging to two
local breeds [47]. Te results are shown in Table 1. Te
dispersion statistic for this dataset is 3.050, caused by
outliers.

Te second example is the dataset “NMES1988”: De-
mand for Medical Care in the National Medical Expenditure
Survey (NMES) conducted in 1987 and 1988 [48]. Tis
dataset contains 4406 observations on 19 variables. In this
example, we examined the relationship between the number
of physician ofce visits (response variable) and health
(factor indicating self-perceived health status), age in years
(divided by 10), gender, married (factor indicating that the
individual is married), income (family income in USD
10000), and insurance (factor indicating that the individual
is covered by private insurance) as predictors.Te dispersion
statistic for this subset is 7.345, caused by outliers and zero
infation.
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Figure 1: Histograms and density plots of some randomly generated overdispersed outcomes.

Table 1: Average tick counts on two local goat breeds.

Age (months)
Breed 1 Breed 2

Billy 1 Billy 2 Billy 3 Billy 4 Billy 5 Billy 6 Billy 7 Billy 8 Billy 9 Billy 10
1 1 3 4 1 4 3 4 4 2 2
2 3 3 6 1 8 7 6 8 6 6
3 4 3 7 1 13 15 4 10 14 8
4 5 7 16 9 4 7 12 8 6 18
5 16 8 9 6 19 13 19 39 12 17
6 1 3 4 31 16 9 16 16 14 2
7 1 24 11 8 18 10 32 4 37 9
8 17 3 12 9 4 11 12 36 10 18
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Figure 2: Continued.
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Mixt1 3 � 25% are quantitative predictors, Mixt1 2 � 50% are quantitative predictors, Mixt3 1 � 75% are quantitative predictors, and
Categorical � 100% are categorical predictors). (a) N � 50, P � 8, (b) N � 250, P � 8, (c) N � 1250, P � 8, (d) N � 50, P � 16, (e) N �

250, P � 16, (f ) N � 1250, P � 16, (g) N � 50, P � 24, (h) N � 250, P � 24, and (i) N � 1250, P � 24.

Numeric
Mixte1_3
Mixte1_2
Mixte3_1

Categorical

Pr
ed

ic
to

r t
yp

es

Proportion (%)

Best_Node.size
2
3
4
5
6
7
8
9

25

50

75

0/100

(a)

Numeric
Mixte1_3
Mixte1_2
Mixte3_1

Categorical

Pr
ed

ic
to

r t
yp

es

Proportion (%)

25

50

75

0/100

Best_Node.size
2
3
4
5
6
7
8
9

(b)

Figure 3: Continued.
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Figure 3: Best RF node size as a function of the population size, number, and type of predictors (Numeric � 100% are quantitative
predictors, Mixt1 3 � 25% are quantitative predictors, Mixt1 2 � 50% are quantitative predictors, Mixt3 1 � 75% are quantitative pre-
dictors, and Categorical � 100% are categorical predictors). (a) N � 50, P � 8, (b) N � 250, P � 8, (c) N � 1250, P � 8, (d) N � 50, P � 16,
(e) N � 250, P � 16, (f ) N � 1250, P � 16, (g) N � 50, P � 24, (h) N � 250, P � 24, and (i) N � 1250, P � 24.
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Figure 4: Continued.
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3. Results and Discussion

3.1. Results

3.1.1. Efect of Data Features on RF Regression’s Parameters’
Tuning. Te efect of predictor types on RF parameter
settings for a response variable following a Poisson distri-
bution with the parameter is λ � 1.

In most scenarios, as shown in Figure 2, the RF algo-
rithm performs better with the number of variables ran-
domly selected at each split (mtry), varying between two and
four when there are many observations and a few predictors.
Figure 2 shows that the number of variables to be randomly
selected at each split is independent of the type of data.
Nonetheless, the combination of various types of predictors
causes some variability in the mtry values that yield the
optimal predictive performance. When the sample size is
small (n � 50) and the number of predictors is large (p �

24), there is a considerable fuctuation in mtry values
(Figure 2(g)).

