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Method comparison studies mainly focus on determining if the two methods of measuring a continuous variable are agreeable
enough to be used interchangeably. Typically, a standard mixed-effects model uses to model the method comparison data that
assume normality for both random effects and errors. However, these assumptions are frequently violated in practice due to the
skewness and heavy tails. In particular, the biases of the methods may vary with the extent of measurement. Thus, we propose a
methodology for method comparison data to deal with these issues in the context of the measurement error model (MEM) that
assumes a skew-t (ST) distribution for the true covariates and centered Student’s ¢ (cT) distribution for the errors with known
error variances, named STcT-MEM. An expectation conditional maximization (ECM) algorithm is used to compute the
maximum likelihood (ML) estimates. The simulation study is performed to validate the proposed methodology. This methodology
is illustrated by analyzing gold particle data and then compared with the standard measurement error model (SMEM). The
likelihood ratio (LR) test is used to identify the most appropriate model among the above models. In addition, the total deviation
index (TDI) and concordance correlation coeflicient (CCC) were used to check the agreement between the methods. The findings
suggest that our proposed framework for analyzing unreplicated method comparison data with asymmetry and heavy tails works
effectively for modest and large samples.

1. Introduction

Evaluation of the two methods for measuring a contin-
uous response variable attracts greater attention in health
science such as biomedical engineering, clinical research,
and medical imaging. The methods may include an assay,
medical device, clinical observer, and measurement
technique, and the variables of interest, e.g., blood
pressure, heart rate, level of cholesterol, and the con-
centration of the chemical. Generally, the new methods
are compared with already established methods to
identify sufficient agreement between them. With so
many advancements in the field of medical sciences, new
measurement methods and techniques are available that

may be cheaper, faster, easier to use, and less invasive.
Before using these new measurement methods, the ac-
curacy and precision must be confirmed. Therefore, de-
tailed research in this sector will enable health
professionals to choose the most appropriate and effec-
tive treatment method. Suppose the study reveals a sat-
isfactory agreement between the methods, it could either
be used interchangeably or the most appropriate method
is selected. These studies are widespread in the research of
health sciences. The Web of Knowledge citation database
now has over 50,000 citations for Bland and Altman [1].
They proposed the limits of agreement methodology for
evaluating the agreement between two methods, which is
a testimony to the above.
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In method comparison studies, each method generally
takes measurements on each subject. At times the mea-
surements may be replicated. The data from the same subject
are considered dependent, but data from different subjects
are considered independent. A two-step technique may be
used to analyze these data. Modeling the method compar-
ison data is the first step. For this purpose, the mixed-effects
model [2] is commonly used and assumes an independent
normal distribution for both random effects and errors when
the variability of the measurement remains constant over the
entire measurement range [3-9]. The second step is the
agreement evaluation between the methods. The agreement
evaluation is performed on one or more measures of
agreement that indicate how much of these methods agree
with themselves. Slight differences in measurements refer to
a good agreement between the two methods. In the litera-
ture, there are several agreement measures available for
evaluating the agreement between two methods, including
limits of agreement [1, 3, 4, 10], CCC [11-14], TDI [9],
coverage probability (CP) or tolerance interval [12-16],
mean squared deviation (MSD) [17, 18], and coefficient of
individual agreement [11, 17].

A linear mixed-effects model is typically employed when
comparing a novel approach to an existing reference or
standard. However, it is important to note that this method
cannot be used when the biases of the methods vary with the
magnitude of measurement [3, 19-23]. In the case of the
above-nature data, a MEM [24] should be used instead of a
mixed-effects model. In the literature, the majority of the
studies mentioned above are under the normal distribution.
However, method comparison data frequently exhibit skew-
ness and heavy tails in practice, meaning tails that are longer
than those of a normal distribution, illustrated by analyzing a
real dataset based on a method comparison study by Tomaya
and de Castro [25] and is discussed later in this article. For this
scenario, data transformation is feasible to ensure that the
normality assumption is met. Nonetheless, it may make it
difficult to interpret the differences in measurements between
the two methods. It is a common issue in method comparison
data analysis. To overcome this problem, some alternative
approaches have been considered [26-34].

