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Small area models have become popular methods for producing reliable estimates for sub-populations (small geographic areas in
this study). Small area modeling may be carried out via model-assisted approaches within the model-based approaches or design-
based paradigm. When there are medium or large samples, a model-assisted approach may be reliable. However, when data are
scarce, a model-based technique may be required. Model-based Bayesian analysis is popular for its ability to combine information
from several sources as well as taking account uncertainties in the analysis and spatial prediction of spatial data. Nevertheless,
things become more complex when the geographic boundaries of interest are misaligned. Some authors have addressed the
problem of misalignment under hierarchical Bayesian approach. In this study, we developed non-trivial extension of existing
hierarchical Bayesian model for a binary outcome variable under spatial misalignment with three contributions. First, the model
uses unit-level survey data and area-level auxiliary data to predict the posterior mean proportion spatially at the second geographic
area level. Second, the linking model is changed to logit-normal model in the proposed model. Lastly, the mean process was
considered to overcome the multicollinearity between the true predictors and the spatial random e�ect. Sensitivity analysis was
also done via simulation.

1. Introduction

Sample surveys are widely used as a cost-e�ective way to
gather information on variables of interest in target pop-
ulations. Sample survey data are used to obtain precise
estimates of parameters for the whole population and for
large sub-populations (domains). However, a particular
widespread demand from policy makers is for estimates at a
�ner level of domains.

In sample survey, when the domains were not originally
planned, they are usually poorly represented or even not
represented at all. �ese domains are called small areas, for
which reliable (precise and accurate) estimates based on only
domain-speci�c sample data cannot be produced [1]. Small
areas can be based on geographic boundaries or based on a
combination of socio-demographic characteristics like

urban/rural, male/female, age group, economic status, and
so on. �e term “small area” in this study context refers to a
sub-population based on geographical classi�cation, i.e.,
small geographic areas.

In this case, small area estimation (SAE) is a technique
for improving estimation accuracy and providing accurate
parameter estimates for small areas [2–4]. �is has led to the
development of a variety of models that combine survey data
with data from outside the survey, often related to recent
censuses and current administrative data, for the target small
areas to improve precision.

Statistical models in small area estimation can be utilised
in either a model-assisted or model-based approach. �e
model-assisted estimators [5] employ working models, in
which a model is speci�ed yet desired design-based prop-
erties are retained even when the model is misspeci�ed.
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When the sample size from the target population is large
enough and sampling plan is well, according to a cautious
viewpoint [6], model-assisted inference performs satisfac-
torily. Despite the fact that a survey’s sampling strategy and
sample size are normally well planned at the population
level, due to probability sampling and budget constraints,
the sample size in small areas can be small or even zero. In
this case, model-assisted estimators for small area param-
eters cannot achieve desired accuracy and thus become
inaccurate, necessitating the use of a model-based approach.

+ere now exist a wide range of model-based approaches
depending on the nature of the measurement (e.g., binary,
count, or continuous) and on the availability of auxiliary
data (area level or unit level).

On average, unit-level estimates are expected to be more
precise than area-level estimates [7]. When unit-level data are
available, we can use a model for more in-depth analysis.
However, access to unit-level auxiliary data might be chal-
lenging. Hence, a fusion model incorporating both unit and
area-level data can be considered to accommodate this challenge.
+e fusion small areamodel exploits the area-level auxiliary data
and individual-level survey data, which are effectively applied by
other authors under the Bayesian approach [8].

Bayesian approach of modeling has the ability to
combine information from several sources using melding or
data fusion [9]. +e approach also simplifies computation of
measures of accuracy in the SAE, which produces realiza-
tions of the posterior distribution of the target quantities
[10]. Under the hierarchical Bayesian framework, Ghosh
et al. [11] proposed a generalized linear model with or
without spatial correlation structure. Furthermore, Bakar
et al. [8] proposed a hierarchical Bayesian spatial model for
several categorical data under spatial misalignment.

Misaligned data models have recently been presented
using the hierarchical Bayesian framework to solve the
challenge of making inferences for small areas that differ
from those for which survey data are available [8, 12, 13].
Following this, Trevisani et al. [14] proposed a model to
handle spatial misalignment for count data. For several
categorical variables under spatial misalignment, Bakar et al.
[8] proposed a hierarchicthe posterior mean proportional
Bayesian model to handle this issue.

Furthermore, Bakar et al. [15] proposed to estimate a
binary outcome variable under purely spatial setting for
secondary geography where survey data were not collected,
where the primary and secondary geographic areas are
spatially misaligned. However, the study by Bakar et al. [15]
considered area-level data.

+e aim of this research was to develop a hierarchical
Bayesian spatial fusion small area model for binary data with
spatial misalignment. +e proposed model is a non-trivial
extension of Bakar et al. [8] for the context of binary out-
come variable under spatial misalignment with three con-
tributions. First, the model uses unit-level survey data and
area-level auxiliary data to predict the posterior mean
proportion spatially at the second geographic area level. +e
individual process attempts to make better use of all the
information gathered at the individual level. +e area-level
process, including the spatial random effect, which is

estimated from the primary geographic areal units, is reused
for prediction at the second area level. Second, the linking
model is changed to logit(pi) � log[pi/(1 − pi)] ∼

iid
N(μ, σ2),

logit-normal model, in the proposed model. +e logit-
normal model facilitates easy computation of the parameters
in the model. Last, the mean process was considered to
overcome the multicollinearity between the true predictors
and the spatial random effect. Unlike Bakar et al. [8],
considering the mean process accounts for the hierarchical
nature of the modeling.

