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In this paper, we apply the random time change by the real white noise to deterministic dynamical systems. We prove that the
obtained random dynamical systems are solutions of some stochastic diferential equations whenever the deterministic dynamical
systems are solutions of ordinary diferential equations.

1. Introduction

Random perturbations of deterministic dynamical systems
are introduced to model real phenomena, which are usually
afected by external fuctuations whose resulting action
would be natural to be considered as random.We refer to the
monographs [1, 2] (and the references therein) for more
details on the subject. A continuous time deterministic
dynamical system S(t, x) is solution of a diferential equation
generated by a vector feld f. In general, a random per-
turbation of S is made either by perturbation of f by a real
noise or by adding a white noise term to f (cf. Paragraph 1
below). Following [3, 4], in both cases the resulting process is
a random dynamical system and many important deter-
ministic properties are extended to analogous random
properties.

Moreover, the idea to consider random time changes for
stochastic processes is introduced in [5] and it is extensively
studied in many directions (cf. [6–13] for example). How-
ever, random time changes for dynamical systems were
introduced recently in [14] as new random perturbation of
dynamical systems. For a given random time τ(t,ω), one can
consider the random process U(t,ω, x): � S(τ(t,ω), x),
where S is a deterministic dynamical system. Following [14],

the aim is to study the properties of U(t,ω, x) depending on
those of the initial dynamical system S(t, x).

In this paper, we consider the random time change by
the real white noise of dynamical systems and as application,
we investigate the case when these systems are generated by
ordinary diferential equations.

Let Ω � ω: R⟶ R: ω is continuous andω(0) � 0{ }

equipped with the compact open topology, let
W: R ×Ω⟶ R be the real white noise defned by
W(t)(ω) � ω(t), and let θ: R ×Ω⟶Ω, (t,ω)↦θ(t,ω)

defned by θ(t,ω)(s): � ω(s + t) − ω(t). Ten, θ generates a
metric dynamical system on Ω (Defnitions 1and 2).

Let E be a locally compact space endowed with its Borel σ
-algebra B and let S: R × E⟶ E such that (E,B, S) is a
continuous dynamical system on E. Let φ: R ×Ω × E⟶ E

defned by the time change W of S, that is, φ(t,ω,

x) � S(W(t,ω), x). We prove frst (Teorem 1) that (θ, φ) is a
continuous random dynamical system (Defnition 2) on E.

Next, we suppose that E is an open subset of Rd and
S � (S1, . . . , Sd) is the solution of the system of ordinary
diferential equations generated by a C1-function
f �: (f1, . . . , fd), that is,

yk
′(t) � fk y1(t), . . . , yd(t)( 􏼁, yk(0) � xk, 1≤ k≤d. (1)
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We prove (Teorem 2) that the associated random
dynamical system defned in Teorem 1 is the solution

X � : (X1, . . . , Xd) of the system of stochastic diferential
equations.

dXk(t) �
1
2
<∇fk, f> (X(t))dt + fk(X(t))dW(t); Xk(0) � xk, 1≤ k≤ d. (2)

Although we considered a particular (but important)
random time change, we have established explicit solu-
tions, in terms of the initial solutions, for a class of sto-
chastic diferential equations. Notice that in the previous
work [14], only expected values of the solutions are in-
vestigated, in implicit form, also in terms of the initial
solutions.

2. Dynamical and Random Dynamical Systems

For the following classical concepts, we refer essentially to
Parts I, II, and IV of [4] (cf. also [15–19]).

Troughout the paper, R denotes the real line endowed
with its Borel σ-algebra R. Moreover, 〈·, ·〉 denotes the usual
inner product in Rd, d ∈ N and ∇g �((zg/zx1), . . . ,

(zg/zxd)) if g: Rd⟶ R is a C1-function.

Defnition 1. A dynamical system (DS) is a triplet (Γ,G,ψ)

where (Γ,G) is a measurable space,
ψ: R × Γ⟶ Γ, (t, y)↦ψty: � ψ(t, y) such that

ψ(0, y) � y;ψ(s + t, y) � ψ(s,ψ(t, y)), s, t ∈ R, y ∈ Γ.
(3)

If (t, y)⟶ ψ(t, y) is (R⊗G,G) measurable, then the
DS (Γ,G,ψ) is said to be measurable.