Figure 3 indicates that when the sample size is large
(n� 1250) and the number of predictors is small (8), the RF
algorithm performs better in the majority of cases with the
highest minimum number of observations in each terminal
node (between seven and nine). Furthermore, when the
fraction of qualitative predictors was high, even for large
sample sizes and a small number of predictors, the proportion
of scenarios that achieved the optimal predictive performance
with high values of the minimum number of observations in
each terminal node (best node size ≥ ) also increased. Small
sample sizes (n � 50) showed a considerable variation in the
number of observations in terminal nodes.

Figure 4 shows that, in most circumstances, the RF
method performs better when 55 percent of the whole
sample size is used, followed by 63.2 percent. However, it
turns out that the variation in this parameter depends on the
ratio of the sample size to the number of predictors. Te
greater the ratio, the better the algorithm performs with
fewer observations, whereas the lower the ratio, the more
observations are used.

3.1.2. Efect of Overdispersion on the RF Parameter Settings
for Various Predictor Types. As shown in Table 2, the RF
algorithm works similarly for all types of predictors and
magnitudes of dispersion. In most cases, regardless of the
number of predictors or the extent of overdispersion, the
optimal performance of RF is obtained by setting the
number of variables to randomly sample at each split equal
to two (mainly a small number of variables between two and
four). Overall, for all types of predictors and observation
sizes, it is observed that dispersion does not infuence RF
parameters’ tuning.

According to Table 3, when predictors are categorical,
for the same number of observations, the RF algorithm tends
to use smaller samples to train the model as the number of
predictors decreases. Tus, when eight predictors were
considered, regardless of their type or level of over-
dispersion, the best performance was obtained in most cases
using 55% of the total number of observations. In most
scenarios, this proportion is followed by 63.2%. Further-
more, as the number of predictors increases, the 55%
proportion loses dominance. As a result, the likelihood of
obtaining the best performance with a large proportion of
samples to train the model increases.

However, when all predictors are quantitative contin-
uous or mixed with qualitative predictors, no trend was
observed for the best size of the sample to draw and the
minimum size of terminal nodes in RF, regardless of the
complexity of the response variable.

In most cases, the best performance of RF is obtained
with a minimum terminal node size greater than fve, the
default value used for regression. Table 4 shows that, re-
gardless of the degree of overdispersion of the dependent
variable, the RF algorithm performs best with a minimum
terminal node size greater than fve. For qualitative pre-
dictors, the preponderance of the high number of obser-
vations per node decreases as the number of predictors
increases. However, as the number of predictors increases,
the fraction of cases, where the best performance is achieved
with a large number of observations per node, decreases.
Tus, it turns out that globally, irrespective of the type of

Numeric
Mixte1_3
Mixte1_2
Mixte3_1

Categorical

Pr
ed

ic
to

r t
yp

es

Proportion (%)

Best_Sample_
Size

0.55
0.632
0.7
0.8

25

50

75

0/100

(i)

Figure 4: Best RF sample size as a function of the population size, number, and type of predictors (Numeric � 100% are quantitative
predictors, Mixt1 3 � 25% are quantitative predictors, Mixt1 2 � 50% are quantitative predictors, Mixt3 1 � 75% are quantitative pre-
dictors, and Categorical � 100% are categorical predictors). (a) N � 50, P � 8, (b) N � 250, P � 8, (c) N � 1250, P � 8, (d) N � 50, P � 16,
(e) N � 250, P � 16, (f ) N � 1250, P � 16, (g) N � 50, P � 24, (h) N � 250, P � 24, and (i) N � 1250, P � 24.
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predictors, for the same number of observations, the higher
the number of predictors, the smaller the minimum size of
the terminal nodes. However, it should be noted that the
number of predictors is not always inversely proportional to
the minimum size of terminal nodes. In some scenarios, the
minimum size of terminal nodes does not vary with the
number of predictors. In contrast, in others, the best per-
formance is obtained with small minimum sizes of terminal
nodes, even when there are few predictors. Tus, when there
are a few observations and many predictors, no trend is
predictable, and the parameter will depend only on the
complexity of the relationship between the data F.

3.1.3. Impact of Overdispersion on the RF Predictive Per-
formance for Diferent Types of Predictors. Tere was no
diference among the types of covariates considered to be
part of this simulation study. Using the best combination of
parameters, RF performed similarly for all types of cova-
riates regardless of the level of dispersion in the response
variable. However, the performance of the RF for the sample
size n � 50 varied enormously for diferent levels of dis-
persion, whereas the values were stable for large sample sizes
(in our case n � 1250). RF performance was impacted by the
magnitude of overdispersion, but relatively more accurate
results were obtained when the population size was large in
comparison to a small population size, where the RMSE
varied enormously for diferent levels of dispersion
(Figures 5(a) and 5(b)).

