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Method comparison studies mainly focus on determining if the two methods of measuring a continuous variable are agreeable
enough to be used interchangeably. Typically, a standard mixed-efects model uses to model the method comparison data that
assume normality for both random efects and errors. However, these assumptions are frequently violated in practice due to the
skewness and heavy tails. In particular, the biases of the methods may vary with the extent of measurement. Tus, we propose a
methodology for method comparison data to deal with these issues in the context of the measurement error model (MEM) that
assumes a skew-t (ST) distribution for the true covariates and centered Student’s t (cT) distribution for the errors with known
error variances, named STcT-MEM. An expectation conditional maximization (ECM) algorithm is used to compute the
maximum likelihood (ML) estimates.Te simulation study is performed to validate the proposedmethodology.Tis methodology
is illustrated by analyzing gold particle data and then compared with the standard measurement error model (SMEM). Te
likelihood ratio (LR) test is used to identify the most appropriate model among the above models. In addition, the total deviation
index (TDI) and concordance correlation coefcient (CCC) were used to check the agreement between the methods. Te fndings
suggest that our proposed framework for analyzing unreplicated method comparison data with asymmetry and heavy tails works
efectively for modest and large samples.

1. Introduction

Evaluation of the two methods for measuring a contin-
uous response variable attracts greater attention in health
science such as biomedical engineering, clinical research,
and medical imaging. Te methods may include an assay,
medical device, clinical observer, and measurement
technique, and the variables of interest, e.g., blood
pressure, heart rate, level of cholesterol, and the con-
centration of the chemical. Generally, the new methods
are compared with already established methods to
identify sufcient agreement between them. With so
many advancements in the feld of medical sciences, new
measurement methods and techniques are available that

may be cheaper, faster, easier to use, and less invasive.
Before using these new measurement methods, the ac-
curacy and precision must be confrmed. Terefore, de-
tailed research in this sector will enable health
professionals to choose the most appropriate and efec-
tive treatment method. Suppose the study reveals a sat-
isfactory agreement between the methods, it could either
be used interchangeably or the most appropriate method
is selected. Tese studies are widespread in the research of
health sciences. Te Web of Knowledge citation database
now has over 50,000 citations for Bland and Altman [1].
Tey proposed the limits of agreement methodology for
evaluating the agreement between two methods, which is
a testimony to the above.
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In method comparison studies, each method generally
takes measurements on each subject. At times the mea-
surements may be replicated.Te data from the same subject
are considered dependent, but data from diferent subjects
are considered independent. A two-step technique may be
used to analyze these data. Modeling the method compar-
ison data is the frst step. For this purpose, the mixed-efects
model [2] is commonly used and assumes an independent
normal distribution for both random efects and errors when
the variability of the measurement remains constant over the
entire measurement range [3–9]. Te second step is the
agreement evaluation between the methods. Te agreement
evaluation is performed on one or more measures of
agreement that indicate how much of these methods agree
with themselves. Slight diferences in measurements refer to
a good agreement between the two methods. In the litera-
ture, there are several agreement measures available for
evaluating the agreement between two methods, including
limits of agreement [1, 3, 4, 10], CCC [11–14], TDI [9],
coverage probability (CP) or tolerance interval [12–16],
mean squared deviation (MSD) [17, 18], and coefcient of
individual agreement [11, 17].

A linear mixed-efects model is typically employed when
comparing a novel approach to an existing reference or
standard. However, it is important to note that this method
cannot be used when the biases of the methods vary with the
magnitude of measurement [3, 19–23]. In the case of the
above-nature data, a MEM [24] should be used instead of a
mixed-efects model. In the literature, the majority of the
studies mentioned above are under the normal distribution.
However, method comparison data frequently exhibit skew-
ness and heavy tails in practice, meaning tails that are longer
than those of a normal distribution, illustrated by analyzing a
real dataset based on a method comparison study by Tomaya
and de Castro [25] and is discussed later in this article. For this
scenario, data transformation is feasible to ensure that the
normality assumption is met. Nonetheless, it may make it
difcult to interpret the diferences in measurements between
the two methods. It is a common issue in method comparison
data analysis. To overcome this problem, some alternative
approaches have been considered [26–34].

Recently, Choudhary et al. [35] developed a general
skew-t (GST) mixed model that assumes an ST distribution
for the random efects and an independent multivariate t

distribution for the errors. Later, Sengupta et al. [36] de-
veloped this methodology to analyze the method compar-
ison data with skewness and heavy tails with unknown error
variances. Here, they have developed a methodology to
assess how well the methods agree when measuring in the
same nominal unit. Tis means that the true (error-free)
values of the method may difer only by a constant. Te
above models cannot be used when the methods have dif-
ferent measurement scales/methods. When collecting data,
various measuring scales might lead to measurement errors
in covariates and response variables. Tere would be some
change in the statistical inferences if these errors were not
taken into consideration. As a result, compared to a mixed-
efects model, the MEM provides a more adaptable
framework for modeling method comparison data.