If Γ is a topological space endowed with its Borel σ
-algebra G and if (t, y)⟶ ψ(t, y) is continuous, then the
DS (Γ,G,ψ) is said to be continuous.

In this paper, we consider essentially two diferent types
of DS:

(1) Te infnite dimensional case: (Γ,G,ψ) � (Ω,F, θ),
where Ω is an infnite dimensional space. A frst
example is Ω: � ω: R⟶ R: ω is continuous{ }

equipped with the compact open topology andF: �

B(Ω) the associated Borel σ-algebra. We defne the
translation shift θ: R ×Ω⟶Ω by the following
equation:

θ(t,ω)(s) ≔ ω(s + t), s, t ∈ R,ω ∈ Ω. (4)

Ten, (Ω,F, θ) is a measurable DS, called DS of
translations onR. Under additional assumptions, we
may defne a probability P on (Ω,F) such that the
DS (Ω,F, θ) becomes a metric DS called usually real
noise.

Another important example of infnite dimensional
DS, is the Wiener DS on R. It will be considered in
the second paragraph.

(2) Te fnite dimensional case: (Γ,G,ψ) � (E,B, S)

where E is a locally compact space endowed with its
Borel σ-algebra B and S is continuous. In this case,
the DS (E,B, S) is said to be deterministic. Te
global solutions S of ordinary diferential equations
on an open subset of Rd, d≥ 1 are the most im-
portant examples and they will be treated in the third
paragraph.

Defnition 2. Let E be a locally compact space endowed with
its Borel σ-algebra B.

A measurable random dynamical system (RDS) defned
on E consists of two ingredients:

(1) A metric DS, i.e., a measurable DS (Ω,F, θ)

endowed with a probability measure P which is θ
-invariant, that is,

P θ−1
t (F)􏼐 􏼑 � P(F), F ∈F, t ∈ R. (5)

(2) A cocycle over θ, i.e., a mapping
φ: R ×Ω × E⟶ E, (t,ω, x)↦φ(t,ω, x) which is
(R⊗F⊗B,B) measurable and satisfying

φ(0,ω, x) � x,ω ∈ Ω, x ∈ E. (6)

And the cocycle equation:

φ(s + t,ω, x) � φ s, θtω,φ(t,ω, x)( 􏼁, s, t ∈ R,ω ∈ Ω, x ∈ E. (7)

Such a RDS is denoted by (Ω,F, θ, E,φ) or simply by
(θ, φ) if there is no confusion.

(θ, φ) is said to be continuous, if (t, x)⟶ φ(t,ω, x)

is continuous for P-almost every ω ∈ Ω.
Let (θ, φ) be a measurable RDS on E. We may associate

the skew product Φ: R ×Ω × E⟶Ω × E defned by the
following equation:

Φt(ω, x) ≔ � (θ(t,ω),φ(t,ω, x)); t ∈ R, x ∈ E,ω ∈ Ω.

(8)

Ten, (Ω × E,F⊗B,Φ) is a measurable DS on the
product space Ω × E endowed with the tensor product σ
-algebra F⊗B.
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A frst standard class of RDS are solutions of random
diferential equations (RDE): Let (Ω,F, θ) be a metric DS
(for example the translation shift defned by (4), let E be an
open subset of Rd, and h: Ω × E⟶ E be measurable such
that, for each ω ∈ Ω, (t, x)⟶ h(θtω, x), (t, x)⟶ h

(θtω, x) is continuous and x⟶ h(θtω, x) is locally-Lip-
schitz. Ten, the random diferential equation,

dXt(ω) � h θtω, Xt(ω)( 􏼁dt; X0(ω) � x ∈ E. (9)

admits a unique solution φ(t,ω, x) � Xx
t (ω) and (θ,φ) is

a continuous RDS on E.
A second important class of RDS are solutions of sto-

chastic diferential equations (SDE). Tey will be investi-
gated in the third paragraph.

3. Time Change by Real White Noise

For the following standard notions, we refer essentially to
[20], Part IV of [4], and Chapter 2 of [21] (cf. also [17]).

