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In the Fundamental Review of the Trading Book (FRTB), the latest regulation for minimum capital market risk requirements, one
of the major changes, is replacing the Incremental Risk Charge (IRC) with the Default Risk Charge (DRC). Te DRC measures
only the default and does not consider the migration rating risk. Te second new change in this approach was that the DRC now
includes equity assets, contrary to the IRC. Tis paper studies DRC modeling under the Internal Model Approach (IMA) and the
regulator conditions that every DRC component must respect. Te FRTB presents the DRC measurement as Value at Risk (VaR)
over a one-year horizon, with the quantile equal to 99.9%. We use multifactor adjustment to measure the DRC and compare it
with the Monte Carlo Model to understand how the approach fts. We then defne concentration in the DRC and propose two
methods to quantify the concentration risk: the Ad Hoc and Add-On methods. Finally, we study the behavior of the DRC with
respect to the concentration risk.

1. Introduction

Since 2013, the Basel Committee has led works for a new
regulation to implement a more consistent regulatory
market risk capital platform. Tis project is known as the
Fundamental Review of the Trading Book. It replaces the
Basel II International Convergence of Capital Measurement
and Capital Standards text. Te complete version was
prepared by the Basel Committee [1] under the title,
“Minimum Capital Requirements for Market Risk.” Tis
regulation is summarized into four streams.

Te frst stream refers to the boundary between the
trading and the banking books. Tus, this stream aims to
improve the visibility of products that include market risk
exposure. Te banks are brought in to list all desks of the
trading book. Tey must defne the link between the posi-
tions held for the trading objective and the regulatory
trading book. Te regulatory purpose is to reduce arbitrage
across the trading and banking books.

Te second stream refers to rebuilding the Internal
Models Approach (IMA). Hence, this stream covers all
internal market risk models developed by banks. Te

regulator suggests changing all market risk measurements.
First, the regulator replaces the market Value at Risk (VaR)
and the Stressed Value at Risk (SVaR) from two perspectives
given a 10-day horizon and a 99% confdence level by the
Expected Shortfall (ES) and given a 10-day horizon with
diferent liquidity horizons (10, 20, 40, 60, 120 days) and a
97.5% confdence level.Te Basel formula is given as follows:

ES �

��������������������

􏽘
j≥2

�����������
LHj − LHj− 1

T

􏽳

⎛⎝ ⎞⎠

2

,

􏽶
􏽴

(1)

where T � 10 days and the liquidity horizons (LH) are equal
to LHj � 10, 20, 40, 60, 120 days. ES is computed sequentially
by liquidity horizons and class assets. Figure 1 gives us an
example of the calculation.

Second, banks must distinguish between modellable and
non-modellable risk factors (NMRFs). Ten, those risk
factors must be quantifed using a stress scenario with zero
correlation. Tird, the Comprehensive Risk Measure must
be processed according to the standard approach. Finally,
the Incremental Risk Charge is changed by the Default Risk
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Charge. We will see the detailed regulation requirement for
its modeling next. At this stage, we are reminded that the
migration rate risk is deleted to keep only the default one,
and the equity scope is added.

Te third stream refers to improving model adequacy
and backtesting. In this stream, the regulator has
established two levels of VaR backtesting: 97.5% and
99%. Ten, the regulator adds the proft and loss (P&L)
attribution as a new test. Such a test is based on the
minimization of two ratios. On the one hand, banks must
minimize the unexplained-daily P&L. It equals the dif-
ference between a risk-theoretical P&L and a hypo-
thetical P&L over the standard deviation of hypothetical-
daily P&L. On the other hand, we fnd the ratio between
the variances of unexplained-daily P&L and hypotheti-
cal-daily P&L. Te frst ratio boundary is [− 10%, +10%].
Te second ratio has to be between 0% and 20%. Tis test
aims to bring the market P&L distribution closer to the
theoretical P&L distribution because we know that VaR
backtesting is focused on the distribution tail alone.
Figure 2 shows an example of the unexplained mean and
variance.

Nevertheless, one limitation of those ratios is that when
the portfolio is perfectly hedged, it leads to the zero value of
the hypothetical-daily P&L variance. Te two metrics
converge to infnity, and we then analyze the conclusions of
this test.

Te fnal stream refers to rebuilding the Standardized
Approach (SA). Te new SA is based on the Sensitivities
Method and covers the trading book’s nonsecuritization and
securitization exposures. Te regulator also defnes the SA
for the DRC and the residual risk add-on that is not captured
by others risk metrics. Banks will then use a linear approach
based on the Delta and Vega sensitivities and a nonlinear
approach for the instruments that integrate curvatures (e.g.,
options for ES computing). However, the DRC SA uses risk
weight to weigh the Jump to Default (JTD) by obligor rating
to calculate the DRC.