+e following is an outline of the remainder of this
paper. Section 2 presents our modeling technique as well as
the underlying distribution theory, backed up by relevant
literature. Section 3 demonstrates the details of inference
making under a number of sub-sections. Section 3’s first two
sub-sections are all about the details based on the primary
geographic area, while the last two sub-sections are about the
secondary geographic area. Section 4 highlights a simulation
study illustrating how the proposed model can be put into
practice. Concluding remarks are given in Section 5. Finally,
appendices A–C present proofs and derivations of joint
posterior, full conditional, and predictive distributions.

2. Model Development

+is section introduces a spatial hierarchical Bayesian sta-
tistical small area model for the binary response variable. Let
Yi(Ar) be a binary response variable for the ith individual in
the rth area, Ar for i � 1, . . . , Nr, r � 1, . . . , n, and 􏽐

n
r�1 Nr �

N where n denotes the number of small areas and Nr is the
number of individuals in rth area.

Consider yi(Ar) taking values one (with probabilities pi)
and zero (with probabilities 1 − pi), where Yi(Ar) follow
Bernoulli distribution, that is, yi(Ar) ∼ ber[pi(Ar)]. Hence,
yi(Ar) is a Bernoulli response at area Ar and a logit model
with probability pi(Ar) defined as follows:

logit pi Ar( 􏼁􏼂 􏼃 � μ Ar( 􏼁 + εi Ar( 􏼁. (1)

+is may also be written in a generalized linear mixed
model form, where g(·) is considered as a logit link function,
as follows:

g E yi Ar( 􏼁( 􏼁􏼈 􏼉 � μ Ar( 􏼁 + εi Ar( 􏼁. (2)

Assuming equal unit-level error variance [16],
εi(Ar) ∼ N(0, σ2ε ), and taking X(Ar) as the area-level matrix
of auxiliary covariates, then the first term of the right hand
side of equation (2) becomes

μ Ar( 􏼁 � βX Ar( 􏼁 + ζ Ar( 􏼁

� 􏽘
L

l�1

βlxl Ar( 􏼁 + ζ Ar( 􏼁, (3)

where xl(Ar) is the lth auxiliary covariate at the area level
and βl is its respective regression coefficient with
l � 1, 2, . . . , L, where L refers to the number of auxiliary
covariates in the model. We assume equal error variance,
ζ(Ar) ∼ N(0, σ2ζ ) [16], to make the posterior distributions
proper.
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+e proposed hierarchical Bayesian spatial model for the
binary data contains an underlying process whose predictive
distribution on the probability scale is less uncertain than the
observed proportions.+e statistical dependencies caused by
geographic proximity are modeled explicitly, and Bayesian
conclusions account for them in a cohesive and natural way.

+erefore, embedding spatially correlated process,

logit pi Ar( 􏼁􏼈 􏼉 � μ Ar( 􏼁 + ω Ar( 􏼁 + εi Ar( 􏼁, (4)

where themean process, μ(Ar), is given in equation (3) andX

is assumed not have a column for intercept, for the intercept
to be implicitly present in spatial component [17]. +is will
not affect the model as the collinearity between the spatial
random effects and the intercept is not of interest. Hence, we
let the spatial random component remain unconstrained.

Furthermore, the term ω(Ar), the spatial component, is
a spatially correlated process. Defining and understanding
the spatial process ω(Ar) � (ω(A1), . . . ,ω(An))′ is typically
essential for generating the full conditional distribution of ω.

Intrinsic conditional autoregressive (ICAR) and condi-
tional autoregressive (CAR) models are popular methods
used to model areal spatial random effects [18, 19], commonly
considered in the Besag–York–Mollie (BYM) model. How-
ever, applying the CAR/ICAR technique to sparse area-level
data is sometimes problematic since areas without observa-
tions are frequently neighbored by areas with observations. It
is quite difficult to get spatial predictions in an overlapping
area using the CAR modeling method. Another approach to
model spatial random effect component is to use spatial basis
functions. Moran’s I basis function for a discrete Gaussian
spatial field may be utilised to alleviate the sparseness and
geographically overlapped predictions [20] by evaluating a
latent spatial surface process formed by the basis.

Moran’s I basis function [21] is one of the prominent
techniques for modeling areal spatial process. In contrast to
the CAR models, the process is updated using a multivariate
distribution, which adds the big-n challenge stated in spatial
literature [22]. As a result, for dimension reduction, m ei-
genvectors corresponding to the first m positive eigenvalues
of a Moran’s I operator matrix were used where m< n [20].
Moran’s I basis function, a discretely indexed areal spatial
process model in general, which implements the same
weights in geographical areas with large and small geo-
graphical border sizes, is frequently not appropriate [23].
However, due to the position and nature of the large area, it
is feasible that the large area may contribute to a relatively
minor spatial correlation with other surrounding areas. +e
other spatial basis function, the multiresolution basis
function, similarly, could overcome the big-n problem.

+e multiresolution spatial basis function is utilised for
point-referenced data [24, 25]. In multiresolution spatial basis
functions, m knot points are defined across the spatial domain
[25] by utilising reduced rank approximation [26, 27]. Recently,
a number of authors used spatial basis functions that included
both the multiresolution basis function and Moran’s I basis
function [8, 15]. +is integrates data from a neighborhood
matrix of areas and distances between their centroids as well as
allows non-stationarity [8].

+is study used a spatial basis function for defining the
spatial component, which included the multiresolution and
Moran’s I spatial basis functions for the spatial process. +is
study also developed amodel-based strategy for handling the
spatial predictive issue by employing a spatial basis function
that tackles the sparse data problem via a latent spatial field
and also accommodates the change of support problem. +e
spatial basis used in this study is a mix of Moran’s I basis
[21], which is used for area-level modeling, and the mul-
tiresolution spatial basis defined via the bi-square function,
which is used for point-referenced spatial data [24, 28]. Such
a basis function was also developed by Bakar [23] for a
Gaussian model. However, this study extends further to the
spatial generalized linear models.