3.1.4. Assessment of the RF Performance Compared to Tra-
ditional Approaches for Count Data Prediction. In this
section, we analyse the performance of RF regression
compared to classical log-linear, Poisson, quasi-Poisson,
negative binomial, and zero-infated Poisson models for
diferent sample sizes and overdispersion degrees. Table 5
and Figure 5 show that linear regression applied to the log-
transformed response variable has the lowest performance.
However, in most scenarios, the biases and RMSE obtained
using the RF approach to predict the results of the over-
dispersed count are not statistically diferent from the biases
and RMSE obtained using traditional Poisson family
methods. Furthermore, no statistical diference was observed
when the variance-mean relationship was quadratic, with
some exceptions for low overdispersion. However, for the
linear variance-to-mean relationship, the mean RMSE of RF
is higher than that of GLMs, i.e., less accurate with higher
variability. As a result, while predicting overdispersed
outcomes, the most accurate and precise method will have to
be identifed case by case, depending on the available data. In
some situations, RF will be the best performing method,
while in others, it will not. Figures 6(a) and 6(b) present RF
compared to the biases of GLM family models and RMSE
regression lines as a function of dispersion and indicate the
95% confdence interval (range), represented by the grey
zone in which the biases and RMSE would be if the ex-
periment were repeated. Globally, the mean of the RMSE
and the biases of RF tend to increase as dispersion increases.
Consequently, the slope of the regression of the RMSE in the

function of dispersion and the range of RMSE values are
lower for outcomes with linear variance-to-mean relation-
ships than for those with quadratic variance-to-mean
relationships.

3.1.5. Real Dataset Results. RF yielded the lowest mean of
the absolute values of biases (1.51 ± 1.16) compared to
linear regression applied to the logarithmic transformation
of tick burden (8.24 ± 1.43), negative binomial (1.56 ±
1.19), quasi-Poisson (1.52 ± 1.17), and Poisson (1.52 ±
1.17) regressions for the dataset with overdispersion caused
by outliers (Figure 7(a)). However, the diference between
the mean absolute values of biases is not signifcant. Quasi-
Poisson and Poisson (7.72 ± 1.32) have the lowest RMSE
values, followed by the RF (7.75 ± 1.34) and negative bi-
nomial (7.82 ± 1.29) but are not signifcantly diferent
according to the Tukey HSD test (Figures 7(a) and 7(b)).

For the NMES1988 dataset with overdispersion caused
by outliers and zero infation, quasi-Poisson, Poisson, zero-
infated Poisson, and negative binomial produced the lowest
absolute value of biases (0.18 ± 0.14), followed by RF
(0.19 ± 0.14). Furthermore, the zero-infated Poisson model
(6.56 ± 0.39) yielded the lowest RMSE, followed by quasi-
Poisson (6.57 ± 0.39), negative binomial (6.57 ± 0.39), and
RF (6.59 ± 0.4). As for the tick burden dataset, no statis-
tically signifcant diference was observed between RF and
traditional Poisson family models (Figures 7(c) and 7(d)).

3.2. Discussion

3.2.1. Impact of Data Features on RF Regression. One of the
characteristics of many databases that practitioners consider
is the complex relationship among data, which typically yields
enormous noise. In some situations, this complexity may
directly or indirectly result from variables at the hand and
afect many statistical procedures. Computer-based statistical
methods are more appropriate than traditional statistical
models for efectively solving this complex problem and
dealing with large-scale issues. However, despite an increasing
interest and practical use, computer-based methods have
rarely been evaluated [18]. Tere is a growing trend of
replacing traditional statistical models with machine learning
in several research areas to improve predictive accuracy. In
addition, these techniques are now used to model data that do
not ft into the “small-n-large-p” category.