After that, we will focus on the FRTB guidelines for
modeling the DRC on the IMA.Te regulator defnes default
risk as the direct or indirect loss arising from the obligor’s
default. Tis risk is measured by a VaR based on a one-year
horizon and a 99.9% confdence level. Te computing fre-
quency is weekly, and the DRC capital requirement is equal
to the following:

KDRC � max
1
N

􏽘

N

i�1
DRCi,DRCN+1

⎛⎝ ⎞⎠; N � 12. (2)

We should calibrate four components and model to
implement the loss function. Te frst component is the
obligor’s correlation. Initially, the regulator allows using the
credit spread or the historical listed equity price data. Tese
historical data must include at least 10 years and the stressed
period, as defned in the ES model. Te chosen liquidity
horizon is the one-year liquidity horizon, and the minimum
for the equities is set at 60 days.Tese datamust give a higher
correlation for portfolios, including short and long posi-
tions. On the other hand, a low correlation is assigned to the

portfolios that contain only long exposures. Next, the ob-
ligor’s default must bemodeled using two types of systematic
factors to deduce the model correlation. Finally, the cor-
relation measurement must be done on the one-year li-
quidity horizon.

Te second component is the Probability of Default
(PD). Te FRTB defnes some conditions and priorities for
PD estimation.Te frst two conditions are as follows: (1) the
market PDs are not allowed and (2) all default probabilities
are foored to 0.03%. Te Internal Ratings-Based (IRB) PDs
typically become the best choice when themodel is validated.
Otherwise, a model must be developed respective to the IRB
methodology. Terefore, historical market PDs should not
be used for calibration. Institutions must base their evalu-
ations on a historical default uploaded with a 5-year ob-
servation as a minimum calibration period. Banks could also
use the external rating provided by rating agencies (e.g.,
S&P, Fitch, or Moody’s) to estimate PDs. In this case, they
must defne the priority ranking choice.

Te third component is the Loss Given Default (LGD)
model. Te LGD model must catch the correlation between
recovery and systematic factors. Te model must be cali-
brated based on IRB data if the institution already has a
homologated model. Te historical data should be relevant
to get accurate estimates. All LGDs must be foored to zero,
and the external LGDs could be used, respective to some
defned ranking choice.

ES (10)
ES (20)

ES (60)

ES (120)
ES (250)

10-120 20-120 40-120 60-120 120-
Liquidity Horizon

0

5

10

15

20

25

ES
 (%

)

Figure 1: Te expected shortfall (ES) calculation.
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Figure 2: Te unexplained mean and variance.
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Tefnal component is the Jump to Default (JTD)model.
Te JTD model must catch each obligor’s long and short
positions. Additionally, the set assets must contain the credit
(i.e., sovereign and corporate credit) and the equity expo-
sures. Tis measure can be defned as a function of the LGD
and the Exposure at the Default (EAD) for credit assets.
However, it must also measure the P&L for equities when the
default occurs since we know that the LGD is equal to 100%
for equity assets. Te model includes equity derivatives
pricing within the zero value of the stock price. Te non-
linear product JTD must integrate multidefault obligors in
the case of the derivative products with a multiple under-
lying. A linear approach could be used for these products,
such as the sensitivities approach, based on obligor default
and subject to supervisor approval.

Tere are a few studies present and suggest frameworks
to model the DRC. Te frst one was made by Laurent et al.
[2] where they use the Hoefding decomposition to explain
the loss function. Te second one was implemented by
Wilkens and Predescu [3] and they propose a complete
framework to build the DRC model. However, they all use
the Merton model with multifactor (structural approach)
and they are not studying the concentration risk issue.

In this paper, we will study the DRC modeling under the
Internal Model Approach (IMA) and the regulator condi-
tions that every DRC component must respect. Te FRTB
presents the DRC measurement as a Value at Risk (VaR),
over a one-year horizon, with the quantile equal to 99.9%.
We will use the multifactors adjustment to measure the
DRC, and we will compare it with the Monte Carlo Model to
study the ftting of this approach. We will then defne the
concentration in the DRC, and we will propose an approach
to quantifying the concentration risk. We will fnally study
the behavior of the DRC with respect to the concentration
risk.

2. Mathematical Modeling of the DRC

2.1. Obligor Default Model. Te FRTB requires two types of
systematic factors to simulate obligor default. We run a
Principal Component Analysis (PCA) to select the set of
systematic factors and their types. Te results of the PCA
give us four systematic factors for each obligor and two
types: (1) global factors and (2) sectorial factors. Te frst set
of factors is built by one global factor and two global asset
types: (1) sovereign and (2) corporate. Te second asset type
contains regional and industry factors. We note these sets,
respectively, by GA � GS,GC, R � 1 . . . r, and I � 1 . . . s as
we know that two approaches allow default modeling: (1) the
structural model and (2) the intensity model. In this study,
we will use the Merton [4] model with multifactors and
deem a portfolio with N obligor, containing credit (i.e.,
sovereign and corporate) and equity position. Te return
variable is written for an obligor (i) as follows:

Xi � βi × ZG + βg
i × Zg + βj

i × Z
R
j + βl

i × Z
I
l + σiεi, (3)

where ZG, Zg, ZR
j , andZI

l are independent of set and follow
N(0, 1), with g ∈ GA, j ∈ R, l ∈ I. β gives the correlation

between obligors and systematic factors, whereas
εi ∼ N(0, 1) represents the specifc risk, and they are in-
dependent and identically distributed for i ∈ 1 . . . N{ } and
independent of all systematic factors. Also, the following
formula is used to keep Xi ∼ N(0, 1):

σi �

��������������������

1 − β2i + βg2

i + βj2

i + βl2

i􏼒 􏼓

􏽲

. (4)

Te initial choice of a systematic factor does not allow an
independent set structure. However, we can run the
Gram–Schmidt algorithm to get the orthogonal sets before
calibrating the model correlations. We then fx the global
systematic factor and orthogonalize each axis in GA set with
the global one. Te new axes are defned as follows:

Z
⊥
g � Zg −

〈ZG, Zg〉
ZG

����
����

× ZG, g ∈ GA. (5)

We do the same thing for regions and add the orthogonal
projection under ZG and Z⊥g to get ZR⊥

j . Finally, we proceed
for industries by adding the projection on ZR⊥

j to build ZI⊥

j .
We center and reduce at each orthogonalization step to keep
a centered and reduced variable.