+erefore, the spatial component of the model in
equation (4), which can be expressed in terms of reduced
spatial component (η) and the spatial basis function Φ(A), is
written as

ω(A) � Φ(A)η + ], (5)

where η is a vector ofm dimension andΦ(A) is a spatial basis
that comprises Moran’s I basis function and multiresolution
basis function such that

Φ(A) � M(A) × R(A). (6)

+is is a mix of the multiresolution spatial basis R(A) and
eigenvectors M(A) of Moran’s I operator matrix M(A). +e
term ] ∼ N(0, σ2vI) in equation (5) is an identically and
independently distributed error process used to capture the
remaining random component so as to take the uncertainties
arising from dimension reduction, Φ(A)η.

To derive spatial basis functions, there is a need to first
derive both Moran’s I basis function and multiresolution
basis functions. For deriving Moran’s I basis functions,
Moran’s I operator matrix, M(A), fromMoran’s I statistic is
derived. Moran’s I statistic is a measure of spatial associa-
tion, which equals a weighted sum of squares where the
weights are called M(A) [21]. For this, reparameterization is
considered a gateway.

+e reparameterization is used to demonstrate that the
random effects can increase the variance of the posterior
distribution of β due to the confounding between the spatial
random effects and the fixed effect predictors (X) [17]. Reich
et al. [17] defined the reparameterization as smoothing
orthogonal to the fixed effects. Furthermore, Griffith et al.
[29] augmented a model with selected eigenvectors of (I −

11′/n)A(I − 11′/n) to reveal the structure of missing spatial
covariates, where A is neighborhood weight matrix, 1 is the
n-vector of 1s, and I is the n × n identity matrix. Observing
that missing covariates are not of primary interest, rather in
smoothing orthogonal to X. Hence, replace I − 11′/n with
P⊥, where P⊥ is the orthogonal projection onto C(X)′s
orthogonal complement, that is, P⊥ � I − P with
P � X(X′X)− 1X′. +e resulting operator may be found in
the numerator of Moran’s I statistic, which is a popular non-
parametric measure of spatial dependence [30].

Recently, the approach of dimension reduction by Reich
et al. [17] was adapted by Bakar et al. [8, 15]. Bakar et al. [8]
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used mean process for the case of modeling several cate-
gorical variables simultaneously unlike design matrix, X. In
this study, the mean process generated from the predictors
(μ) was used to construct the basis so as to alleviate the well-
known problem of collinearity [17].

Considering the mean process, μ, generated from the
predictors and neighborhood weight matrix, W(A), Moran’s
I operator matrix, is explicitly defined as

M(A) � I − μ μ′μ( 􏼁
− 1μ′􏼐 􏼑W(A) I − μ μ′μ( 􏼁

− 1μ′􏼐 􏼑, (7)

where μ � (μ(A1), . . . , μ(An))′, I is an n × n identity matrix,
and W(A) is n × n nearest neighbor weight matrix containing
0s and 1s.

Instead of using the first m eigenvectors of M(A), which
correspond to the positive eigenvalues [21], n eigenvectors to
define M(A) were employed [8, 17] for compatibility of
matrix algebra. +is may be accomplished by performing a
spectral decomposition of Moran’s I operator matrix M(A)

[20].
Set m knot points to define the multiresolution spatial

basis R(A). +e selection of the position and number of knots
is a problem that is connected to R(A). For the position of
knot points, a regular grid or its modification is generally a
common choice [31, 32]. +en, R(A) of order n × m is
produced using the distances between the knot points and
the centroid of the areas, while a bi-square function is used
to define the multiresolution spatial basis function, R(A).
+erefore, for j � 1, . . . , ri basis functions of the ith reso-
lution, the bi-square basis function is defined in R2 as

S
(i)
j Ar( 􏼁 � 1 −

Ar − c
(i)
j

�����

�����

ϕi

⎛⎝ ⎞⎠

2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

2

I Ar − c
(i)
j

�����

�����<ϕi􏼒 􏼓; Ar ∈ R
2
, (8)

where I(·) is an indicator function, ri is the number of basis
functions at the ith resolution, ‖ · ‖ is the Euclidean norm, c(i)

j

is the center of the jth basis function S
(i)
j (·) at the ith res-

olution, and ϕi is the radius of its spatial support (also called
the aperture).

+e choice of ϕi􏼈 􏼉 determines the multiple resolutions,
which are used to capture different dependence scales
[24, 25, 27]. Several basis functions with centers beyond the
research region are incorporated to account for boundary
effects [33].

When knot-point sites are equidistant across the region,
the value of ϕi is a multiple of the shortest distance between
knot-point sites. Cressie et al. [24] utilised a constant range
ϕi for all knot points with a particular resolution. To ac-
commodate knot locations that may not be equidistant, the
ranges of the knot points were enabled to vary. Hence, ϕi was
defined as a multiple of the shortest distance between knot
points and all the other knot points. In practice, ϕi is defined
as the shortest Euclidean distance between basis function
centers of the same resolution multiplied by 1.5 [24]. As a
result, Φ(A) � M(A) × R(A) is a spatial basis that reflects the
identification of the neighborhood phenomenon of the
geographically specified areal borders as well as their
distances.