Te RF method works well for all covariates (categorical,
continuous, or their mixture) in regression with or without
overdispersion in the response variable. No original pre-
dictor transformation is required for the predictive task
when encoding categorical covariates. Furthermore, RF
accuracy is not signifcantly afected by covariate types.
Singh et al. [25] found similar results in classifcation,
suggesting that RF performs equally well with numeric-only
or text-only datasets. However, fuctuations in RF parameter
settings were observed for exclusively categorical predictors
when the number of observations or the relation (ratio)
between the number of observations and the number of
predictors was low.
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Frequently, empirical studies on classifcation fnd that
the default RF’s parameter values yield good prediction
accuracy [19, 49].However, among all possible combina-
tions, in most scenarios, the best RF performance was not
observed with the default parameters in Breiman and
Cutler’s random forests for the classifcation and regression
package (randomForest), widely used in R software [44]. For
regression tasks, the number of variables to select in each
split should equal the number of predictors divided by 3.
Our results support the fndings of Han and Kim [50], which
imply that the default mtry of p/3 cannot guarantee the
highest level of accuracy in regression. Additionally, Strobl
et al. [51] argued that various mtry values should be taken
into account.

For all types of covariates, RF performed better when a
small number of variables were selected at each split
(mtry � 2), regardless of the response variable over-
dispersion, while for some scenarios, mtry � (p/3) was too
small. RF prediction accuracy is expected to be higher for
smaller values of mtry in general, according to Strobl et al.
[51]. Smaller mtry values are preferred if the dataset’s
features have similar relevance. If not, greater mtry values
are preferred [50]. Furthermore, a small number of pre-
dictors in each split can better utilize the available infor-
mation in many informative predictors with diferent
strengths [52].

However, for a variable to have a chance to appear in a
sufcient number of trees, a large number of preselected
predictors are required when there are many predictor
variables. Terefore, the average variable importance mea-
sure will be accurate and not just a random fuctuation based

on enough trials [51]. However, Svetnik et al. [49] claimed
that RF performance changes very little over a wide range of
mtry values, except for extremes (mtry � 1 and mtry � p).

RF was relatively insensitive to changes in the minimum
number of observations in each terminal node. Te mini-
mum node size was adjusted to speed up the computation
for large datasets. Our fndings suggest that the minimum
node size behaviour is infuenced by the relationship be-
tween the total sample size and the number of predictors.
Te best RF performance was obtained with many obser-
vations in each end node for large n and small p (between
seven and nine). When dealing with situations with many
observations and a few variables, increasing the terminal
node size with the sample size improved the convergence
rate of the prediction accuracy [53].Tere was no discernible
pattern for small n and large p. Although theminimumnode
size appears to have a minor impact on predictive accuracy,
it is necessary to consider this parameter when tuning RF.
When determining the ideal combination of the best pa-
rameters of RF, the prevalence of specifc values can indicate
the stability of estimates, avoiding the efect of random
fuctuations. According to Lin and Jeon [53], growing large
trees, that is, using small observations in each terminal node,
generally results in the highest performance for “small-n-
large-p” situations.

We observed that sample size behaviour is also infu-
enced by the relationship between the number of observa-
tions and predictors. When the ratio of the number of
observations to the number of predictors is high, RF pro-
duces the best results with fewer observations (55 percent or
63.2 percent of the total sample size). Buja and Stuetzle [54]
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Figure 6: Efect of overdispersion on RF predictive performance compared to GLM models (relation is the outcome’s variance-to-mean
relationship). (a) |Bias| and (b) RMSE.
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argued that half-sampling might be more suited because
bootstrap sampling shares several theoretical traits.
Wösthof [55] claimed that the subsample size is not a
critical parameter as the results of sizes 0.5 and the default
value (0.632) are nearly identical. For permutation impor-
tance estimation in classifcation, signifcant predictor var-
iables may not be recognized if the sample size is too small.
Te variability of the importancemeasure tends to increase if
the subsample size is so large that the out-of-bag sample
becomes very small [55].

Considering overdispersion, we realized that, for small
sizes (less than 250), the best mtry value was randomly
selected among possible values. In contrast, for large pop-
ulation sizes, this value was maintained constant (mtry� 2)
for all types of covariates. According to Svetnik et al. [49],
this parameter is the main RF tuning parameter. Further-
more, the sample size infuenced the RF accuracy level. For
small sample sizes (less than 250), the efect of over-
dispersion resulted in an erratic trend, challenging to in-
terpret. In contrast, the trend was linear for large population
sizes, illustrating the overdispersion efect.