Te study of method comparison under heavy-tailed
distributions has not received much attention in the liter-
ature because of the complexity of the likelihood function.
Recently, Cao et al. [37] proposed MEM for replicated data
under asymmetric and heavy-tailed distributions with the
same degrees of freedom for true covariate and error terms.
Further, this model is unable to account for diferent degrees
of heaviness in the tails of true covariates and error dis-
tributions. Further, Tomaya and de Castro [25] developed
STcT-MEM that assumes an ST distribution for the true
covariate and a cT distribution [38] for the error terms with
known error variances and considered the diferent degrees
of freedom for true covariate and errors. In this paper, our
main goal is to adapt the above model to unreplicated
method comparison data with diferent levels of heaviness in
the tails of true covariates and errors, especially if we know
the error variances. Tis approach will enable us to model
the method comparison data with better fexibility and
higher accuracy, accommodating skewness and heavy tails.

Te rest of the paper is set out as follows. In Section 2, we
present the STcT-MEM for method comparison data. Sec-
tion 3 deals with the proposed methodology for the eval-
uation of the agreement under STcT-MEM. Section 4
explores the performance of the proposed model using
simulation studies. Section 5 provides an application uti-
lizing data on gold particles to illustrate our methodology,
and the fnal section discusses the fndings and conclusions.
All calculations presented in this paper were carried out
using the R programming language [39].

2. Modeling of Method Comparison Data

Tis section outlines an approach for analyzing studies that
compare two methods that use single measurements on
each subject, implying that the measurements are not
replicated. Te measurement of the jth method on the ith
subject is denoted by Yij, j � 1, 2; i � 1, . . . , n. Here, n is the
number of subjects in the study. Te standard method is
assumed to be Method 1, and the test method is supposed
to be Method 2.

2.1. An Overview of STcT-MEM. Tis section briefy de-
scribes the STcT-MEM in general terms before being pre-
sented formethod comparison data.Te details can be found
in Tomaya and de Castro [25]. In this article, we use boldface
letters to refer to vectors and matrices. Let Np(μ,Σ),
SNp(μ,Σ, λ), tp(μ,Σ, υ), and STp(μ,Σ, λ, υ), respectively,
denote p-dimensional normal, skew-normal, t, and ST
distributions. Here, μ ∈ Rp is a location vector, Σ is a p × p

positive-defnite scale matrix, λ ∈ Rp is a vector of skewness
parameters, and υ(> 0) is the degrees of freedom. Let
G(α, β) denote the gamma distribution with parameters
α, β> 0. Furthermore, we use Σ1/2 to denote the square root
of a symmetric, positive-defnite matrix Σ so that Σ1/2Σ1/2T

=Σ, where Σ1/2T is the transpose of Σ1/2, Σ− (1/2) is the inverse
of Σ(1/2), and det(Σ) is the determinant of Σ.

Let ctp(μ,Σ, υ) denote a p-variate cT distribution if its
probability density function (pdf) is given by
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fp(z; μ,Σ, v) � K(v, p) det(Σ)
− (1/2)

􏽨 􏽩 (v − 2) +(z − μ)
TΣ− 1

(z − μ)􏽨 􏽩
− ((v+p)/2)

; z ∈ Rp
, (1)

where μ ∈ Rp is a mean vector, Σ is a p × p covariance
matrix, K(v, p) is the normalizing constant given by
((v − 2)(v/2)gam((v + p)/2))/(π(p/2)gam(v/2)); v> 2, and
gam (·) denotes the gamma function. It is a centered
parametric version of the Student’s t distribution, where the
parameters are the mean vector and covariance matrix,
whereas, in the usual parameterization, they are the location
vector and the scale matrix. If the model assumes that the
variances of the errors are known, the distribution that
would best support this variances assumption is the centered
version. A brief introduction about SN, t, ST can be seen in
Appendix A, and detailed information about these distri-
butions can be found in Azzalini and Capitanio [40] and
Azzalini and Capitanio [33].

Te SMEM can be written as

Xi � bi + ui,

Yi � yi + εi,

yi � β0 + β1bi, i � 1, . . . , n,

(2)

where β0 and β1 are the intercept and slope parameters,
respectively, bi and yi are unobserved true covariate and
unobserved true response variables, respectively, Xi and Yi

are the observed variables, ui and εi are the error terms, and n

is the sample size. Model (2) can be written as

Zi � A + Bbi + ei, i � 1, . . . , n, (3)

where Zi � (Xi, Yi)
T,A � (0, β0)

T,B � (1, β1)
T, and

ei � (ui, εi)
T. It is standard to assume that bi and ei are

independent and

bi ∼ N(ξ,ψ),

ei ∼ N2 0,Σi( 􏼁.
(4)

Normality assumption is sometimes unfeasible due to
the skewness, heavy-tailed ness, and outliers. Tus, Tomaya
and de Castro [25] developed the STcT-MEM with more
general distributions as follows:

bi ∼ ST ξ,ψ, λ, ηb( 􏼁,

ei ∼ ct2 0,Σi, ηe( 􏼁,
(5)

where bi and ei are mutually independent. Inverse trans-
formations have been considered for the degrees of freedom
to enhance the inference process. Te hierarchical repre-
sentations of bi and ei are defned in Appendix B. Next,
(ψ, λ) is reparameterized as (Γ, c), where

δ �
λ

1 + λTλ􏼐 􏼑
(1/2)

,

c � ψ(1/2)δ,

Γ � ψ − cc
T
.