Furthermore, we model η, which is a random vector
of spatial effect, by assuming a Gaussian distribution
with covariance matrix of lower dimensional
(m × m)Σ, η ∼ N(0,Σ) and mean zero. Here Σ comprises
smoothing parameter ϕ and a spatial covariance
k(·) � Φ(A)

′ QΦ(A), that is,

Σ � ϕ × k(·) � ϕ ×Φ(A)
′ QΦ(A), (9)

where ϕ> 0,Q is an n × nmatrix with diagonal entries qii and
non-diagonal entries. +e diagonal entry is the number of
region i’s neighbors, and non-diagonal entries qij � − 1 if
areas j and i are neighbors, and 0 otherwise [17]. +is allows
one to incorporate neighborhood information into the co-
variance matrix, Σ. It can be computed using the neigh-
borhood weight matrix, W(A), as Q � diag(W(A)1) − W(A),
and 1 is a vector of 1s.

Since Q is singular [34], a spectral decomposition of Σ
was used to derive the full conditional distribution of the
spatial process η.

+us, we can write

Σ � Ψ(ϕ × Λ)Ψs′, (10)

where Λ is a diagonal matrix and Ψ is an orthogonal matrix
of order m × m [20]. Following Hughes et al. [21], in this
study, eigenvectors of Σ are assumed to be known with
eigenvalues known up to a multiplicative constant.

Graphical representation of hierarchical Bayesian spatial
small area models can be helpful for the readers in un-
derstanding structure and building complex models. Hence,
the overall scheme of the model is given in Figure 1.

3. Bayesian Inference

3.1. Posterior Distribution. +is section describes the hier-
archical derivation of the posterior distribution. +e hier-
archical specification for the desired joint model is in terms
of data models, process models, and parameter models [35].
Such specification is likened to a simple fact from specifi-
cations of the Bayes theorem [35] (see Appendix A).

In Bayesian statistics, the posterior distribution has to be
an appropriate distribution. It is vital to ensure that the
sufficient conditions, in terms of the parameters’ priors, are
satisfied so that the resultant posterior is suitable. As a result,
we applied proper priors to all unknown parameters to
ensure that the posterior distribution is correct [36]. In
choosing a prior belonging to a particular distributional
family, some choices may be more computationally con-
venient than others. In particular, it may be possible to
choose a prior distribution which is conjugate to the like-
lihood, in which case the prior and posterior distribution
will be in the same family and have the same distributional
form. Accordingly, a conjugate normal prior distribution for
the elements of β and inverse gamma prior distribution for
the variance parameters and smoothing parameter are used.

Direct assessment of the posterior distribution neces-
sitates high-dimensional numerical integration, which is
computationally infeasible. +erefore, the Markov Chain
Monte Carlo (MCMC) algorithm was used to generate
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samples from the posterior distributions [37]. +e full
conditional distributions are required to execute MCMC
sampling under the model.

3.2. Full Conditional Distributions. +e full conditional
distributions are derived by abstracting only those elements
including the parameter of interest from the posterior
distribution, in this case from equation (A.5), and treating
other components as constants [38]. Accordingly, we ob-
tained the full conditional distributions for the variance
parameters (σ2ε , σ2ζ , and σ

2
]), smoothing parameter (ϕ), and

the coefficients of the fixed effects (β) of the model as
follows:

σ2ε |· ∼ IG
N

2
+ aε, bε +

1
2

􏽘

n

r�1
􏽘

Nr

i�1
φir − μr − ωr􏼂 􏼃

2⎛⎝ ⎞⎠,

σ2ζ |· ∼ IG
n

2
+ aζ , bζ +

1
2

[μ(A) − βX(A)]′[μ(A) − βX(A)]􏼒 􏼓,

σ2]|· ∼ IG
n

2
+ a], b] +

1
2

ω − Φ(A)η􏽨 􏽩′ ω − Φ(A)η􏽨 􏽩􏼒 􏼓,

ϕ|· ∼ IG
m

2
+ aϕ, bϕ +

1
2

η′ΨΛ
− 1Ψ′η􏼔 􏼕􏼒 􏼓.

(11)

Similarly, the conditional distribution of β can be
denoted as N(△χ,△), i.e.,

β| · ∼ N(△χ,△), (12)

where

△− 1
�

1
σ2ζ

X′X +
1
σ2β

Ip,

χ �
1
σ2ζ

X′μ +
1
σ2β
μβ.

(13)

+e proof for σ2ε , σ
2
ζ , and σ2] is straightforward. However,

the corresponding proof for the derivation of conditional
distribution of ϕ and β necessitates some algebra manipu-
lation (see proofs in Appendix B).+erefore, since all the full
conditional distributions have a closed form solution,
samples are generated from the posterior distributions using
the Gibbs sampling method [39].

3.3. Predictive Distributions. Using estimates of the pa-
rameters under the primary geographic classification
(Ar, j � 1, . . . , n), we need to predict at area level with
overlapping geographic boundaries. We assume that the
areal relationships from Ar are largely maintained for the
prediction area as they cover the same population and the
same whole areas. +is led to reusing all the parameters with
few adjustment of spatial correlation according to the new
geographical classification.

Let A∗k with k � 1, . . . , n∗ be the second geographical
area where the ultimate prediction is required. Here we have

a new neighborhood weight matrix (W∗(A)) based on pre-
diction areas. Let also X∗ be the n∗ × L known matrix of
area-level auxiliary covariates based on second geographical
boundaries. Hence, the mean process component, the spatial
random component, and the individual-level error com-
ponent corresponding to equation (4) for the prediction area
will be computed separately and joined finally. Specifically,
change of support is used to derive the probability distri-
bution of the mean process component μ(A∗k ) at prediction
areas (second geographical boundaries).