Recently, Choudhary et al. [35] developed a general
skew-t (GST) mixed model that assumes an ST distribution
for the random effects and an independent multivariate ¢
distribution for the errors. Later, Sengupta et al. [36] de-
veloped this methodology to analyze the method compar-
ison data with skewness and heavy tails with unknown error
variances. Here, they have developed a methodology to
assess how well the methods agree when measuring in the
same nominal unit. This means that the true (error-free)
values of the method may differ only by a constant. The
above models cannot be used when the methods have dif-
ferent measurement scales/methods. When collecting data,
various measuring scales might lead to measurement errors
in covariates and response variables. There would be some
change in the statistical inferences if these errors were not
taken into consideration. As a result, compared to a mixed-
effects model, the MEM provides a more adaptable
framework for modeling method comparison data.
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The study of method comparison under heavy-tailed
distributions has not received much attention in the liter-
ature because of the complexity of the likelihood function.
Recently, Cao et al. [37] proposed MEM for replicated data
under asymmetric and heavy-tailed distributions with the
same degrees of freedom for true covariate and error terms.
Further, this model is unable to account for different degrees
of heaviness in the tails of true covariates and error dis-
tributions. Further, Tomaya and de Castro [25] developed
STcT-MEM that assumes an ST distribution for the true
covariate and a cT distribution [38] for the error terms with
known error variances and considered the different degrees
of freedom for true covariate and errors. In this paper, our
main goal is to adapt the above model to unreplicated
method comparison data with different levels of heaviness in
the tails of true covariates and errors, especially if we know
the error variances. This approach will enable us to model
the method comparison data with better flexibility and
higher accuracy, accommodating skewness and heavy tails.

The rest of the paper is set out as follows. In Section 2, we
present the STcT-MEM for method comparison data. Sec-
tion 3 deals with the proposed methodology for the eval-
uation of the agreement under STcT-MEM. Section 4
explores the performance of the proposed model using
simulation studies. Section 5 provides an application uti-
lizing data on gold particles to illustrate our methodology,
and the final section discusses the findings and conclusions.
All calculations presented in this paper were carried out
using the R programming language [39].

2. Modeling of Method Comparison Data

This section outlines an approach for analyzing studies that
compare two methods that use single measurements on
each subject, implying that the measurements are not
replicated. The measurement of the /™ method on the i
subject is denoted by Y;;, j = 1,2;i = 1,...,n. Here, nis the
number of subjects in the study. The standard method is
assumed to be Method 1, and the test method is supposed
to be Method 2.

2.1. An Overview of STcT-MEM. This section briefly de-
scribes the STcT-MEM in general terms before being pre-
sented for method comparison data. The details can be found
in Tomaya and de Castro [25]. In this article, we use boldface
letters to refer to vectors and matrices. Let A o (n, %),
S/VP (W20, t, (u,2,v), and ST, (W, Z,\,v), respectively,
denote p-dimensional normal, skew-normal, t, and ST
distributions. Here, u € R? is a location vector, Zisa p x p
positive-definite scale matrix, A € R” is a vector of skewness
parameters, and v(>0) is the degrees of freedom. Let
& (a, ) denote the gamma distribution with parameters
a, B> 0. Furthermore, we use X2 to denote the square root
of a symmetric, positive-definite matrix X so that EV/2x!2"
=3, where 22" is the transpose of £V/2, =12 is the inverse
of 22 and det(2) is the determinant of X.

Let ct, (u, %, v) denote a p-variate cT distribution if its
probability density function (pdf) is given by



Journal of Probability and Statistics

fr@mEy) = K p)[det(® ] [(v-2) + z- W= z-pw] "z e R, (1)

where p € R? is a mean vector, X is a p X p covariance
matrix, K(v,p) is the normalizing constant given by
((v=2)"? gam((v + p)I2))/ (xP? gam (v/2));v>2, and
gam (-) denotes the gamma function. It is a centered
parametric version of the Student’s t distribution, where the
parameters are the mean vector and covariance matrix,
whereas, in the usual parameterization, they are the location
vector and the scale matrix. If the model assumes that the
variances of the errors are known, the distribution that
would best support this variances assumption is the centered
version. A brief introduction about SN, t, ST can be seen in
Appendix A, and detailed information about these distri-
butions can be found in Azzalini and Capitanio [40] and
Azzalini and Capitanio [33].
The SMEM can be written as

X, =b,+u,
Y=y +¢ (2)
yi:ﬁ0+ﬁlbi’ i:1,...,n,

where 3, and 3, are the intercept and slope parameters,
respectively, b; and y; are unobserved true covariate and
unobserved true response variables, respectively, X; and Y;
are the observed variables, #; and ¢; are the error terms, and n
is the sample size. Model (2) can be written as

Z,=A+Bb,+e, i=1,...,n (3)

where  Z;= (X, Y)",A=(0,8,)",B=(1,8,)", and
e; = (u;,¢g) . It is standard to assume that b, and e; are
independent and

b, ~ N (&),

(4)
e~ N,(0,%).