(6)

Ten, the mean vector and covariance matrix of Zi are

E Zi( 􏼁 � A + Bμb, 0< ηb, ηe < 1,

Var Zi( 􏼁 �
Γ + c

2

1 − 2ηb

− ζ2c2
􏼠 􏼡BBT

+ Σi, 0< ηb, ηe <
1
2
,

(7)

where μb � ξ + ζc, with ζ � [gam((1 − ηb)/2ηb)/gam
(1/2ηb)]/ ���ηbπ

√
.

Since the pdf of Zi is not in a closed form, the one-di-
mensional numerical integration is used to solve this issue,
which is explained in Tomaya and de Castro [25] and
Choudhary et al. [35]. Tis can be carried out by using the
numDeriv package [41] in R. Furthermore, due to the com-
plexity of the log-likelihood function, Tomaya and de Castro
[25] used the ECM algorithm [42] to estimate the parameters. It
is a variant of the expectation-maximization (EM) algorithm.

2.2. STcT-MEM for Method Comparison Data. It follows
from (3) that the model for the paired measurements
(Yi1, Yi2) can be written as

Yi1 � bi + ei1,

Yi2 � β0 + β1bi + ei2,

i � 1, . . . , n,

(8)

where β0 and β1 are fxed regression coefcients known as
fxed bias and proportional bias of method 2, respectively, bi

denote the true unobservable measurement for the ith

subject, and eij is the random error of the jth method (j �

1, 2) on the ith subject. Te methods are scaled diferently in
this case, and the methods have the same scale if β1 � 1. In
this case, the model reduces to a mixed-efects model dis-
cussed by Sengupta et al. [36].

Further, bi and eij are mutually independent, and we
assume that

bi ∼ ST ξ,ψ, λ, ηb( 􏼁,

ei1, ei2 ∼ ct2 0,Σ, ηe( 􏼁,
(9)

where Σ �
σ21 0
0 σ22

􏼠 􏼡 and assumed as known.

Te SMEM becomes a special case of the STcT-MEM (5)
when the skewness parameter λ � 0, and the degree of
freedom parameters ηb, ηe⟶ 0.

3. Evaluation of Agreement

Te evaluation of agreement in a method comparison study
examines the joint distribution of the method, and the
evaluation of similarity is a comparison of the marginal
characteristics of the measurement methods, such as their
biases and precisions. Let (􏽦Y1,

􏽦Y2 ) indicate a pair of ob-
servations taken using two methods on a subject selected at
random from a target population. Te closeness of the two
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methods’ measurements is referred to as agreement. When
the methods have equal means, variances, and correlation
one, they have a perfect agreement. Here, the bivariate
distributions of 􏽦Y1 and 􏽦Y2 are concentrated on the 45° line.

To quantify the extent of agreement, we frst determine
how far apart the paired measures are from the line of
equality. Tis is performed through measures of agreement.
Several agreement measures can be found in the literature,
such as limits of agreement, CCC, TDI, and MSD. Here, we
consider only CCC and TDI to evaluate the agreement
between the methods. Te CCC was proposed by Lin [12],
and it is defned as

CCC �
2cov 􏽦Y1,

􏽦Y2􏼐 􏼑

E 􏽦Y1􏼐 􏼑 − E 􏽦Y2􏼐 􏼑􏽮 􏽯
2

+ Var 􏽦Y1􏼐 􏼑 + Var 􏽦Y2􏼐 􏼑
. (10)

Te CCC ranges from − 1 to +1. A large positive value of
CCC indicates good agreement. Te value of 1 implies
perfect positive agreement, and the value of − 1 represents
perfect negative agreement. Detailed information on this
measure can be found in Barnhart et al. [11] and Carrasco
and Jover [5]. Te TDI was proposed by Lin [18], and it is
defned as

TDI(p) � 100p
thpercentile 􏽥D � 􏽦Y1 − 􏽦Y2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 for a specifiedp.

(11)

Generally, p varies from 0.80 to 0.95. It is nonnegative,
and a small value indicates high agreement between the
methods, and it is perfect when TDI� 0. It has been used by
Lin [18] and Choudhary [9, 15]. Te TDI can be calculated
by solving the following equation:

P | 􏽥D|≤TDI(p)􏼈 􏼉 � p. (12)

We often employ one-sided confdence intervals for
agreement measurements to evaluate the agreement. It is
possible to choose a lower or upper confdence limit. We
can compute the 100(1 − α)% upper confdence limit,
where a small value (nearing zero) for an agreement
measure that indicates good agreement, for example, TDI.
Similarly, we may compute a 100(1 − α)% lower conf-
dence limit, such as CCC, where a large positive value
(nearing one) for an agreement measure indicates good
agreement [43]. Let I � − z2log L(θ){ }/zθ2 denote the ob-
served information matrix [14, 35, 43] of θ (model pa-
rameter vector) evaluated at ML estimates. Note that L(θ)

is the likelihood function. It can be computed using nu-
merical diferentiation techniques. When n is large, 􏽢θ can
be approximated by a normal distribution with mean θ and
variance I− 1, according to the large sample theory. Next, let
φ be a scalar measure of agreement between the two
methods. Its ML estimator 􏽢φ is obtained by substituting θ
with 􏽢θ. From the large sample theory, the sampling dis-
tribution of 􏽢φ can be approximated as

􏽢φ ∼ N φ,DTI− 1D􏼐 􏼑, (13)

where D � zφ/zθ is the Jacobian matrix evaluated at θ � 􏽢θ.
Ten,

􏽢φ + c1− αSE(􏽢φ) as the 100(1 − α)%upper confidence limit forφ,

􏽢φ − c1− αSE(􏽢φ) as 100(1 − α)% lower confidence limit forφ,

(14)

where c1− α is the critical point and SE(􏽢φ) � (DTI− 1D)(1/2)

Tese confdence limits are generated by applying Fisher’s z

-transformation to CCC and the log transformation to TDI,
then inverting the fndings back to the original scale for
greater accuracy in the estimate.