+e change of support for the mean process μ(A∗k ) in
prediction area A∗k is expressed as

μ A
∗
k( 􏼁 �

1
A
∗
k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽚

Ar⊆A∗k
μ Ar( 􏼁dAr, (14)

where |A∗k | denotes the area of the areal unit A∗k . However,
the integral in equation (14) is difficult to compute, and there
are approximation techniques available to resolve this
problem [18]. However, the approximations are best suited
for situations when Ar⊆A∗k .+ese approximation techniques
are derived using the concept of the posterior predictive
distribution in the Bayesian inference approach (see Ap-
pendix C).

+us, using the auxiliary covariates X∗, the posterior
predictive distribution of μ(A∗k ) is written as

π μ A
∗
k( 􏼁|μ( 􏼁 � 􏽚 π μ A

∗
k( 􏼁|X
∗
, β, σ2ζ , μ􏼐 􏼑 × π β, σ2ζ |X

∗
, μ􏼐 􏼑dθ

� E
β,σ2ζ |X∗,μ􏼐 􏼑

π μ A
∗
k( 􏼁|X
∗
, β, σ2ζ , μ􏼐 􏼑􏽨 􏽩.

(15)

On the other hand, for the spatial random effect, a new
closest neighbor weight matrix W(A∗) based on (A∗)k

′s
neighborhood in Moran’s I-matrix and a new orthogonal
multiresolution spatial basis R(A∗) based on the distances
between knot points and (A∗)k

′s centroids are used. +us,
ω(A∗k ) is obtained by incorporating Φ(A∗) in equation (5),
where Φ∗ � M∗(A∗) × R∗ is the basis function containing the
W∗ neighborhood weight matrix generated from at A∗k .
M(A∗) and R(A∗), respectively, are the multiresolution basis
and the eigenvectors of Moran’s I operator matrix based on
area A∗k , i.e., SA2s.

Similarly, the term εi(A∗k ) is derived from the predictive
conditional Gaussian distribution with variance 􏽢σ2ε and
mean 0. +e predictive distribution of y(A∗k ) is therefore
produced using the composition of draws and MCMC
samples from the posterior distributions and posterior
predictive distribution. Hence, the predictive equation for tth

MCMC sample may be stated in terms of area A∗k as

logit p
t
k􏼐 􏼑 � μ A

∗
k( 􏼁

(t)
+ ω A

∗
k( 􏼁

(t)
+ εi A

∗
k( 􏼁

(t)
. (16)

3.4. Estimation and Evaluation Metrics. Measures of preci-
sion play crucial role in small area estimation. For D as the
number ofMCMC samples after removing the burn-in period
followed by thinning, by the ergodic theorem for Markov
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chains [40], 􏽢pk converges toE(pk|y) and 􏽢V(pk|y) toV(pk|y)

as D⟶∞. Hence, the estimate of pi and its corresponding
posterior variance for the kth area are obtained directly from
the predictive distribution of y(A∗k ). Accordingly,

􏽢pk ≈
1
R

􏽘

R

t�1
p

(t)
k � p

(·)
k ,

V pk ∣ 􏽢p( 􏼁 ≈
1

R − 1
􏽘

R

t�1
p

(t)
k − p

(·)
k􏼐 􏼑

2
.

(17)

We also considered mean absolute error (MAE) and root
mean square error (RMSE) to evaluate the model perfor-
mance. +ese metrics were defined using the posterior mean
of the proportion, 􏽢pk d, of a small area k and iteration d from
the true population proportion, pk, in two ways: for an
individual small area, and an average across all individual
small areas. So, the most accurate estimate will lead to the
smallest RMSE and/or MAE value going to zero.

+e mean square error (MSE) was computed as the
arithmetic mean of squared deviations of 􏽢pk d from pk, and
hence the RMSE was the square root of MSE.

MSEk �
1
D

􏽘

D

d�1

􏽢pkd − pk( 􏼁
2
,

MSE �
1
n
∗ 􏽘

n∗

k�1
MSEk

⎛⎝ ⎞⎠.

(18)

Similarly, MAE is given as

MAEk �
1
D

􏽘

D

d�1
pkd − pk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

MAE �
1
n
∗ 􏽘

n∗

k�1
MAEk

⎛⎝ ⎞⎠.

(19)

4. Illustrative Example

A simulation study was conducted as an illustrative example
to make the ideas described in the proposed model clear and
understand how the model may be put into practice. We
started it by describing the simulation setup. +e sensitivity
analysis of the predictive posterior distribution for the

changes in the values of hyperparameters was done. Fur-
thermore, precision measures of the estimates from the
proposed model were demonstrated along with the direct
estimates and population values.

4.1. Simulation Setup. A regular grids observation locations
on a unit square, [0, 1] × [0, 1] with 202 � 400 cells and 102 �

100 cells, were considered as primary geographic areas with
survey data and prediction area (secondary geographic area
overlapping with primary geographic area), respectively
(Figure 2(a)). A binary outcome variable and two auxiliary
covariates with 3000 population observations were generated.
Ten percent of the population was taken as sample
observations.

Values for the parameters of the priors (i.e., hyper-
parameters) are assumed to reflect a fairly vague knowledge
of the prior distributions. In case of inverse gamma dis-
tribution, smaller hyperparameters reflect vague knowledge.
However, as noted in [41], inverse gamma priors with ex-
tremely small hyperparameters lack a proper limiting pos-
terior distribution. As a result, we considered proper and
weakly informative inverse gamma priors with reasonable
values of the shape hyperparameter a � 2 and the rate
hyperparameter b � 1, which is frequently recommended in
literature [42, 43]. On the other hand, hyperparameters for
the normal priors were considered under sensitivity analysis.