We will use the new systematic factors in the following
calculation. Terefore, the implied correlation between
obligors can be deduced by

ρI
� β × ρF

× β′ + σ2 × I, (6)

where ρI represents the obligor implied correlation matrix,
N × N; ρF is the systematic factor intracorrelation matrix,
K × K and K � (3 + r + s); β represents the correlation
factors between the obligors matrix, N × (3 + r + s), and the
systematic factors; β′ represents the transposed matrix; σ2 is
the vector of σ2i ; and I is the identity matrix.

We deem a set of 1,481 issuers within a 10-year historical
spread. Our population contains 69 sovereigns in six regions
and 11 industries. Terefore, we build a set of systematic
factors orthogonal by subsets, which gives us the block of
zeros in building a ρF with 20 × 20 as the dimensions.

Te relevance of our model could be measured by
comparing the implied correlation with the historical cor-
relation. We assume that we use the log return of historical
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Figure 3: Correlation densities.
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data and note ρH, the Pearson historical correlation between
obligors. First, we propose plotting the density function of
ρH and ρI to see if the implied distribution fts with the
historical one. Figure 3 shows that the implied density is
close to the historical density, and both look very similar.

However, the plot of densities is not enough to measure
ft. We can also use the same ratios defned on the P&L
attribution to compare the mean and standard deviation of
the two distributions. Hence, these ratios equal 2.26% and
12.14%, respectively. We suggest building the confdence
interval on ρH using the following Fisher transformation to
complete this analysis:

z
H

�
1
2
ln

1 + ρH

1 − ρH
􏼠 􏼡, with z

H ∼ N
1
2
ln

1 + ρH

1 − ρH
􏼠 􏼡,

1
�����
N − 3

√􏼠 􏼡.

(7)

We directly conclude the confdence interval,
IC(zH, α) � zH ± Φ− 1(1 − α/2)/

�����
N − 3

√
with α, the conf-

dence level. We then compute the percent numbers of this
confdence interval pair-wise to conclude the model accuracy.
Given that α � 10%, the result tells us that 91.9% of the pop-
ulation is inside the confdence interval. We observe that the
quality of our model correlation is sensitive to how we build the
systematic factor, and we can use this to rebuild the set that gives
the closest implied correlation to the observed one. However, the
drawback of this approach is that it is very time-expensive.

After this calibration, the obligor default is defned under
the Merton model as follows:

Di �
1, siXi <Φ

− 1 PDi( 􏼁,

0, siXi ≥Φ
− 1 PDi( 􏼁.

⎧⎨

⎩ (8)

In other words, we can write Di � A Xi <Φ− 1(PDi){ } with
PDi, which represents the probability of default for the
obligor (i). We will use the Standard & Poor’s (S&P) PDs
with a foor of 0.03% as specifed in the FRTB. Table 1 shows
the one-year probability of default by rating and category.

Hence, the conditional default probability for the sys-
tematic factors under this model is equal to

PDi(Z) � Φ
Φ− 1 PDi( 􏼁 − βiZ′

σi

􏼠 􏼡. (9)

Given that βi are the obligor lines of the β matrix, Z′ is
the systematic vectors transpose and is defned as
Z � (ZG, ZGS, ZGC, ZR

1 , . . . , ZR
r , ZI

1, . . . , ZI
s).

2.2. LGD Model. Te LGD computation depends on the
recovery rate. However, the FRTB guidelines require the
dependency between recovery rate and systematic factors
(“Te model must incorporate the dependence of the re-
covery on the systemic risk factors” [1], p. 62). Hence, we
should resort to the models that allow this condition. Tere
are many models developed in this optic. For example,
Michael [5] proposed an exponential function between the
recovery rate and the systematic factors. In another ap-
proach, Hull and White [6] suggested an exponential
function between recovery and default rates. Tis model

indirectly links the LGD to systematic factors because the
default rate is a function of them. In this paper, we opt for a
similar model to the one based on the default rate. We deem
the following relation between the LGD and the conditional
default probability of the systematic factor:

LGD(Z) � 1 − b × e
− a×PD(Z)

; a, b≥ 0, (10)

where

a � − ln
1 − LGDmax

1 − LGDmin
􏼠 􏼡,

b � 1 − LGDmin.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

We use the IRB data for the calibration of LGDmin and
LGDmax to conform to the FRTB regulation. Te asset class
can make this calibration, so we have to defne asov , bsov for
sovereign and acorp , bcorp for corporate obligors. It could also
be done by seniority. However, we keep the sovereign and
corporate subdivisions in our case, taking the following
values for calibration:

LGDmin(SOV) � 0.0, LGDmax(SOV) � 0.8,

LGDmin(CORP) � 0.6, LGDmax(CORP) � 0.99.
􏼨 (12)

Given these values, we fnd our parameters as follows:

asov, bsov( 􏼁 � (1.61, 1.0),

acorp, bcorp􏼐 􏼑 � (19.8, 0.4).