3.1. CCC and TDI under STcT-MEM. To defne CCC and
TDI, frst, note that the hierarchical representation of 􏽥Y �

(􏽦Y1,
􏽦Y2) from Appendix B is

􏽥Y|U, V ∼ SN2 A + Bξ, 􏽥ΠV/U, 􏽥λV􏼐 􏼑,

U ∼ G
1
2ηb

,
1
2ηb

􏼠 􏼡,

U

V
∼ G

1
2ηe

,
1

2c ηe( 􏼁
􏼠 􏼡,

(15)

where A � (0, β0)
T,B � (1, β1)

T, 􏽥ΠV and 􏽥λV are counter-
parts of ΠV and λV from Appendix B, and G(α, β) denotes
gamma distribution with parameters α, β> 0.

Te mean and variance of 􏽥Y can be represented
asE(􏽥Y) � A + Bμb, where μb � ξ + ζc.

Var(􏽥Y) � ψBBT 1
1 − 2ηb

− (ζδ)
2

􏼢 􏼣 + Σ; 0< ηb, ηe <
1
2
,

(16)

where

ζ �
gam 1 − ηb( 􏼁/2ηb( 􏼁/gam 1/2ηb( 􏼁􏼂 􏼃

���ηbπ
√ . (17)

Let 􏽥D � 􏽦Y1 − 􏽦Y2 and m � (1, − 1)T. As a result of Ap-
pendix C,

􏽥D|U, V ∼ SN1 mT
(A + Bξ),

mT 􏽥ΠVm
U

,
mT 􏽥Π(1/2)

V
􏽥δV

mT􏽥ΓVm􏼐 􏼑
(1/2)

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(18)

where 􏽥δV � 􏽥λV/(1 + 􏽥λT

V
􏽥λV)(1/2) and 􏽥ΓV � 􏽥ΠV − 􏽥Π(1/2)

V
􏽥δV

􏽥δT

V

􏽥Π(1/2)

V .
Now, the STcT version of CCC can be defned from (10)

as
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CCC �
2β1ψ 1/1 − 2ηb( 􏼁 − (ζδ)

2
􏽨 􏽩

mT
(A + Bξ)􏽮 􏽯

2
+ ψ 1/1 − 2ηb( 􏼁 − (ζδ)

2
􏽨 􏽩 + σ21􏽮 􏽯 + β21ψ 1/1 − 2ηb( 􏼁 − (ζδ)

2
􏽨 􏽩 + σ22􏽮 􏽯

, (19)

where 0< ηb, ηe < (1/2).
Next, using (11), the TDI for STcT-MEM can be defned

as

P(| 􏽥D|≤ t) � 􏽚
∞

0
􏽚
∞

0
F(t) − F(− t){ }f u, v| ηb, ηe( 􏼁( 􏼁dudv, t> 0,

(20)

where F is the distribution function of the 􏽥D|U, V and
f(u, v|(ηb, ηe)) is the joint density of (U, V) appearing in
(15).

3.2. CCC and TDI under SMEM. Under the SMEM (4),

􏽥Y �
􏽦Y1

􏽦Y2

⎛⎝ ⎞⎠ ∼ N2(A + Bξ, 􏽥Π); where 􏽥Π � ψBBT
+ Σ. (21)

Next, the diference 􏽥D � 􏽦Y1 − 􏽦Y2 can be represented as

􏽥D ∼ N1 mT
(A + Bξ),mT 􏽥Πm􏼐 􏼑wherem � (1, − 1)

T
. (22)

Now, the SMEM version of CCC can be defned from
(10) as

CCC �
2β1ψ

ξ − β0 + β1ξ( 􏼁􏼂 􏼃
2

+ ψ + σ21􏽨 􏽩 + β21ψ + σ22􏽨 􏽩
. (23)

Moreover, TDI under SMEM defned by (11) can be
determined as

P(| 􏽥D|≤ t) � Φ
t − E( 􏽥D)

s d( 􏽥D)
􏼨 􏼩 − Φ

− t − E( 􏽥D)

s d( 􏽥D)
􏼨 􏼩, (24)

where Φ(·) denotes the cumulative distribution function
(CDF) of a standard normal distribution.

4. Simulation Study

In this section, the Monte-Carlo simulation study is con-
ducted to examine the behaviour of the ML estimators using
the ECM algorithm based on STcT-MEM and SMEM. We
generate 500 datasets from the STcT-MEMwith sample sizes
n � 25, 50, and 100. Te skewness parameter in STcT-MEM
is set as follows: λ=2.5, 5 and 10. Other parameters in STcT-
MEM are set as follows: β � (0.05, 0.9), μb � − 0.01, log(ψ) �

− 3, ηb � 0.3, ηe � 0.1, derived from the gold particles data
set. Here, we considered the inverse of the degrees of
freedom to enhance the inference process, and we kept
them constant throughout the simulation to save com-
puting time.