We generated an MCMC sample of 50, 000 simulated
datasets from the full conditionals of the hierarchical model.
Bi-square basis function centers with two resolutions: res-
olution one containing r1 � 4 × 4 � 16 basis functions and
resolution two containing r2 � 3 × 3 � 9 basis functions,
were considered (Figure 2(b)). +erefore, in the simulation,
there were r � r1 + r2 � 25 spatial basis functions in total.

4.2. Sensitivity Analysis. Sensitivity to the hyperparameter
specification is a crucial part in a hierarchical Bayesian
model. Assessing “complete factorial” sensitivity to our prior
specifications is exceedingly difficult because of the model’s
complexity and size. However, it is suggested that sensitivity
studies of one parameter at a time be performed by re-
running the Gibbs sampler with various values for each
parameter [44]. Hence, we investigated the sensitivity
analysis for the normal prior. +e sensitivities were mainly
assessed by visual inspection of diagnostic plots (Figure 3) as
well as using mean absolute error (MAE) and root mean
square error (RMSE) (Table 1).

+e model with the lowest RMSE andMAE is thought to
perform better. RMSE and MAE were computed using
different hyper-prior values from the table above, ranging
from informative to vague (non-informative). At μβ � 0 and
σ2β � 1, the RMSE and MAE values are 0.43 and 0.40, re-
spectively. Moving in the opposite direction, the next hyper-
prior values are μβ � 0 and σ2β � 10, with 0.02 and 0.03
increments, respectively. +e step that follows produces the
largest change increments of 0.04 and 0.06 for RMSE and
MAE, respectively. After that, the increment becomes nearly
constant. +e RMSE and MAE values revealed that our
model is not very sensitive to the hyperparameter selection;

yi ~ ber (pi)

µ

β X

σ 2
∈

ω

Φ(A) η

φM(A) R(A)

σ 2
v

σ 2
ζ

Figure 1: Directed acyclic graph (DAG) showing model schemes.
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in other words, the observed changes in RMSE and MAE
values were of a similar magnitude.

Visual inspection of the trace plots was also considered
to complement analysis of RMSE andMAE (Figure 3). From
this figure, we can observe that plots corresponding all
parameters except β1 and β2 showed similar convergence.

Furthermore, the plots corresponding to a prior N(0, 10)

shows better convergence. +is visual inspection was sup-
ported by Geweke’s test of convergence for each parameter
under each scenario (Table 2). Hence, we considered a
normal prior with mean zero and variance ten, N(0, 10), for
our estimation and measures of precision.

4.3. Estimates and Precision Measures. Using samples from
the MCMC algorithm and posterior predictive distribution
along with the new information from SA2, estimates of
probability and all precision measures were computed, in-
cluding but not limited to 95% credible intervals (CIs). For
comparison purpose, the direct estimate and the population
values for each small areas were demonstrated.

SA2
SA1

(a) (b)

Figure 2: Regular grid cells and knot points. (a) Small area one (SA1) and small area two (SA2) overlaid together. (b) Knot points with two
resolutions, red crossed square and red dotted circle overlaid on SA1 and SA2.
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Figure 3: Trace plots for each parameter under five hyperparameters. Each row represents trace plots of parameters at a given hyper-
parameter, i.e., 1st row for N(0, 1015), 2nd row for N(0, 1010), 3rd row for N(0, 105), 4th row for N(0, 10), and 5th row for N(0, 1). Each
column represents trace plot of a parameter at each hyperparameter, i.e., 1st column for σ2ϵ , 2nd column for σ2ζ , 3

rd column for σ2] , 4th column
for ϕ, 5th column for β1, and 6th column for β2.

Table 1: Sensitivity of the hyperparameters of the normal prior
distribution.

Scenarios Changes in hyperparameters RMSE MAE
Scenario 1 μβ � 0, σ2β � 1015 0.50 0.49
Scenario 2 μβ � 0, σ2β � 1010 0.49 0.49
Scenario 3 μβ � 0, σ2β � 105 0.49 0.49
Scenario 4 μβ � 0, σ2β � 10 0.45 0.43
Scenario 5 μβ � 0, σ2β � 1 0.43 0.40
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From Figures 4 and 5, we can see that our proposed
model is better than direct estimate by considering several
perspectives. Firstly, it enabled us to obtain estimates where
we could not have from direct estimate, i.e., the line rep-
resenting the direct estimates is broken for some areas.
Secondly, if we look at the overall pattern of the lines, the
deviation of the SAE line is less than the deviation of direct
line from the population line. Hence, our proposed model
yields estimates for areas where we could not have direct
estimates and the estimates from our proposed model are
precise as compared to the direct estimates.

From Figures 6 and 7, we can understand that the
proposed model yields precise estimates as compared to
direct estimates.

Different scenarios for the coefficients of auxiliary var-
iables were considered to check the sensitivity of hyper-
parameters in the proposed model, and we found that
weakly informative priors were better in the proposed
model. However, it is recommended to conduct further
studies assessing all combinations of hyperparameters in the
proposed model. In this perspective, further research is
needed.
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Figure 4: Probabilities (population, direct estimate, and small area estimate) of 100 small areas.

Table 2: Geweke’s test of convergence.