⎧⎨

⎩ (13)

Tus, we deem the following transformation:

Y � PDi Zi( 􏼁 � Φ
Φ− 1 PDi( 􏼁 − riZi�����

1 − r
2
i

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (14)

where Zi � αi × Z′ ∼ N(0, 1); αi � (αG,i, αGS,i, αGC,i, αR
1,i, . . . ,

αR
r,i, α

I
1,i, . . . , αI

s,i), 􏽐
k
k�1 α

2
i,k � 1; and

ri �

�����������������

(β2i + βg2

i + βj2

i + βl2

i )

􏽱

.

Table 1: Probability of default (PD) by rating.

Rating
(S&P)

Corporate (1981–2016)
(%)

Sovereign (1975–2016)
(%)

AAA 0.03 0.03
AA+ 0.03 0.03
AA 0.03 0.03
AA− 0.03 0.03
A+ 0.05 0.03
A 0.06 0.03
A− 0.07 0.03
BBB+ 0.12 0.03
BBB 0.17 0.03
BBB− 0.26 0.03
BB+ 0.36 0.20
BB 0.58 0.10
BB− 1.05 1.20
B+ 2.15 0.40
B 3.89 2.30
B− 7.49 7.20
CCC/C 26.78 23.40
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We can calculate the distribution and the density of Y.
Hence, the calculations lead to the following results:

FY(y) � P(Y≤y) � Φ

�����

1 − r
2
i

􏽱

Φ− 1
(y) − Φ− 1 PDi( 􏼁

ri

⎛⎜⎜⎝ ⎞⎟⎟⎠, y ∈ [0, 1],

fY(y) �
dFY(y)

dy
�

�����

1 − r
2
i

􏽱

ri

×
φ

�����

1 − r
2
i

􏽱

Φ− 1
(y) − Φ− 1 PDi( 􏼁/ri􏼒 􏼓

φ Φ− 1
(y)􏼐 􏼑

, y ∈ [0, 1].

(15)

Terefore, we can deduce the recovery rate distribution
since it is a function of Y:

R � b × e
− a×Y

. (16)

Ten,

FR(r) � Φ
Φ− 1 PDi( 􏼁 −

�����

1 − r
2
i

􏽱

Φ− 1
(− ln(r/b)/a)

ri

⎛⎜⎜⎝ ⎞⎟⎟⎠, r ∈ be
− a

, b􏼂 􏼃,

fR(r) �
dFR(r)

dr
�

�����

1 − r
2
i

􏽱

a × ri × r
×
φ Φ− 1 PDi( 􏼁 −

�����

1 − r
2
i

􏽱

Φ− 1
(− ln(r/b)/a)/ri􏼒 􏼓

φ Φ− 1
(− ln(r/b)/a)􏼐 􏼑

, r ∈ be
− a

, b􏼂 􏼃.

(17)

We then conclude the expectation and the variance of
the recovery:

E[R] � b × E e
− aY

􏽨 􏽩 � b × 􏽚
∞

− ∞
exp − a ×Φ

Φ− 1 PDi( 􏼁 − riz�����

1 − r
2
i

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ × φ(z) dz⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� b × e
− a

+ a 􏽚
1

0
e

− ay
× FY(y) dy􏼠 􏼡,

V[R] � b
2

× V e
− aY

􏽨 􏽩 � b
2

× E e
− 2aY

􏽨 􏽩 − E e
− aY

􏽨 􏽩􏼐 􏼑
2

􏼒 􏼓,

(18)

where

E e
− aY

􏽨 􏽩 � e
− a

+ a 􏽚
1

0
e

− ay
× FY(y) dy,

E e
− 2aY

􏽨 􏽩 � e
− 2a

+ 2a 􏽚
1

0
e

− 2ay
× FY(y) dy.

(19)

For the small values of Y, we can approximate e− aY ≈ 1 −

aY. We then have a close formula for the recovery expec-
tation and variance:

E[R] � b ×(1 − a × E[Y]),

V[R] � b
2

× a
2

× E Y
2

􏽨 􏽩 − (E[Y])
2

􏼐 􏼑,
(20)

with

E[Y] � PDi,

E Y
2

􏽨 􏽩 � Φ2 Φ
− 1 PDi( 􏼁,Φ− 1 PDi( 􏼁, r

2
i􏼐 􏼑.􏼐

(21)

2.3. JTD Model. Te standardized approach defnes a long
and short JTD for the same obligor. We then aggregate to get
the gross JTD. In this approach, JTD is a function of LGD,
the notional amount, and the P&L. Terefore, we have the
following equations:

JTD(long) � max(LGD × notional + P&L, 0),

JTD(short) � min(LGD × notional + P&L, 0),
(22)
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where P&L�market value-notional and LGD� 25%, 75%,
100%, respectively, for covered bonds, senior debts, and
nonsenior debts.