For each sample size, the variances of the measurement
errors are picked from uniform distributions on (0.004 and
0.008) and (0.001 and 0.003), respectively, and then assumed
as known values. Based on 500 random samples, we compute
the ML estimators and their CPs with the nominal 95%
confdence intervals through the ECM algorithm under

STcT-MEM. Ten, we calculate the sample bias (BIAS), the
standard deviation (SD), and the root mean squared error
(RMSE) as assessments for the estimates based on STcT-
MEM and SMEM under the simulated dataset generated by
STcT-MEM. Te results are summarized in Tables 1 and 2,
respectively. Te R programming language was used for all
calculations [39].

Table 1 shows the ML estimates, asymptotic standard
errors (SEs), and CPs of 95% confdence intervals. Con-
cerning β0 and β1, the CPs are fairly close to 99%, even for
small, moderate, and large sample sizes. In the case of other
parameters, most entries are close to 95%, and some even fall
below 90% for moderate and large samples, and the values
for the small samples are not accurate. However, the CPs
increase when the sample size increases for all cases, and it
can also be seen that the CPs have good performance when
the skewness is moderate or heavy (λ � 5 or 10).

Table 2 shows that when the sample size and skewness (λ)
increase, the values of BIAS, SD, and RMSE decrease, as
expected. Te BIAS, SD, and RMSE values under STcT-MEM
are small for all cases, revealing the efciency and accuracy of
the ML estimates, and for all settings, the values of SD and
RMSE are nearly equal in STcT-MEM. In SMEM, the biases of
the estimates of μb and log(ψ) are not negligible. Moreover,
for all cases, the bias, SD, and RMSE of theML estimates based
on STcT-MEM are smaller than those of the SMEM estimates.
Tus, the performance of the STdistribution is better than that
of the normal distribution, which may be due to their heavy-
tailed characteristics.

For the model comparison, we compute their relative
efciency by dividing the MSE of SMEM by the MSE of
STcT-MEM, and if it is greater than one, it means STcT-
MEM is better. Tese values are displayed in Table 3, and it
can be observed that the relative efciencies increase with
sample size in all situations. Moreover, the relative ef-
ciencies improve as λ increases. Furthermore, all entries are
greater than 1, which indicates that STcT-MEM is better
than SMEM for skew and heavy-tailed data. Additionally,
the results of the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values based on the
STcT-MEM and SMEM when the data generating model is
STcT-MEM are displayed in Table 3. We fnd from Table 3
that AIC and BIC values under STcT-MEM are smaller than
the standardmodel (SMEM). It means STcT-MEMperforms
better than SMEM for skewed data.

5. Data Analysis

Tis part considers gold particle data [25] as a numerical
example. Tis data set investigates the concentration of the
gold particles (in gt− 1) using Classical and Screen Fire Assay
(SFA) methods.Te measurements during this study are not
replicated. Tere are 501× 2 = 1002 observations, which are

Journal of Probability and Statistics 5



paired and starting from 0.038 to 4.523 gt− 1. Since these
measurements were made in a chemical lab, where a variety
of variables, including the operator and the subject’s loca-
tion, may afect the outcomes, they are prone to mistakes,
and these errors are inevitable. As a result, the proposed
model is applicable. Furthermore, as required by our
methodology, these measurement errors have known error
variances. It was calculated using the formulas
σ21 � 0.1568Y0.5031

i1 and σ22 � 0.0744Y0.5047
i2 [44].

Figure 1 shows the histograms and normal Q-Q plots of
gold particle data. It is observed that the data are asymmetric
and heavy-tailed. Figure 2 illustrates their trellis plot. It
shows that the measures of both methods do not overlap,
and the measures of the SFA often have the greatest ones.
Some subjects have disproportionately big diferences, im-
plying a skewed distribution of disparities. Furthermore, it
shows that the within-subject variations of both methods
tend to increase with the concentration level. Tis means
that the data are heteroscedastic.

Moreover, Figure 3 shows the scatter plot and
Bland–Altman plot of these data. Te scatter plot shows a
modest correlation between the methods. Te Bland–Alt-
man plot shows that the vertical scatter appears to rise with
average, which indicates heteroscedasticity. All the above
plots show two extreme outliers. In this case, we performed
the analysis by replacing the outlier with the mean value.

At the outset, we ft the mixed-efects model to the data.
Figure 4 depicts the normal Q-Q plot of standardized re-
siduals and random efects. Te box plot and histogram of
standardized residuals are also presented. Tese graphs
appear skewness and heavy-tailed ness, suggesting that the
assumption of normality is inadequate for error terms and
random efects. Tus, we use the proposed STcT-MEM
model to ft the data, where bi follows the STdistribution and
ei follows a cTdistribution. SMEM is also taken into account
simultaneously for comparative purposes.