Although RF parameters seemed insensitive to the de-
gree of overdispersion of the response variable, RF accuracy
was afected. Tus, despite being an essential step in RF
analyses, parameter tuning did not afect the best parameter
selection when the response variable was overdispersed.
Some authors have recommended data transformation for

RF analyses, especially population estimation. Transforming
the response variable allows the RF algorithm to fnd good
splits in data as the relationship between distance-based
covariates and the population is, in most cases, more uni-
formly distributed [56]. Transformation methods may be
applied to observed response variables before RF model
ftting for higher prediction accuracy. However, O’Hara and
Kotze [57] stated that we should not transform count data
because, in addition to performing poorly, they can lead to
impossible predictions.

3.2.2. RF Performance Compared to Poisson Model
Extensions. According to Anderson et al. [33], one of the
most critical decisions in the population modelling process is
understanding and selecting the appropriate model structure
based on the available data. RF regression is an efcient and
credible alternative in prediction tasks, as reported by previous
studies [12]. Te results obtained in this study suggest that RF
is as accurate as Poisson, zero-infated Poisson, and negative
binomial regressions when dealing with overdispersed count
data. Te tick burden dataset confrmed this statement. Novel
methods such as RF are more efcient for predicting spatial
patterns in species distribution models than more traditional
linear models [58]. Furthermore, they consistently outperform
more established methods. RF’s consistency and predictive
performance could be an additional point to explore and
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reorient the debate onmodelling count data. Some researchers
suggest using the Poisson model and its extensions [57].
Others recommend using the linear model when the objective
is to test the signifcance of estimates [41]. On the contrary,
others think there is no best solution because it depends on the
database in the presence [42]. However, these models have
shown similar performance for diferent levels of over-
dispersion. Considering GLMs, RF is robust to mis-
specifcation of the relationship between the mean and
variance [57]. Anderson et al. [33] claimed that traditional
regression-based models may not be the most efective model,
depending on the available census data (for example, presence
of sampling bias, missing data, outliers, and imperfect de-
tection). Given the predictive accuracy demonstrated by RF, its
fexibility in dealing with covariates of various natures, and
other recognised advantages such as the ability to deal with
complex interaction structures, highly correlated variables and
the measurement of variable signifcance, RF is an efective
alternative method for predicting count outcomes [52]. RF
may be a tool of capital importance for decision and poli-
cymakers working in limited data areas or with unreliable
census data, especially in developing countries. Furthermore,
producing accurate and reliable estimates is a problem of
interest for resource allocation, public health, outbreak early
detection, food security, conservation policy, environmental
planning, and others [33, 56, 59].

4. Conclusion

RF has become a popular analysis tool in many application
felds and will probably remain relevant in the future due to
its high fexibility andmany advantages.Tis study evaluated
the impact of diferent characteristics of the dataset and the
magnitude of overdispersion on the settings of RF param-
eters and predictive performance through simulated and
real-life datasets. We found that the RF algorithm performs
relatively well for all types of predictors. Data features do not
infuence the setting of RF parameters and, consequently, its
predictive accuracy. However, the ratio of observations to
the number of predictors infuences the stability of the
optimal RF parameters for a given dataset. Although the
degree of overdispersion of the response variable did not
signifcantly infuence RF predictive validity, the magnitude
of dispersion infuenced RF predictive accuracy. Te RF
algorithm performed almost equally well as standard count
data models such as quasi-Poisson, zero-infated Poisson,
and negative binomial models for the outcomes with linear
and quadratic variance-to-mean relationships. However, for
some scenarios, RF sometimes had a higher bias or RMSE,
sometimes a lower bias or RMSE compared to Poisson
family models. Furthermore, for the same scenario,
depending on the selected subsample, a model may appear to
perform better when it does not perform well overall. Tus,
the best model choice should be based on data. RF is a
reliable method when the assumptions for GLMs are not
satisfed. Terefore, despite the sensitivity of RF to the
overdispersion of the response variable, it is an efcient
method for predicting count outcomes. Tereby, it is a tool
of capital importance for decisions and policymakers

working in limited data areas. Terefore, research should
focus on decreasing the sensitivity of predictive accuracy to
overdispersion.
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