Normality assumption is sometimes unfeasible due to
the skewness, heavy-tailed ness, and outliers. Thus, Tomaya
and de Castro [25] developed the STcT-MEM with more
general distributions as follows:

bi ~ ST (f) 1//’ /\) rlb)a

(5)
e ~ct,(0,Z;1,),

where b; and e; are mutually independent. Inverse trans-
formations have been considered for the degrees of freedom
to enhance the inference process. The hierarchical repre-
sentations of b; and e; are defined in Appendix B. Next,
(y,A) is reparameterized as (I,y), where

A
0= (1+471) "

oy ©
T=y-yy.

Then, the mean vector and covariance matrix of Z; are

E(Z)=A+Bw, 0<n,n, <L,
I+9° 1 @)
Var (Zz) = (1——;m7 - GZYZ)BBT + Zi’ 0< Mys Ye < 5:
where p, =&+ {y, with (= [gam((1-1,)/2y,)/gam
(1724)1/ \/1pTe.

Since the pdf of Z; is not in a closed form, the one-di-
mensional numerical integration is used to solve this issue,
which is explained in Tomaya and de Castro [25] and
Choudhary et al. [35]. This can be carried out by using the
numDeriv package [41] in R. Furthermore, due to the com-
plexity of the log-likelihood function, Tomaya and de Castro
[25] used the ECM algorithm [42] to estimate the parameters. It
is a variant of the expectation-maximization (EM) algorithm.

2.2. STcT-MEM for Method Comparison Data. It follows
from (3) that the model for the paired measurements
(Y;,Y,,) can be written as

Yy =b+e;,
Y =P+ Bib;i +ep, (8)
i=1,...,n,

where B, and B, are fixed regression coefficients known as
fixed bias and proportional bias of method 2, respectively, b;
denote the true unobservable measurement for the i
subject, and ¢;; is the random error of the /™ method (j =
1,2) on the ™ subject. The methods are scaled differently in
this case, and the methods have the same scale if ; = 1. In
this case, the model reduces to a mixed-effects model dis-
cussed by Sengupta et al. [36].

Further, b; and e;; are mutually independent, and we
assume that

by ~ ST (& v, A, ),

eisepn ~ ¢ty (0,Z,1,),

o 0

where X = "1 7
2

The SMEM becomes a special case of the STcT-MEM (5)

when the skewness parameter A =0, and the degree of

freedom parameters #,, 4, — 0.

(9)

and assumed as known.

3. Evaluation of Agreement

The evaluation of agreement in a method comparison study
examines the joint distribution of the method, and the
evaluation of similarity is a comparison of the marginal
characteristics of the measurement methods, such as their
biases and precisions. Let (Y,,Y,) indicate a pair of ob-
servations taken using two methods on a subject selected at
random from a target population. The closeness of the two



methods’ measurements is referred to as agreement. When
the methods have equal means, variances, and correlation
one, they have a perfect agreement. Here, the bivariate
distributions of Y, and Y, are concentrated on the 45° line.
To quantify the extent of agreement, we first determine
how far apart the paired measures are from the line of
equality. This is performed through measures of agreement.
Several agreement measures can be found in the literature,
such as limits of agreement, CCC, TDI, and MSD. Here, we
consider only CCC and TDI to evaluate the agreement
between the methods. The CCC was proposed by Lin [12],
and it is defined as
2cov(Y Y
C=— ~2(1 ZL —. (10)
{E(Y)) - E(Y,)} + Var(Y,) + Var(Y;)

The CCC ranges from —1 to +1. A large positive value of
CCC indicates good agreement. The value of 1 implies
perfect positive agreement, and the value of —1 represents
perfect negative agreement. Detailed information on this
measure can be found in Barnhart et al. [11] and Carrasco
and Jover [5]. The TDI was proposed by Lin [18], and it is
defined as

TDI(p) = IOOpthpercentile|D =Y, - Y,| for aspecified p.
(11)

Generally, p varies from 0.80 to 0.95. It is nonnegative,
and a small value indicates high agreement between the
methods, and it is perfect when TDI=0. It has been used by
Lin [18] and Choudhary [9, 15]. The TDI can be calculated
by solving the following equation:

P{|D| <TDI(p)} = p. (12)