Firstly, we ft the STcT-MEM (9) by ML using the ECM
algorithm, where Yi1 and Yi2 are the gold particles mea-
surements taken from the Classical and SFA, respectively, on
the ith subject, i � 1, 2, . . . , 501. Here, the degrees of freedom
(ηb, ηe) are assumed to be known parameters determined by
the Schwarz information criteria [45], and the error vari-
ances (Σ � diag(σ21, σ

2
2)) are also assumed as known. Tis

model has fve parameters. Secondly, we ft the SMEMmodel
(4) when λ � 0 and ηb, ηe⟶ 0 by ML using the ECM al-
gorithm, and it has four parameters.

Table 4 shows the parameter estimates, SEs, and 95%
confdence intervals for these parameters. Te 95% conf-
dence intervals for intercept β0 and slope β1 are (0.051 and
0.062) and (0.835 and 0.905), respectively. In the SMEM,
they are (0.057 and 0.067) and (0.816 and 0.874), respec-
tively. Neither of the intercept intervals covers zero in both
models, indicating considerable fxed biases. Likewise,
neither of the slope intervals covers one, despite one being
near the right border in both intervals. It provides evidence
of moderately proportional biases.

Te next step is to evaluate the agreement between the
methods. Table 5 shows CCC and TDI (0.90) estimates and
95% one-sided confdence limits for both models discussed
in section 3. Te lower bound applies to CCC, and the upper
bound applies to TDI. Tese measures are frst computed
using Fisher’s z transformation of CCC and log transfor-
mation of TDI, and then the results are inverted back to the
original scale. In STcT-MEM, the estimate of 0.940 and the
lower bound of 0.932 for CCC imply a higher agreement
between the methods. Further, the estimate and upper
bound for TDI (0.90) are 0.123 and 0.135, respectively. Te
TDI bound reveals that 90% of the discrepancy between

Table 1: ML estimates, asymptotic standard errors (SEs), and
coverage probabilities (CPs) of 95% confdence interval of STcT-
MEM.

λ n Parameter
STcT-MEM

Estimates SE CP

2.5

25

β0 0.051 0.022 0.998
β1 0.898 0.076 0.999
μb − 0.007 0.080 0.840

Log (ψ) − 3.024 0.696 0.866
λ 2.491 2.452 0.840

50

β0 0.050 0.015 0.996
β1 0.900 0.048 0.994
μb − 0.013 0.055 0.896

Log (ψ) − 3.012 0.496 0.896
λ 2.499 1.809 0.892

100

β0 0.050 0.010 0.990
β1 0.900 0.032 0.988
μb − 0.012 0.038 0.905

Log (ψ) − 3.004 0.342 0.900
λ 2.492 1.266 0.918

5

25

β0 0.050 0.023 0.996
β1 0.898 0.081 0.997
μb − 0.008 0.053 0.808

Log (ψ) − 3.013 0.551 0.924
λ 4.955 5.922 0.842

50

β0 0.050 0.015 0.993
β1 0.900 0.050 0.991
μb − 0.012 0.034 0.904

Log (ψ) − 3.008 0.381 0.928
λ 4.993 4.063 0.908

100

β0 0.050 0.011 0.987
β1 0.900 0.034 0.985
μb − 0.011 0.025 0.958

Log (ψ) − 3.004 0.268 0.944
λ 4.996 2.952 0.936

10

25

β0 0.049 0.024 0.996
β1 0.898 0.082 0.996
μb − 0.009 0.037 0.964

Log (ψ) − 3.008 0.494 0.980
λ 9.965 10.723 0.872

50

β0 0.049 0.016 0.992
β1 0.899 0.050 0.989
μb − 0.011 0.024 0.954

Log (ψ) − 3.006 0.334 0.972
λ 9.988 7.420 0.910

100

β0 0.049 0.011 0.986
β1 0.899 0.034 0.984
μb − 0.010 0.017 0.948

Log (ψ) − 3.005 0.236 0.970
λ 9.985 5.788 0.944
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Classical and SFA measurements is within ±0.135, with 95%
confdence. Since the readings range between 0.03 and 3, the
diference of 0.135 cannot be acceptable when the real value
is 0.03, but it may be acceptable when the real value is 3.
Tus, we can conclude that the tests exhibit good agreement
for large values but not for small values. Focusing on the
SMEM, the CCC estimate and lower bound are 0.938 and
0.930, respectively. Moreover, the estimate of TDI (0.90) is
0.174, and its 95% upper confdence bound is 0.180.
Compared to the STcT counterpart, the CCC bound has not
changed substantially, but the TDI bound has changed to
0.180. Tis value suggests that 90% of the diferences in

measurements from the methods fall within ±0.180. Such
diferences are quite large compared to the STcT-MEM
values. From this, we can conclude that STcT-MEM shows a
satisfactory agreement between methods for large values
than SMEM.

Additionally, we perform the LR test where the null
hypothesis H0: SMEM model is preferable against the al-
ternative hypothesis and H1: STcT-MEM model is pref-
erable since both models are nested.Te test statistic of LR is
2[l(􏽢θ) − l(􏽢θ0)] under the null hypothesis that follows χ21,0.05
distribution, where l(􏽢θ) and l(􏽢θ0) are the log-likelihood
functions assessed at ML estimates using the ECM algorithm

Table 2: Simulated bias, sample standard deviation (SD), and root mean square error (RMSE) of ML for the STcT-MEM and SMEM.