Scenarios sigma2epsilon sigma2zeta sigma2nu phi beta.1 beta.2
Scenario 1 0.9286 1.4605 − 0.2808 − 1.1974 − 6.4221 4.6221
Scenario 2 1.3933 1.2847 1.1283 0.6562 − 2.4847 − 1.8876
Scenario 3 2.2112 1.3935 0.6161 0.3807 − 0.1418 − 0.6526
Scenario 4 1.6848 0.7357 0.4744 1.1001 0.6030 − 1.6672
Scenario 5 0.8739 0.9191 1.3838 − 0.6712 0.3194 − 1.2086
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Figure 5: Population value and estimates over small areas. (a) Direct estimates. (b) +e population/true value. (c) Estimate from the
proposed model.
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5. Concluding Remarks

In this study, we have developed a spatial hierarchical
Bayesian small area model for a binary response variable
under spatial misalignment as non-trivial extension of
existing hierarchical Bayesian small area model for binary
data under spatial misalignment. Fusion model (considering
both area-level and unit-level data) was considered. +e
process models derived from the predictors were used to
construct the basis as a means of alleviating the issue of
collinearity between the fixed effects and the spatial random
effects. All the full conditionals have closed form. Sensitivity
analysis was done via simulation. +e developed model can
be applied in many broad areas including but not limited to
health sciences, public health, agriculture, and economics.

Abbreviations

BYM: Besag–York–Mollie
CAR: Conditional autoregressive
CI: Credible interval
ICAR: Intrinsic conditional autoregressive
MAE: Mean absolute error
MCMC: Markov Chain Monte Carlo

RMSE: Root mean square error
SAE: Small area estimation.

Appendix

A. Posterior Distribution

For ease of expression, hereafter we denote φir � logit
(pi(Ar)), μr � μ(Ar), ωr � ω(Ar), μ � (μ(A1), . . . , μ(An))′
and ω � (ω(A1), . . . ,ω(An))′. Hence, the conditional dis-
tributions under data models, process models, and parameter
models used in posterior distribution are given as follows.

Data models:

yi Ar( 􏼁|pi Ar( 􏼁 ∼ ber pi Ar( 􏼁( 􏼁. (A.1)

Process models:

φir|μr,ωr, σ
2
ε ∼ N μr + ωr, σ

2
ε􏼐 􏼑,

μ|β, σ2ζ ∼ N βX, σ2ζIn􏼐 􏼑,

ω|η, σ2] ∼ N Φη, σ2]In􏼐 􏼑,

η|ϕ ∼ N(0,Σ).

(A.2)
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Parameter models:

β ∼ N μβ, σ2βIp􏼐 􏼑,

σ2ε ∼ IG aε, bε( 􏼁,

σζ ∼ IG aζ , bζ􏼐 􏼑,

σ2] ∼ IG a], b]( 􏼁,

ϕ ∼ IG aϕ, bϕ􏼐 􏼑,

(A.3)

where σ2ε > 0; σ2ζ > 0; σ2] > 0; ϕ> 0; i � 1, 2, . . . , Nr,

and r � 1, 2, . . . , n.
Accordingly, the posterior distribution is written as

π μ,ω, η, β, σ2ε , σ
2
], σ

2
ζ ,ϕ|yi􏼐 􏼑∝􏽙
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(A.4)

which is proportional to a product of the kernels only after
removing terms that do not involve the parameter of interest
that can be written as
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B. Derivation of Full Conditionals

(1) +e full conditionals for σ2ϵ .
+e full conditionals for σ2ϵ can be proved by taking
all terms with σ2ϵ from equation (A.5) as
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(B.1)
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which is the kernel of inverse gamma distribution
with shape and scale parameters

aε +
N

2

bϵ +
1
2

􏽘

n

r�1
􏽘

Nr

i�1
φir − μr − ωr􏼂 􏼃

2⎛⎝ ⎞⎠,

(B.2)

respectively.
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N

2
, bε +

1
2

􏽘

n

r�1
􏽘

Nr

i�1
φir − μr − ωr􏼂 􏼃

2⎛⎝ ⎞⎠.

(B.3)

(2) +e full conditionals for σ2ζ .
+e full conditionals for σ2ζ can be proved by taking
all terms with σ2ζ from equation (A.5) as
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which has the form of inverse gamma distribution
with a shape parameter of

n

2
+ aζ􏼒 􏼓, (B.5)

and scale parameter of
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(3) +e full conditionals for σ2] . +e full conditionals for σ2] can be proved by taking
all terms with σ2] from equation (A.5) as
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Hence, the full conditional distribution of σ2] has the
form of inverse gamma distribution with scale
parameter

1
2
[ω − Φη]′[ω − Φη] + b], (B.8)

and shape parameter

n

2
+ a]􏼒 􏼓

⇒π σ2]|·􏼐 􏼑 ∼ IG
n

2
+ a],

1
2
[ω − Φη]′[ω − Φη] + b]􏼒 􏼓.

(B.9)

(4) +e full conditionals for ϕ.
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+e full conditionals for ϕ can be proved by taking all
terms with ϕ from the full joint posterior distribution
equation (A.5) as

π(ϕ|·)∝ |Σ|− (1/2) exp −
1
2
η′Σ− 1η􏼚 􏼛 × ϕ− a− 1 exp −

b

ϕ
􏼨 􏼩. (B.10)

Here, applying properties of determinant and inverse
of a matrix as well as the relationship Σ � Ψ(ϕΛ)Ψ′,
we get

|Σ|− (1/2)
� ϕ− (m/2) ΨΛΨ′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− (1/2)

,

Σ− 1
� ϕ− 1ΨΛ− 1Ψ′,

(B.11)

implying

π(ϕ|·)∝ ϕ− (m/2) exp −
1
2
ϕ− 1η′ΨΛ− 1Ψ′η􏼚 􏼛 × ϕ− a− 1 exp −

b

ϕ
􏼨 􏼩

∝ ϕ− (m/2)ϕ− a− 1 exp −
η′ΨΛ− 1Ψ′η

2ϕ
+

b

ϕ
􏼨 􏼩

∝ ϕ− ((m/2)+a)− 1 exp −
1
ϕ

η′ΨΛ− 1Ψ′η
2

+ b􏼢 􏼣􏼨 􏼩,

(B.12)

which is inverse gamma distribution with
parameters

m

2
+ aϕ,

1
2
η′ΨΛ− 1Ψ′η + bϕ,

⇒π(ϕ|·) ∼ IG
m

2
+ aϕ,

1
2
η′ΨΛ− 1Ψ′η + bϕ􏼒 􏼓.