We could keep the same formula by replacing it with the
LGD model. However, the other option is to compute the

EAD as we did in the banking book. Terefore, it will be
explained by asset type (i.e., credit and equity) and in mono
and multi-underlying contexts. We then describe the for-
mula for each asset type as follows:

EADCredit
i � E V Yi(T)( 􏼁|Di � 1􏼂 􏼃 × 1 isMono{ } + E wi × V Y1(T)( , . . . , Yi(T), . . . , YK(T)􏼁( 􏼁|Di � 1􏼂 􏼃 × 1 isMulti{ },

EADEquity
i � E V Yi(T)( 􏼁|Yi � 0􏼂 􏼃 × 1 i isMono{ } + E wi × V Y1(T)( , . . . , Yi(T), . . . , YK(T)􏼁( 􏼁|Yi � 0􏼂 􏼃 × 1 isMulti{ },

EADi � EAD
Credit
i + EAD

Equity
i ,

(23)

where T � 1 year; Yi is the obligor underlying price (i.e., the
stock price in the case of equity); V is the function value of
the obligor (i) (i.e., the aggregate position of mono and
multi-underlying); wi � |si|/􏽐

K
1 |si|, si � zv((x1, . . . , Xi, . . . ,

XK))/zxi represents the sensitivity weight; and
A isMono{ },A isMulti{ } defne the underlying context.

Note that we use the simplifcation suggested by the
FRTB, and it needs a supervisor validation. Te JTD for the
obligor (i) is given by

JTDi(Z) � LGDi(Z) × EADCredit
i + EADEquity

i . (24)

Figure 4 gives the exposure density of the portfolio used
in this paper.

2.4. DRCModel. We now have all components to defne the
loss function, given by the following equation:

L � 􏽘
N

i�1
JTDi(Z) × A Xi <Φ− 1 PDi( ){ }. (25)

Tis quantity can be computed using the Monte Carlo
simulation to generate the loss distribution. Indeed, we note
M, the number of simulations, and Lm, the sampled path for
m � 1. . .M. As we know, the DRC is a VaR at 99.9% for a
one-year horizon; thus, it can be estimated as follows:

DRC � VaR99.9%(L) � L
m′

. (26)

Knowing that m′ represents the path that gives the
99.9% × M loss, the Monte Carlo simulation gives the fol-
lowing DRC value with M � 1, 000, 000 after decreasingly
ordering all simulated paths:

VaR99.9%(L) � 6133688. (27)

Figure 5 shows the loss distribution density of the
portfolio.

Tis approach is straightforward and gives a good result
with a large enoughM. However, it takes much time for large
portfolios and does not support quantifying concentration
risk cost and defning whether it has been captured or not.
First, we describe the loss induced by the systematic risk
factor as follows:

LZ � E[L|Z] � 􏽘
N

i�1
E JTDi βiZ′( 􏼁 × A Xi <Φ− 1 PDi( ){ }|Z􏼔 􏼕

� 􏽘

N

i�1
JTDi(Z) × PDi(Z).

(28)

Tis equality comes where the JTD is Z-measurable.
Terefore, we deem the following transformation as

PDi Zi( 􏼁 � Φ
Φ− 1 PDi( 􏼁 − riZi�����

1 − r
2
i

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (29)

where Zi � αi × Z′ ∼ N(0, 1); αi � (αG,i, αGS,i, αGC,i, αGE,i,

αR
1,i, . . . , αR

r,i, αI
1,i, . . . , αI

s,i), 􏽐
k
k�1 α2i,k � 1; and

ri �

�����������������

(β2i + βg2

i + βj2

i + βl2

i )

􏽱

.
By substituting the loss function, we get the following

result:

LZ � 􏽘
N

i�1
1 − bi × e

− ai×PD (Zi( 􏼁
􏼒 􏼓 × EADCredit

i + EADEquity
i􏼒 􏼓 × PDi Zi( 􏼁. (30)

We applied a Monte Carlo simulation to this expression
to compute the distribution of LZ and the VaR because the
model contains more than one factor. However, we must
relate our model to the one-factor model to get a direct
computation of the VaR. Michael [5] defned this relation
using an aggregate systematic factor Z as follows:

Z � c × Z′,

􏽘

K

k�1
c
2
k � 1,

(31)
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where ck is chosen to maximize the correlation between
elements of Z and Z. Furthermore, we can rewrite the
obligor default variable as follows:

Xi � riρi × Z +

���������

1 − riρi( 􏼁
2

􏽱

× εi, (32)

where ρi � cor(Zi, Z) � 􏽐
K
k�1 ckαi,k.

For the rest of this study, we redefne the recovery rate as
a function of Z. Given these results, the loss function under
the one-factor model becomes

LZ � E[L|Z] � 􏽘
N

i�1
1 − bi × e

− ai×PDi(Z)
􏼒 􏼓 × EADCredit

i + EADEquity
i􏼒 􏼓 × PDi(Z), (33)

where PDi(Z) � Φ(Φ− 1(PDi) − riρiz/
���������

1 − (riρi)
2

􏽱

).
We use the following problem optimization to fnd the

appropriate ck. Tis method allows minimizing the norm
one between the DRC value under the Monte Carlo ap-
proach and VaR99.9%(LZ):

min ck{ }, VaR99.9%(L) − VaR99.9% LZ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

s.t. 􏽘
K

k�1
c
2
k � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

In our case, the quantile of the systematic loss for the
optimized ck is equal to

VaR99.9% LZ( 􏼁 � 4667769. (35)

Hence, the remaining part of the DRC is the diference
between the Monte Carlo DRC and the systematic loss,
which equals 1,465,919. Tis quantity represents 23.9%, and
it will be approximated using the adjustment.