λ n Parameter
STcT-MEM SMEM

BIAS SD RMSE BIAS SD RMSE

2.5

25

β0 0.001 0.009 0.009 0.001 0.010 0.010
β1 − 0.002 0.014 0.014 − 0.005 0.030 0.031
μb 0.003 0.007 0.008 − 0.015 0.050 0.052

Log (ψ) − 0.024 0.180 0.182 − 0.123 0.622 0.634
λ − 0.009 0.366 0.366 — — —

50

β0 0.000 0.004 0.004 − 0.001 0.005 0.005
β1 0.000 0.007 0.007 0.000 0.014 0.014
μb − 0.003 0.005 0.006 − 0.015 0.035 0.038

Log (ψ) − 0.012 0.083 0.084 − 0.035 0.473 0.474
λ − 0.001 0.197 0.197 — — —

100

β0 0.000 0.002 0.002 − 0.001 0.003 0.003
β1 0.000 0.004 0.004 0.000 0.009 0.009
μb − 0.002 0.003 0.004 − 0.014 0.024 0.028

Log (ψ) − 0.004 0.043 0.043 0.024 0.333 0.334
λ − 0.008 0.102 0.102 — — —

5

25

β0 0.000 0.008 0.008 0.001 0.009 0.009
β1 − 0.002 0.012 0.013 − 0.006 0.029 0.029
μb 0.002 0.003 0.004 − 0.013 0.049 0.051

Log (ψ) − 0.013 0.075 0.076 − 0.129 0.653 0.666
λ − 0.045 0.393 0.395 — — —

50

β0 0.000 0.004 0.004 0.000 0.005 0.005
β1 0.000 0.006 0.006 − 0.001 0.013 0.013
μb − 0.002 0.002 0.003 − 0.013 0.033 0.035

Log (ψ) − 0.008 0.020 0.021 − 0.022 0.500 0.500
λ − 0.007 0.167 0.168 — — —

100

β0 0.000 0.002 0.002 − 0.001 0.003 0.003
β1 0.000 0.004 0.004 − 0.001 0.008 0.008
μb − 0.001 0.001 0.001 − 0.012 0.023 0.026

Log (ψ) − 0.004 0.009 0.010 0.018 0.353 0.353
λ − 0.004 0.083 0.084 — — —

10

25

β0 − 0.001 0.008 0.008 0.001 0.009 0.009
β1 − 0.002 0.012 0.013 − 0.006 0.029 0.029
μb 0.001 0.001 0.001 − 0.010 0.049 0.051

Log (ψ) − 0.008 0.014 0.017 − 0.159 0.664 0.683
λ − 0.035 0.264 0.266 — — —

50

β0 − 0.001 0.004 0.004 0.000 0.005 0.005
β1 − 0.001 0.006 0.006 − 0.001 0.013 0.013
μb − 0.001 0.001 0.001 − 0.010 0.033 0.034

Log (ψ) − 0.006 0.006 0.008 − 0.019 0.510 0.510
λ − 0.012 0.115 0.115 - - -

100

β0 − 0.001 0.002 0.002 − 0.001 0.003 0.003
β1 − 0.001 0.004 0.004 − 0.001 0.008 0.008
μb − 0.000 0.001 0.001 − 0.010 0.023 0.025

Log (ψ) − 0.005 0.003 0.005 0.016 0.362 0.362
λ − 0.015 0.075 0.076 — — —
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Table 3: AIC and BIC values while the STcT-MEM is the data generating model and relative efciencies of STcT-MEM based estimators
relative to the SMEM.

λ n
STcT-MEM SMEM MSESMEM/MSESTcTMEM

AIC BIC AIC BIC β0 β1 μb Log (ψ)

2.5
25 − 54.674 − 48.580 − 50.669 − 45.793 1.265 4.812 42.25 12.135
50 − 116.862 − 107.302 − 101.293 − 93.645 1.624 4.029 40.111 31.842
100 − 240.606 − 227.580 − 204.249 − 193.828 2.636 4.473 49.000 60.334

5
25 − 59.361 − 53.267 − 53.186 − 48.310 1.407 5.571 >100 76.793
50 − 127.384 − 117.824 − 105.669 − 98.021 1.908 4.441 >100 >100
100 − 263.333 − 250.307 − 213.607 − 203.186 2.848 4.703 >100 >100

10
25 − 61.472 − 55.378 − 53.884 − 49.008 1.536 5.276 >100 >100
50 − 132.193 − 122.633 − 106.934 − 99.285 1.853 4.249 >100 >100
100 − 273.921 − 260.895 − 216.579 − 206.158 2.201 3.949 >100 >100
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Figure 1: Histogram (a, b) and normal Q-Q plot (c, d) of the gold particle data taken by two measurement methods using the Classical
method and the Screen Fire Assay method.
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based on STcT-MEM and SMEM, respectively. Te p val-
ue� 0 was obtained by applying the LR test, which is less
than 0.05. Tus, STcT-MEM is better than SMEM for the

gold particle data. Furthermore, the AIC and BIC values are
also included in Table 5, demonstrating that STcT-MEM
performs well over the SMEM.
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Figure 2: Trellis plot for gold particle data.
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Figure 3: (a) A scatter plot with a line of equality and (b) Bland–Altman plot with zero line for gold particle data.
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Figure 4: (a) Normal Q-Q plot of standardized residuals, (b) normal Q-Q plot of random efects, and (c, d) plots for box plot and histogram
of standardized residuals.