We often employ one-sided confidence intervals for
agreement measurements to evaluate the agreement. It is
possible to choose a lower or upper confidence limit. We
can compute the 100(1 —a)% upper confidence limit,
where a small value (nearing zero) for an agreement
measure that indicates good agreement, for example, TDI.
Similarly, we may compute a 100(1 — a)% lower confi-
dence limit, such as CCC, where a large positive value
(nearing one) for an agreement measure indicates good
agreement [43]. Let I = —azlog{L(('))}/E)B2 denote the ob-
served information matrix [14, 35, 43] of 0 (model pa-
rameter vector) evaluated at ML estimates. Note that L(0)
is the likelihood function. It can be computed using nu-
merical differentiation techniques. When # is large, 0 can
be approximated by a normal distribution with mean 0 and
variance I"!, according to the large sample theory. Next, let
¢ be a scalar measure of agreement between the two
methods. Its ML estimator ¢ is obtained by substituting 6
with 0. From the large sample theory, the sampling dis-
tribution of @ can be approximated as
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¢ ~N(p,D'T'D), (13)

where D = 9¢/08 is the Jacobian matrix evaluated at 6 = 6.
Then,

@ + ¢1_oSE (9) as the 100 (1 — a)% upper confidence limit for ¢,
9 —¢1_oSE(9) as 100 (1 — a)% lower confidence limit for ¢,
(14)

where ¢, is the critical point and SE(3) = (D'I"'D)/?
These confidence limits are generated by applying Fisher’s z
-transformation to CCC and the log transformation to TDI,
then inverting the findings back to the original scale for
greater accuracy in the estimate.

3.1. CCC and TDI under STcT-MEM. To define CCC and
TDI, first, note that the hierarchical representation of Y =
(Y,,Y,) from Appendix B is

YU,V ~ SN, (A + BE I, /U, Xy ),
1 1
U ~ ? ~ o>~ ]
(2’1b 2’1b> (15)

U gf L L )
|4 21, 2¢(n.)

where A = (O,ﬁO)T,B = (1,8))", M, and A, are counter-
parts of IT, and A, from Appendix B, and € («a, ) denotes
gamma distribution with parameters «, 5> 0.

The mean and variance of Y can be represented
asE(Y) = A + By, where y, = £+ (y.

Var(Y) = wBBT[ ((5)2] +X; 0<ny 1, <%’

(16)

1-2n,

where

¢ = Leam (1= 1,)2n,) gam (1/27,)] (17)

Tt

Let D=Y,-Y, and m = (1,-1)". As a result of Ap-
pendix C,

T+ T+ (1/2)%
DIU,V~SN1<mT(A+B£),m Iym m Iy 3y )

U (m™Tym)"”
(18)

where 8y = Ay/(1 + X\T,Xv)(m) and Ty =My - ﬁf,””SVS‘T,
= (1/2)

i,

Now, the STcT version of CCC can be defined from (10)
as
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CCC =

26,y [(1/1 - 21,) = (0)°]

{m" (A + Bf)}2 +Hy (11 -24,) = (8] + o1} +{Blw[(1/1 - 21,) - ({8)*] + aﬁ}’

where 0 <1, 1, < (1/2).
Next, using (11), the TDI for STcT-MEM can be defined
as

P(|D|<t) = j:o I:O{F(t) - F(-0)}f (w, vl (13 1.))dudv, £>0,
(20)

where F is the distribution function of the D|U,V and
f (u,v[ (73, 1,)) is the joint density of (U,V) appearing in
(15).

3.2. CCC and TDI under SMEM. Under the SMEM (4),

. (Y, _ _

Y= < ! ) ~ N, (A +BE II); whereIl = yBB' + 2. (21)
Y,

Next, the difference D = Y, — Y, can be represented as

D~ N,(m" (A +BE), m'Iim) wherem = (1,-1)".  (22)
Now, the SMEM version of CCC can be defined from
(10) as
_ 2By
C= 2 2 2 27
(= (Bo+Bid)]" + [‘/”‘ 01] + [ﬂl‘// + ‘72]
Moreover, TDI under SMEM defined by (11) can be

determined as
P(|D|st):CI><[t_E(_D)} —@{_t_Efm}, (24)
s d(D) s d(D)

(23)

where ®(-) denotes the cumulative distribution function
(CDF) of a standard normal distribution.

4. Simulation Study

In this section, the Monte-Carlo simulation study is con-
ducted to examine the behaviour of the ML estimators using
the ECM algorithm based on STcT-MEM and SMEM. We
generate 500 datasets from the STcT-MEM with sample sizes
n = 25, 50, and 100. The skewness parameter in STcT-MEM
is set as follows: 1 =2.5, 5 and 10. Other parameters in STcT-
MEM are set as follows: = (0.05,0.9), 4, = —0.01, log () =
-3,1, = 0.3,1, = 0.1, derived from the gold particles data
set. Here, we considered the inverse of the degrees of
freedom to enhance the inference process, and we kept
them constant throughout the simulation to save com-
puting time.