It remains to compute the correlation and concentration
efects since the FRTB guideline specifes that the model
must refect the name concentration risk and the sectorial
one by asset class (“Temodel must refect the efect of issuer

and market concentrations, as well as concentrations that
can arise within and across product classes during stressed
conditions” [1], p. 62).

3. Concentration Risk under DRC

3.1. Concentration Adjustment. We will use an adjustment
to catch the concentration part, defning the loss function
adjustment as Lε � LZ + ε(L − LZ). Using these notations,
this adjustment is defned as follows:

Δq Lε( 􏼁 � VaRq Lε( 􏼁 − VaRq LZ( 􏼁,

� VaRq LZ + ε L − LZ( 􏼁( 􏼁 − VaRq LZ( 􏼁.
(36)

By applying the Taylor expansion [7] on VaRq(Lε) with
the second order, according to ε � 0 and by replacing ε � 1,
we get

Δq Lε( 􏼁 �
z

zε
VaRq Lε( 􏼁|ε�0 +

1
2

z
2

zε2
VaRq Lε( 􏼁|ε�0. (37)

By computing the frst and the second derivative terms,
we fnd the following results [8]:

z

zε
VaRq Lε( 􏼁|ε�0 � E L − LZ|LZ � VaRq LZ( 􏼁􏽨 􏽩,

z
2

zε2
VaRq Lε( 􏼁|ε�0 � −

1
fLZ

(l)

z

zl
fLZ

(l) × V L − LZ|LZ � l􏼂 􏼃􏼒 􏼓⎡⎣ ⎤⎦|l�VaRq LZ( ),

(38)

where fLZ
defnes the density function of LZ.

Since LZ is a deterministic and decreasing function of Z,
we can replace LZ � VaRq(LZ) with Z � Φ− 1(1 − q) and get
the following result:

z

zε
VaRq Lε( 􏼁|ε�0 � E L − Lz|Z � Φ− 1

(1 − q)􏽨 􏽩,

z2

zε2
VaRq Lε( 􏼁|ε�0 � −

1
φ(z)

z

zl
φ(z) ×

σ(z)

μ′(z)
􏼠 􏼡􏼢 􏼣|z�Φ− 1(1− q).

(39)

Te frst order of the derivative equals zero, leaving
behind the second order. We then have

Δq Lε( 􏼁 �
1

2μ′(z)
z +

μ″(z)

μ′(z)
􏼠 􏼡σ2(z) − σ2(z)′􏼢 􏼣|z�Φ− 1(1− q),

(40)

where

μ(z) � E[L|Z � z],

σ2(z) � V[L|Z � z].

(41)

Journal of Probability and Statistics 7



Terefore, the frst and second derivatives of μ(z)

according to the systematic factor are given by

μ′(z) � 􏽘
N

i�1
1 − 1 − ai × PDi(z)( 􏼁 × bi × e

− ai×PDi(z)
􏼐 􏼑 × EADCredit

i + EADEquity
i􏼐 􏼑 × PDi

′(z),

μ″(z) � 􏽘
N

i�1
1 − 1 − ai × PDi(z)( 􏼁 × bi × e

− ai×PDi(z)
􏼐 􏼑 × EADcredit

i + EADEquity
i􏼐 􏼑 × PD′′i(z)􏼔

+ai × bi × 2 − ai × PDi(z)( 􏼁 × EADCredit
i × e

− ai×PDi(z)
× PDi
′(z)

2
􏽩,

(42)

with

PDi
′(z) � −

riρi���������

1 − riρi( 􏼁
2

􏽱 × φ
Φ− 1 PDi( 􏼁 − riρiz���������

1 − riρi( 􏼁
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

PD′′i(z) �
riρi���������

1 − riρi( 􏼁
2

􏽱 ×
Φ− 1 PDi( 􏼁 − riρiz���������

1 − riρi( 􏼁
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ × PDi
′(z).

(43)

We use the variance decomposition to compute σ2(z) as
follows:

σ2(z) � V[E[L|Z]|Z � z] + E[V[L|Z]|Z � z]. (44)

We can explain that the frst term gives correlation ef-
fects between issuers and sectors. Hence, it indirectly gives
the sector correlation since implied correlation depends on
intrasectorial correlation. Te second one integrates the
name concentration (i.e., specifc) risk and is known as the
Granularity Adjustment (GA). We then get

v1(z) � V[E[L|Z]|Z � z] � 􏽘
N

i,j�1
cov Li, Lj|Z � z􏼐 􏼑, (45)

where Li � JTDi(Z) × A Xi <Φ− 1(PDi){ } is the individual loss
function.

We compute the covariance between two individual loss
issuers as follows:

cov Li, Lj|Z � z􏼐 􏼑 � JTDi(z) × JTDj(z) × cov A Xi <Φ− 1 PDi( ){ },A Xj <Φ− 1 PDj( 􏼁􏼈 􏼉
|Z � z􏼒 􏼓,

� JTDi(z) × JTDj(z) E A Xi <Φ− 1 PDi( ){ } × A
Xj <Φ− 1 PDj( 􏼁􏼈 􏼉

|Z � z􏼔 􏼕,􏼔

− E A Xi <Φ− 1 PDi( ){ }|Z � z􏼔 􏼕 × E A
Xj <Φ− 1 PDj( 􏼁􏼈 􏼉

|Z � z􏼔 􏼕􏼕,

� JTDi(z) × JTDj(z) × Φ2 Φ
− 1 PDi(z)( 􏼁,Φ− 1 PDj(z)􏼐 􏼑, ρZ

ij􏼐 􏼑 − PDi(z) × PDj(z)􏽨 􏽩.