(B.13)

(5) +e full conditionals for β.
+e corresponding proof for the conditional distri-
bution of β is as follows. Taking all terms with the β
from the full joint posterior distribution equation
(A.5),

π(β|·)∝ exp −
1
2

[μ − Xβ]′[μ − Xβ]

σ2ζ

⎧⎨

⎩

⎫⎬

⎭ × exp −
1
2

β − μβ􏽨 􏽩′ β − μβ􏽨 􏽩

σ2β

⎧⎨

⎩

⎫⎬

⎭

∝ exp −
1
2

[μ − Xβ]′[μ − Xβ]

σ2ζ
−
1
2

β − μβ􏽨 􏽩′ β − μβ􏽨 􏽩

σ2β

⎧⎨

⎩

⎫⎬

⎭

∝ exp −
1
2
μ′μ − 2β′X′μ + β′X′Xβ

σ2ζ
−
1
2
β′β − 2β′μβ + μβ′μβ

σ2β

⎧⎨

⎩

⎫⎬

⎭

∝ exp −
1
2

− 2β′X′μ + β′X′Xβ
σ2ζ

+
β′β − 2β′μβ

σ2β
⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

⎫⎬

⎭∝ exp −
1
2

β′X′Xβ
σ2ζ

+
β′β
σ2β

−
2β′X′μ
σ2ζ

−
2β′μβ
σ2β

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭

∝ exp −
1
2

β′
σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠β − 2β′
σ2βX′μ + σ2ζ μβ

σ2ζ σ
2
β

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭

∝ exp −
1
2

σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠ β′β − 2β′
σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1
σ2βX′μ + σ2ζ μβ

σ2ζ σ
2
β

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

∝ exp −
1
2

σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠ β −
σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1
σ2βX′μ + σ2ζ μβ

σ2ζ σ
2
β

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

′
β −

σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1
σ2βX′μ + σ2ζ μβ

σ2ζ σ
2
β

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(B.14)
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which is multivariate normal distribution with
covariance

σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1

, (B.15)

and mean vector

σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1
σ2βX′μ + σ2βμβ

σ2ζ σ
2
β

⎛⎝ ⎞⎠,

⇒π(β|·) ∼ N
σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1
σ2βX′μ + σ2βμβ

σ2ζ σ
2
β

⎛⎝ ⎞⎠,
σ2βX′X + σ2ζIp

σ2ζ σ
2
β

⎛⎝ ⎞⎠

− 1

⎛⎝ ⎞⎠.

(B.16)

C. Predictive Distribution

+e posterior predictive distribution is the distribution of
potential unobserved values conditional on the observed
values. +e posterior predictive distribution for unobserved
values (S′) conditional on the observed values (S) is defined
as follows:

p S′|S( 􏼁 � 􏽚
θ
p S′|θ( 􏼁p(θ|S). (C.1)

+is can be derived from the Bayes rules:

p S′, θ|S( 􏼁 � p S′|θ, S( 􏼁p(θ|S). (C.2)

We have

p S′, θ|S( 􏼁 �
p S′, θ, S( 􏼁

p(S)
�

p S′θ, S( 􏼁p(θ, S)

p(S)
� p S′|θ, S( 􏼁p(θ|S). (C.3)

Now integrating out the nuisance variable θ on both the
most left and right sides in equation (C.3) yields

p S′|S( 􏼁 � 􏽚
θ
p S′|θ, S( 􏼁p(θ|S)dθ. (C.4)

+e right hand side formula in equation (C.4) appears to
have a Markov-type assumption, p(S′|θ, S) � p(S′|θ). Al-
ternatively, by the law of total expectation and Fubini’s
theorem [45], applied to any bounded measurable function
f defined on the relevant sample space Ω, we observe that

􏽚
Ω

f S′( 􏼁p S′|S( 􏼁dS′ � E f S′( 􏼁|S � S􏼂 􏼃

� E E f S′( 􏼁|Θ, S􏼂 􏼃|S � S􏼂 􏼃,

Since, E(X) � E(E(X|Y)) � 􏽚
θ

􏽚
Ω

f S′( 􏼁p S′|θ, S( 􏼁dS′􏼒 􏼓p(θ|S)dθ

� 􏽚
Ω

f S′( 􏼁 􏽚
θ
p S′|θ, S( 􏼁p(θ|S)dθ􏼒 􏼓dS′,

⇒􏽚
Ω

f S′( 􏼁 p S′|S( 􏼁
︸

dS′ � 􏽚
Ω

f S′( 􏼁 􏽚
θ
p S′|θ, S( 􏼁p(θ|S)dθ

︸

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dS′.

(C.5)

Obviously, the under-braced components of the left
hand side and the right hand side in equation (C.5) are equal,

and hence it is equivalent to equation (C.4). +at is, for all
bounded measurable functions, we conclude that
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p S′|S( 􏼁 � 􏽚
θ
p S′|θ, S( 􏼁p(θ|S)dθ. (C.6)

Now, replacing S′ by μ∗k , S by μk and θ by β, σ2ζ in
equation (C.6), we find the predictive posterior distribution
of μ∗k .
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