For each sample size, the variances of the measurement
errors are picked from uniform distributions on (0.004 and
0.008) and (0.001 and 0.003), respectively, and then assumed
as known values. Based on 500 random samples, we compute
the ML estimators and their CPs with the nominal 95%
confidence intervals through the ECM algorithm under

(19)

STcT-MEM. Then, we calculate the sample bias (BIAS), the
standard deviation (SD), and the root mean squared error
(RMSE) as assessments for the estimates based on STcT-
MEM and SMEM under the simulated dataset generated by
STcT-MEM. The results are summarized in Tables 1 and 2,
respectively. The R programming language was used for all
calculations [39].

Table 1 shows the ML estimates, asymptotic standard
errors (SEs), and CPs of 95% confidence intervals. Con-
cerning f3, and §;, the CPs are fairly close to 99%, even for
small, moderate, and large sample sizes. In the case of other
parameters, most entries are close to 95%, and some even fall
below 90% for moderate and large samples, and the values
for the small samples are not accurate. However, the CPs
increase when the sample size increases for all cases, and it
can also be seen that the CPs have good performance when
the skewness is moderate or heavy (A = 5 or 10).

Table 2 shows that when the sample size and skewness (1)
increase, the values of BIAS, SD, and RMSE decrease, as
expected. The BIAS, SD, and RMSE values under STcT-MEM
are small for all cases, revealing the efficiency and accuracy of
the ML estimates, and for all settings, the values of SD and
RMSE are nearly equal in STcT-MEM. In SMEM, the biases of
the estimates of 4, and log(y) are not negligible. Moreover,
for all cases, the bias, SD, and RMSE of the ML estimates based
on STcT-MEM are smaller than those of the SMEM estimates.
Thus, the performance of the ST distribution is better than that
of the normal distribution, which may be due to their heavy-
tailed characteristics.

For the model comparison, we compute their relative
efficiency by dividing the MSE of SMEM by the MSE of
STcT-MEM, and if it is greater than one, it means STcT-
MEM is better. These values are displayed in Table 3, and it
can be observed that the relative efficiencies increase with
sample size in all situations. Moreover, the relative effi-
ciencies improve as A increases. Furthermore, all entries are
greater than 1, which indicates that STcT-MEM is better
than SMEM for skew and heavy-tailed data. Additionally,
the results of the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values based on the
STcT-MEM and SMEM when the data generating model is
STcT-MEM are displayed in Table 3. We find from Table 3
that AIC and BIC values under STcT-MEM are smaller than
the standard model (SMEM). It means STcT-MEM performs
better than SMEM for skewed data.

5. Data Analysis

This part considers gold particle data [25] as a numerical
example. This data set investigates the concentration of the
gold particles (in gt') using Classical and Screen Fire Assay
(SFA) methods. The measurements during this study are not
replicated. There are 501 x 2 =1002 observations, which are



TaBLE 1: ML estimates, asymptotic standard errors (SEs), and
coverage probabilities (CPs) of 95% confidence interval of STcT-
MEM.

STcT-MEM
A n Parameter .
Estimates SE CP
Bo 0.051 0.022 0.998
B, 0.898 0.076 0.999
25 1y -0.007 0.080 0.840
Log (v) -3.024 0.696 0.866
A 2.491 2.452 0.840
Bo 0.050 0.015 0.996
B, 0.900 0.048 0.994
2.5 50 1y -0.013 0.055 0.896
Log (y) -3.012 0.496 0.896
A 2.499 1.809 0.892
Bo 0.050 0.010 0.990
B 0.900 0.032 0.988
100 ™ -0.012 0.038 0.905
Log (y) -3.004 0.342 0.900
ht 2.492 1.266 0.918
N 0.050 0.023 0.996
B 0.898 0.081 0.997
25 ™ —0.008 0.053 0.808
Log (y) -3.013 0.551 0.924
A 4.955 5.922 0.842
N 0.050 0.015 0.993
B 0.900 0.050 0.991
5 50 1y, -0.012 0.034 0.904
Log (v) -3.008 0.381 0.928
A 4.993 4.063 0.908
N 0.050 0.011 0.987
B, 0.900 0.034 0.985
100 ™ -0.011 0.025 0.958
Log (v) -3.004 0.268 0.944
ht 4.996 2.952 0.936
Bo 0.049 0.024 0.996
B, 0.898 0.082 0.996
25 1y —0.009 0.037 0.964
Log (v) -3.008 0.494 0.980
hi 9.965 10.723 0.872
I 0.049 0.016 0.992
B, 0.899 0.050 0.989
10 50 y -0.011 0.024 0.954
Log (v) -3.006 0.334 0.972
A 9.988 7.420 0.910
I 0.049 0.011 0.986
B, 0.899 0.034 0.984
100 y -0.010 0.017 0.948
Log (v) -3.005 0.236 0.970
hi 9.985 5.788 0.944