(46)

Terefore, the frst term is equal to
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6e-07

5e-07

4e-07

3e-07

2e-07

1e-07

0e+00

D
en

sit
y

-2e+07 -1e+07 0e+00 1e+07
Loss

Figure 5: Loss density.

8 Journal of Probability and Statistics



v1(z) � 􏽘
N

i,j�1
JTDi(z) × JTDj(z) × Φ2 Φ

− 1 PDi(z)( 􏼁,Φ− 1 PDj(z)􏼐 􏼑, ρZ
ij􏼐 􏼑 − PDi(z) × PDj(z)􏽨 􏽩, (47)

where Φ2 is the bivariate normal cumulative distribution
function and ρZ

ij represents the implied correlation between
two issuers conditional to the systematic factors. Te de-
rivative with respect to z is equal to

v1′(z) � 2 􏽘
N

i,j�1
JTDi(z) × JTDj(z) × PDi

′(z) × Φ
Φ− 1 PDj(z)􏼐 􏼑 − ρZ

ijΦ
− 1 PDi(z)( 􏼁

��������

1 − ρz
ij􏼐 􏼑

2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − PDj(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 2 􏽘
N

i,j�1
JTDi′(z) × JTDj(z)

× Φ2 Φ
− 1 PDi(z)( 􏼁,Φ− 1 PDj(z)􏼐 􏼑, ρZ

ij􏼐 􏼑 − PDi(z) × PDj(z)􏽨 􏽩,

(48)

where JTDi′(z) � (ai × bi × PD′(z) × e− ai×PD(z)) × EADCredit.

Te second term gives the name concentration part of
the adjustment, and we can compute it knowing that the
individual losses are independent conditional to the sys-
tematic factors:

V[L|Z] � 􏽘
N

i�1
V Li|Z􏼂 􏼃. (49)

By computing the individual variance of loss, we get

V Li|Z􏼂 􏼃 � JTDi(Z)
2

× V A Xi <Φ− 1 PDi( ){ }|Z􏼔 􏼕 � JTDi(Z)
2

× PDi(Z) − PDi(Z)
2

􏼐 􏼑,

E V Li|Z􏼂 􏼃|Z � z􏽨 􏽩 � JTDi(z)
2

× PDi(z) − E PDi(Z)
2
|Z � z􏽨 􏽩􏼐 􏼑,

E PDi(Z)
2
|Z � z􏽨 􏽩 � Φ2 Φ

− 1 PDi(z)( 􏼁,Φ− 1 PDi(z)( 􏼁, ρZ
ii􏼐 􏼑.

(50)

By substitution, the result is

v2(z) � E[V[L|Z]|Z � z] � 􏽘
N

i�1
JTDi(z)

2
× PDi(z) − Φ2 Φ

− 1 PDi(z)( 􏼁,Φ− 1 PDi(z)( 􏼁, ρZ
ii􏼐 􏼑􏼐 􏼑. (51)

Te derivative respect to Z then is equal to

v2′(z) � 􏽘
N

i�1
JTDi(z) ×

JTDi(z) × PDi
′(z) × 1 − 2Φ

1 − ρz
ii��������

1 − ρz
ii( 􏼁

2
􏽱 ×Φ− 1 PDi(z)( 􏼁⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+2JTDi
′(z) × PDi(z) − Φ2 Φ

− 1 PDi(z)( 􏼁,Φ− 1 PDi(z)( 􏼁, ρZ
ii􏼐 􏼑􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

Given these results, we can rewrite Δq(Lε) as the sum of
the two quantities. Te frst one will represent the efect
correlation and the sectorial concentration, while the second
will represent the name concentration. We then have

Δq Lε( 􏼁 � Δ1q Lε( 􏼁 + Δ2q Lε( 􏼁, (53)

where
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Δ1q Lε( 􏼁 �
1

2μ′(z)
z +

μ″(z)

μ′(z)
􏼠 􏼡v1(z) − v1′(z)􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�Φ− 1(1− q)

,

Δ2q Lε( 􏼁 �
1

2μ′(z)
z +

μ″(z)

μ′(z)
􏼠 􏼡v2(z) − v2′(z)􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�Φ− 1(1− q)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(54)

Te DRC approximation is calculated by the following
formula:

VaR99.9%(L) ≈ VaR99.9% LZ( 􏼁 + Δ199.9% Lε( 􏼁 + Δ299.9% Lε( 􏼁,

VaRq(L) ≈ VaRq LZ( 􏼁 + Δ1q Lε( 􏼁 + Δ2q Lε( 􏼁.

(55)

However, LZ is a monotonically decreasing function of
Z. Tis property leads to

VaRq LZ( 􏼁 � E L|Z � Φ− 1
(1 − q)􏽨 􏽩. (56)

Tus, the calculations give the following results:

VaR99.9% LZ( 􏼁 � 4667769,

Δ199.9% Lε( 􏼁 � 560572.9,

Δ299.9% Lε( 􏼁 � 807627.6,

VaR99.9%(L) ≈ 6035969.