Table 4: ML estimates, their standard errors (SEs), and 95% confdence intervals for parameters of STcT-MEM and SMEM for gold particle
data.

Parameter
STcT-MEM SMEM

Estimate SE
Confdence interval

Estimate SE
Confdence interval

LCL UCL LCL UCL
β0 0.057 0.003 0.051 0.062 0.062 0.003 0.057 0.067
β1 0.870 0.018 0.835 0.905 0.845 0.015 0.816 0.874
μb − 0.010 0.006 − 0.021 0.003 0.247 0.015 0.218 0.276
Log (ψ) − 2.725 0.107 − 2.935 − 2.515 − 2.281 0.076 − 2.430 − 2.131
λ 5.538 0.692 4.182 6.893 — — — —

Table 5: Measures of agreement and model selection criteria for gold particle data.

Models
CCC TDI

AIC BIC
Estimate 95% lower bound Estimate 95% upper bound

STcT-MEM 0.940 0.932 0.123 0.135 − 997.312 − 972.763
SMEM 0.938 0.930 0.174 0.180 − 275.061 − 255.422
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6. Conclusion

Tis article presents a methodology for method comparison
data based on the distributions of ST and cT, called STcT-
MEM, which provides excellent fexibility in considering
asymmetry and heavy tails in the data. Tis model can also
be used for normally distributed data. Te ECM algorithm is
performed to obtain the ML estimates of parameters. Tis
also helped to adapt the SMEM mentioned in this article
with some tweaks. Te simulation results show that STcT-
MEM-based ML estimates performed well in moderate and
large sample sizes. We also demonstrated our approach
using real data set and showed that the STcT-MEM model
performed better than the SMEM. Te improved model is
expected to give satisfactory results for analyzing method
comparison data for moderate and large samples in the
presence of measurement errors, skewness, and heavy tails,

commonly found in many areas, especially in health-related
felds. Our proposed methodology can be used only for
unreplicated data. However, our methodology can be ex-
panded to account for replicated measurements and mul-
tiple methods of measurement.

Appendix

A. Definition

A random vector Z is said to follow the SN distribution, that
is, Z ∼ SNp(μ,Σ, λ), if its density function is f(z; μ,Σ, λ) �

2ϕp(z; μ,Σ)Φ(λTz∗), z ∈ Rp, where z∗ � Σ− (1/2)(z − μ),
ϕp(·; μ,Σ) be the density function of Np(μ,Σ) distribution,
and Φ(·) denote the CDF of a standard normal distribution.

A random vector Z is said to follow the t distribution,
that is, Z ∼ tp(μ,Σ, v), if its pdf is

ft(z; μ,Σ, v) �
1

|Σ|
(1/2)

gam((v + p)/2)

(πv)
(p/2)gam(v/2)

1 +
z∗Tz∗

v
􏼠 􏼡

− ((v+p)/2)

, z ∈ Rp
. (A.1)

A random vector Z is said to follow the ST distribution,
that is, Z ∼ STp(μ,Σ, λ, v), if its pdf is

f(z; μ,Σ, λ, v) � 2ft(z; μ,Σ, v)Ft λTz∗ v + p/v + z∗
T

z∗􏼒 􏼓􏼚 􏼛
(1/2)

; v + p􏼠 􏼡, z ∈ Rp
, (A.2)

where Ft(·; v) denotes the CDF of the univariate Student's t

distribution with v degrees of freedom.

B. Hierarchical Representation for STcT-MEM

Consider Zi as defned in (3) where bi ∼ ST (ξ,ψ, λ, ηb),

ei ∼ ct2(0,Σi, ηe).
A hierarchical representation for Zi is defned as follows:

Zi|Ui, Vi ∼ SN2 A + Bξ,
ΠVi

Ui

, λVi
􏼠 􏼡, Ui ∼ G

1
2ηb

,
1
2ηb

􏼠 􏼡 ,

Ui

Vi

∼ G
1
2ηe

,
1

2c ηe( 􏼁
􏼠 􏼡,

(B.1)

where c(ηe) � ηe/(1 − 2ηe) and defned for vi > 0.

Πvi � ψBBT
+ viΣi,

λvi �
Π− (1/2)

vi Bψ(1/2)λ

1 + λ2ψ− 1 ψ− 1
+ BTΣ− 1

i B/vi􏼐 􏼑􏼐 􏼑
− 1

􏼔 􏼕
(1/2)

,
(B.2)

and G(α, β) is a gamma distribution with parameters
α, β> 0.

C. Linear Combination of Skew-Normals

LetY ∼ SNq(β,ψ, λ), δ � (λ/(1 + λTλ)(1/2)), γ � ψ(1/2)δ, and
Γ � ψ − γγT.

If a ∈ Rq with at least one nonzero element, then

aTY ∼ SN1 aTβ, aTψa,
aTψ(1/2)δ

aTΓa􏼐 􏼑
(1/2)

⎛⎜⎜⎝ ⎞⎟⎟⎠. (C.1)
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