paired and starting from 0.038 to 4.523gt™". Since these
measurements were made in a chemical lab, where a variety
of variables, including the operator and the subject’s loca-
tion, may affect the outcomes, they are prone to mistakes,
and these errors are inevitable. As a result, the proposed
model is applicable. Furthermore, as required by our
methodology, these measurement errors have known error
variances. It was calculated wusing the formulas
03 =0.1568Y5°! and 03 = 0.0744Y%°%Y [44].
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Figure 1 shows the histograms and normal Q-Q plots of
gold particle data. It is observed that the data are asymmetric
and heavy-tailed. Figure 2 illustrates their trellis plot. It
shows that the measures of both methods do not overlap,
and the measures of the SFA often have the greatest ones.
Some subjects have disproportionately big differences, im-
plying a skewed distribution of disparities. Furthermore, it
shows that the within-subject variations of both methods
tend to increase with the concentration level. This means
that the data are heteroscedastic.

Moreover, Figure 3 shows the scatter plot and
Bland-Altman plot of these data. The scatter plot shows a
modest correlation between the methods. The Bland-Alt-
man plot shows that the vertical scatter appears to rise with
average, which indicates heteroscedasticity. All the above
plots show two extreme outliers. In this case, we performed
the analysis by replacing the outlier with the mean value.

At the outset, we fit the mixed-effects model to the data.
Figure 4 depicts the normal Q-Q plot of standardized re-
siduals and random effects. The box plot and histogram of
standardized residuals are also presented. These graphs
appear skewness and heavy-tailed ness, suggesting that the
assumption of normality is inadequate for error terms and
random effects. Thus, we use the proposed STcT-MEM
model to fit the data, where b; follows the ST distribution and
e; follows a cT distribution. SMEM is also taken into account
simultaneously for comparative purposes.

Firstly, we fit the STcT-MEM (9) by ML using the ECM
algorithm, where Y;; and Y, are the gold particles mea-
surements taken from the Classical and SFA, respectively, on
the it subject,i = 1,2,...,501. Here, the degrees of freedom
(#1> 1) are assumed to be known parameters determined by
the Schwarz information criteria [45], and the error vari-
ances (X = diag(o?,03)) are also assumed as known. This
model has five parameters. Secondly, we fit the SMEM model
(4) when A = 0 and #,, %, — 0 by ML using the ECM al-
gorithm, and it has four parameters.

Table 4 shows the parameter estimates, SEs, and 95%
confidence intervals for these parameters. The 95% confi-
dence intervals for intercept 5, and slope f3; are (0.051 and
0.062) and (0.835 and 0.905), respectively. In the SMEM,
they are (0.057 and 0.067) and (0.816 and 0.874), respec-
tively. Neither of the intercept intervals covers zero in both
models, indicating considerable fixed biases. Likewise,
neither of the slope intervals covers one, despite one being
near the right border in both intervals. It provides evidence
of moderately proportional biases.

The next step is to evaluate the agreement between the
methods. Table 5 shows CCC and TDI (0.90) estimates and
95% one-sided confidence limits for both models discussed
in section 3. The lower bound applies to CCC, and the upper
bound applies to TDI. These measures are first computed
using Fisher’s z transformation of CCC and log transfor-
mation of TDI, and then the results are inverted back to the
original scale. In STcT-MEM, the estimate of 0.940 and the
lower bound of 0.932 for CCC imply a higher agreement
between the methods. Further, the estimate and upper
bound for TDI (0.90) are 0.123 and 0.135, respectively. The
TDI bound reveals that 90% of the discrepancy between
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TaBLE 2: Simulated bias, sample standard deviation (SD), and root mean square error (RMSE) of ML for the STcT-MEM and SMEM.

STcT-MEM SMEM
A n Parameter

BIAS SD RMSE BIAS SD RMSE
Bo 0.001 0.009 0.009 0.001 0.010 0.010
B -0.002 0.014 0.014 -0.005 0.030 0.031
25 thy 0.003 0.007 0.008 -0.015 0.050 0.052
Log (y) -0.024 0.180 0.182 -0.123 0.622 0.634

A —0.009 0.366 0.366 — — —
I 0.000 0.004 0.004 -0.001 0.005 0.005
B, 0.000 0.007 0.007 0.000 0.014 0.014
2.5 50 thy —0.003 0.005 0.006 -0.015 0.035 0.038
Log (v) -0.012 0.083 0.084 -0.035 0.473 0.474

A —0.001 0.197 0.197 — — —
Bo 0.000 0.002 0.002 -0.001 0.003 0.003
B, 0.000 0.004 0.004 0.000 0.009 0.009
100 thy ~0.002 0.003 0.004 -0.014 0.024 0.028
Log (v) -0.004 0.043 0.043 0.024 0.333 0.334

hi —0.008 0.102 0.102 — — —
Bo 0.000 0.008 0.008 0.001 0.009 0.009
B, -0.002 0.012 0.013 -0.006 0.029 0.029
25 ty 0.002 0.003 0.004 -0.013 0.049 0.051
Log (v) -0.013 0.075 0.076 -0.129 0.653 0.666