(57)

Tis approximation explains that the DRC is a sum of the
systematic, specifc, and correlation contribution losses. Te
relative error with the Monte Carlo approach is 1.6%. We
then have a granularity contribution to make on the con-
centration risk efects. In the next section, we propose two
approaches for determining concentration risk. Te frst one
uses the concentration ratio (Ad Hoc), and the second
employs granularity adjustment (Add-On).

3.2. DRC and Concentration. Te IMA text’s guidelines
impose that the model must catch concentration risk efects.
Since we can have two types of concentrations, we will
ensure that the DRC increases with the name and sector
concentrations. For this, we will defne a concentration ratio
that provides this property for the name concentration.

However, building this ratio is not straightforward, like
in the case of the loan book that defnes only a positive
exposure. We have long and short EADs in the DRC. Te
frst one increases the concentration, whereas the second
should decrease it. Tus, the frst step is to defne two subsets
by EAD issuers. Te frst one contains long exposures, and
the second is built with short exposures:

EADL � EADlong
1 . . .EADlong

Lo􏽮 􏽯

EADS � EADshort
1 . . .EADshort

Sh􏽮 􏽯
; EADL∩EADS � ∅, Lo + Sh � N.

⎧⎪⎨

⎪⎩
(58)

We now defne the share for each subset as follows:

s
long
i �

EADlong
i

􏽐
Lo
i�1EAD

long
i

,

s
short
i �

EADshort
i

􏽐
sh
i�1EAD

short
i

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

Te concentration ratio is a function of these shares, and
there are many of these ratios. However, we will use the
Herfndahl–Hirschman Index (HHI) [9], getting one for the
long positions and another for the short positions:

HHIlong � 􏽘
Lo

i�1
s
long
i􏼐 􏼑

2
,

HHIshort � 􏽘
Lo

i�1
s
short
i􏼐 􏼑

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(60)

Terefore, the concentration ratio of the global portfolio
is defned as follows:

HHI � max HHIlong − HHIshort, 0􏼐 􏼑. (61)

Tis ratio is verifed by constructing the concentration
properties [10], and we then compute it directly for our
portfolio:

HHIlong � 0.210%,

HHIshort � 0.208%,

HHI � 0.002%.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

We conclude that the portfolio concentration under the
HHI measure is very small. Hence, we can increase the
concentration by increasing the long EADs and decreasing
the short EADs to study the concentration efect. However,
the impact cannot be signifcant since the contribution is
minimal in both the Monte Carlo and the GA approaches.
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Terefore, the second step is ordering the EAD issuers by
the distance to the default Φ− 1(PD). We defne a decreasing
order for the long and short EADs. Tis approach allows us
to see most EADs that contribute to the DRC in the case of
the Monte Carlo approach and the contribution weight
in the case of the GA model. We now have all the tools to
verify that the DRC model has caught the name con-
centration. We then stress the portfolio by augmenting
the frst long EADs and decreasing the fnal long EADs.
Te frst impact arises on the HHI because it automat-
ically increases the concentration under this measure. It
remains to verify that the same efect appears in the
Monte Carlo DRC and the GA (Δ2q(Lε)). For that, we sort
the EADs by Φ− 1(PD) decreasingly, and we use the
transfer principal property to increase the concentration.
We then compute the Monte Carlo DRC and Δ2q(Lε) to
study the behavior of the concentration efect. Figure 6
shows that the DRC also increases with HHI, which
proves that the model has captured the name
concentration.

We also conclude the same behavior for Δ2q(Lε) in
Figure 7.

Te DRC behavior, respective to the sector concentra-
tion, can be studied using the intrasectorial correlation.
Terefore, we can increase these correlations and recompute
the Monte Carlo DRC to verify whether it augments or not.
We can also use Δ1q(Lε) to see if it increases. Figures 8 and 9
show that sectorial concentration increases with intra-
sectorial correlation.

4. Conclusion

In this paper, we attempt to implement an approach that
allows DRC modeling respective to the FRTB guidelines.
First, we describe the regulatory requirement to build the
conformance model. Te DRC model needs four compo-
nents: (1) PD, (2) recovery, (3) JTD, and (4) loss function.
We propose the model and calibration issues for each of
these situations. We also describe the Monte Carlo approach
to compute the DRC VaR. Nevertheless, this approach
cannot give the concentration risk contribution. Addi-
tionally, it does not provide its impact on the DRC model.
We suggest multiadjustment to fx this issue since the model
must include multisystematic factors. Furthermore, we
propose an adaptable HHI ratio to measure the portfolio
name concentration since we have long and short positions.
We then compute the evolution of DRC and Δ2q(Lε) with
respect to the HHI measure. We conclude that the model
captured the concentration risk since the DRC increased
with concentration. Regarding the sector concentration risk,
we conclude that it increased respective to intrasectorial
correlation. Terefore, all of these results prove that the
model includes this component and verifes the regulatory
requirement.

However, this approach is based on assumptions that
may carry risks. Te frst assumption supposes that we are in
the Merton environment, and the second assumption uses
the Gaussian copula. Hence, we suggest using other copulas,
like the Student or Gumbel copula, to study the impact of the
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second assumption on the obtained results. For the frst
assumption, we suggest to replace the structural approach
with the intensity approach and remaking the study to see if
these results remain the same.
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