A —0.045 0.393 0.395 — — —
Bo 0.000 0.004 0.004 0.000 0.005 0.005
B 0.000 0.006 0.006 -0.001 0.013 0.013
5 50 iy -0.002 0.002 0.003 -0.013 0.033 0.035
Log (y) -0.008 0.020 0.021 -0.022 0.500 0.500

A -0.007 0.167 0.168 — — —
Bo 0.000 0.002 0.002 —0.001 0.003 0.003
B 0.000 0.004 0.004 -0.001 0.008 0.008
100 thy —0.001 0.001 0.001 -0.012 0.023 0.026
Log (y) —0.004 0.009 0.010 0.018 0.353 0.353

A -0.004 0.083 0.084 — — —
B, —0.001 0.008 0.008 0.001 0.009 0.009
B ~0.002 0.012 0.013 —0.006 0.029 0.029
25 ty 0.001 0.001 0.001 -0.010 0.049 0.051
Log (v) —0.008 0.014 0.017 -0.159 0.664 0.683

hi -0.035 0.264 0.266 — — —
B, ~0.001 0.004 0.004 0.000 0.005 0.005
B, —0.001 0.006 0.006 —0.001 0.013 0.013
10 50 ™ —0.001 0.001 0.001 -0.010 0.033 0.034
Log (v) -0.006 0.006 0.008 -0.019 0.510 0.510

A -0.012 0.115 0.115 - - -
Bo ~0.001 0.002 0.002 —0.001 0.003 0.003
B, -0.001 0.004 0.004 -0.001 0.008 0.008
100 ty —0.000 0.001 0.001 -0.010 0.023 0.025
Log (v) -0.005 0.003 0.005 0.016 0.362 0.362

A -0.015 0.075 0.076 — — —

Classical and SFA measurements is within +0.135, with 95%
confidence. Since the readings range between 0.03 and 3, the
difference of 0.135 cannot be acceptable when the real value
is 0.03, but it may be acceptable when the real value is 3.
Thus, we can conclude that the tests exhibit good agreement
for large values but not for small values. Focusing on the
SMEM, the CCC estimate and lower bound are 0.938 and
0.930, respectively. Moreover, the estimate of TDI (0.90) is
0.174, and its 95% upper confidence bound is 0.180.
Compared to the STcT counterpart, the CCC bound has not
changed substantially, but the TDI bound has changed to
0.180. This value suggests that 90% of the differences in

measurements from the methods fall within +0.180. Such
differences are quite large compared to the STcT-MEM
values. From this, we can conclude that STcT-MEM shows a
satisfactory agreement between methods for large values
than SMEM.

Additionally, we perform the LR test where the null
hypothesis H;,: SMEM model is preferable against the al-
ternative hypothesis and H,: STcT-MEM model is pref-
erable since both models are nested. The test statistic of LR is
2[1(8) — 1(8y)] under the null hypothesis that follows x7 s
distribution, where [(0) and I(6,) are the log-likelihood
functions assessed at ML estimates using the ECM algorithm
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TaBLE 3: AIC and BIC values while the STcT-MEM is the data generating model and relative efficiencies of STcT-MEM based estimators
relative to the SMEM.

3 " STcT-MEM SMEM MSEgyiem/MSEgrer MEM
AIC BIC AIC BIC Bo B Uy Log (v)
25 —54.674 —48.580 —50.669 —45.793 1.265 4.812 42.25 12.135
2.5 50 -116.862 -107.302 —-101.293 —-93.645 1.624 4.029 40.111 31.842
100 —240.606 —227.580 —204.249 —193.828 2.636 4.473 49.000 60.334
25 —59.361 —53.267 —-53.186 —-48.310 1.407 5.571 >100 76.793
5 50 -127.384 -117.824 —-105.669 -98.021 1.908 4.441 >100 >100
100 —-263.333 —-250.307 —-213.607 —-203.186 2.848 4.703 >100 >100
25 —61.472 —55.378 —-53.884 —49.008 1.536 5.276 >100 >100
10 50 -132.193 —122.633 -106.934 —-99.285 1.853 4.249 >100 >100
100 -273.921 —260.895 —-216.579 —-206.158 2.201 3.949 >100 >100
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FIGURE 1: Histogram (a, b) and normal Q-Q plot (c, d) of the gold particle data taken by two measurement methods using the Classical
method and the Screen Fire Assay method.
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FIGURE 3: (a) A scatter plot with a line of equality and (b) Bland-Altman plot with zero line for gold particle data.
based on STcT-MEM and SMEM, respectively. The p val-  gold particle data. Furthermore, the AIC and BIC values are

ue=0 was obtained by applying the LR test, which is less  also included in Table 5, demonstrating that STcT-MEM
than 0.05. Thus, STcT-MEM is better than SMEM for the performs well over the SMEM.
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of standardized residuals.

TaBLE 4: ML estimates, their standard errors (SEs), and 95% confidence intervals for parameters of STcT-MEM and SMEM for gold particle
data.

STcT-MEM SMEM
Parameter . Confidence interval . Confidence interval
Estimate SE Estimate SE
LCL UCL LCL UCL
Bo 0.057 0.003 0.051 0.062 0.062 0.003 0.057 0.067
B 0.870 0.018 0.835 0.905 0.845 0.015 0.816 0.874
Uy -0.010 0.006 —-0.021 0.003 0.247 0.015 0.218 0.276
Log (y) -2.725 0.107 -2.935 -2.515 —2.281 0.076 —2.430 -2.131
A 5.538 0.692 4.182 6.893 — — — —
TaBLE 5: Measures of agreement and model selection criteria for gold particle data.
CCC TDI
Models . . AIC BIC
Estimate 95% lower bound Estimate 95% upper bound

STcT-MEM 0.940 0.123 0.135 -997.312 -972.763
SMEM 0.938 0.174 0.180 ~275.061 ~255.422
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6. Conclusion

This article presents a methodology for method comparison
data based on the distributions of ST and ¢T, called STcT-
MEM, which provides excellent flexibility in considering
asymmetry and heavy tails in the data. This model can also
be used for normally distributed data. The ECM algorithm is
performed to obtain the ML estimates of parameters. This
also helped to adapt the SMEM mentioned in this article
with some tweaks. The simulation results show that STcT-
MEM-based ML estimates performed well in moderate and
large sample sizes. We also demonstrated our approach
using real data set and showed that the STcT-MEM model
performed better than the SMEM. The improved model is
expected to give satisfactory results for analyzing method
comparison data for moderate and large samples in the
presence of measurement errors, skewness, and heavy tails,

1 gam ((v + p)/2)

11

commonly found in many areas, especially in health-related
fields. Our proposed methodology can be used only for
unreplicated data. However, our methodology can be ex-
panded to account for replicated measurements and mul-
tiple methods of measurement.

Appendix

A. Definition

A random vector Z is said to follow the SN distribution, that
is, Z ~ SN, (1, X, N), if its density function is f (z; b, %,A) =
2¢, (z; 1, Z)O(A'z*),z € R, where z*=3X 2 (z-p),
¢, (; 1, X) be the density function of /4 » (1, X) distribution,
and @ (-) denote the CDF of a standard normal distribution.

A random vector Z is said to follow the t distribution,
that is, Z ~ £, (, Z,v), if its pdf is

(A1)

fi(z w2, v) =

FBWEAY) = 2f, (15, V)Ft(ATz* {(

where F, (-; v) denotes the CDF of the univariate Student's ¢
distribution with v degrees of freedom.

B. Hierarchical Representation for STcT-MEM
Consider Z; as defined in (3) where b; ~ ST (&, v, A, 1),

e ~ct,(0,X,1,).
A hierarchical representation for Z; is defined as follows:

Iy, 1 1
leUl’ Vl ~ SNZ A + Bg’ l: AV )Ui ~ g ],
vt 2ny, 21y

1

; 1 1
Z ~ ?(_y—))
Vi 2’1e 2C(’7e)
(B.1)
where c(#,) = 1,/ (1 —2#,) and defined for v; > 0.

|2|(1/2) (m/)(p/z)gam(v/z)

27 —((v+p)/2)
(1 + ) , z€R?
v

A random vector Z is said to follow the ST distribution,
that is, Z ~ STP (W I\, v), if its pdf is

. 1/2)
v+plv+z z*>} ;v+p>, zeR?, (A.2)
I, = yBB' +v,3,
H;(l/Z)B‘l//(l/z)A (B'z)

A, = :

v' 142y (v + (BTEi_lB/Vi))_l](UZ),

and &(a,p) is a gamma distribution with parameters
a, 3> 0.

C. Linear Combination of Skew-Normals

LetY ~ SN, (B, . 1), 8 = (\/ (1 +A"0) ),y = 12§, and

I=y-yy
If a € R? with at least one nonzero element, then
T. (1/2)
T Tp .T ay 8
aaY~SN,|apa ya, 7y |- (C1)
(a Fa)
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