Let Ω � ω: R⟶ R: ω be continuous andω(0) � 0{ }

equipped with the compact open topology, let F: � B(Ω)

be the associated Borel σ-algebra, and let W: R ×Ω⟶ R,
which is defned by the following equation:

W(t,ω) ≔ ω(t), t ∈ R,ω ∈ Ω. (10)

Tere exists, by a classical result (Kolmogorov extension
theorem), a unique probability measure P on (Ω,F) such
that the process W has stationary and independent incre-
ments and (W(t, .) − W(s, .)) has normal distribution with
mean 0 and variance |t − s|.

Let θ: R ×Ω⟶Ω, (t,ω)↦θ(t,ω), which is defned by
the following equation:

θ(t,ω)(s) ≔ ω(s + t) − ω(t), s, t ∈ R,ω ∈ Ω. (11)

Ten, (Ω,F, P, θ) is a metric DS, called the Wiener or
Brownian DS. Moreover θ is calledWiener shift onR and W,
which is called real white noise.

Te Wiener DS is the appropriate sample space in order
to interpret stochastic diferential equations (SDE) as RDS.

Remark 1. Te main idea of this paper is to investigate the
real white noise process W: R ×Ω⟶ R as random time
change. Combining equations (7) and (8), we get the fol-
lowing equation:

W(s + t,ω) � W(t,ω) + W(s, θ(t,ω)), s, t ∈ R,ω ∈ Ω.

(12)

According to [20], W is in fact an extension to R of the
white noise process on [0,∞). Terefore, by equations (7)
and (9), W is (the extension of) a random time in the sense
of Defnition 2.1 of [14].

Now we come to our frst result.

Theorem 1. Let E be a locally compact space endowed with
its Borel σ-algebra B and let S: R × E⟶ E such that
(E,B, S) is a continuous DS on E. Let (Ω,F, P, θ) be the
metric Wiener DS and let W the associated real white noise.
We defne φ: R ×Ω × E⟶ E by the following equation:

φ(t,ω, x) � S(0(t,ω), x), t ∈ R, x ∈ E,ω ∈ Ω. (13)

Ten, (θ, φ) is a continuous RDS on E.

Proof. φ defned by equation (13) is (R⊗F⊗B,B)

measurable as composition of measurable applications.
Indeed, W: R ×Ω⟶ R is (R⊗F,R) measurable by
defnition of W. Let I(x): � x, x ∈ E, then (W, I): R ×Ω ×

E⟶ R × E; (t,ω, x)↦(W(t,ω), x) is trivially (R⊗F
⊗B,R⊗B) measurable. Also, S: R × E⟶ E is
(R⊗B,B) measurable by defnition of S and therefore φ �

So(W, I) is (R⊗F⊗B,B) measurable. Similarly,
(t, x)⟶ φ(t,ω, x) is continuous for P for almost every
ω ∈ Ω as composition of continuous applications.

Moreover, using equation (13) and the frst part of
equation (3), we obtain the following equation:

φ(0,ω, x) � S( W( )(0,ω), x) � S(0, x) � x,ω ∈ Ω, x ∈ E.

(14)

Since W(0,ω) � ω(0) � 0 by the well defnition of Ω.
It remains to prove that φ satisfes the cocycle equation

(7). Let s, t ∈ R, x ∈ E,ω ∈ Ω. By applying equation (13) to
ω: � θ(t,ω) and x: � φ(t,ω, x) � S(W(t,ω), x), we obtain
the following equation:

φ(s, θ(t,ω), φ(t,ω, x)) � S(W(s, θ(t,ω)), S(W(t,ω), x)).

(15)

By using equation (12), equation (15) becomes the fol-
lowing equation:

φ(s, θ(t,ω),φ(t,ω, x)) � S(W(s + t,ω) − W(t,ω), S(W(t,ω), x)). (16)

Finally, by applying the second part of equation (3) in
equation (16), we get the following equation:
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φ(s, θ(t,ω),φ(t,ω, x)) � S(W(s + t,ω) − W(t,ω) + W(t,ω), x)

� S(W(s + t,ω), x)

� φ(s + t,ω, x),

(17)

in view of Formula (13). □

Remark 2.

(1) Equation (12) is called helix equation. We refer to
[22] for a detailed study of equation (12).

(2) Te particular RDS obtained in Teorem 1 is con-
structed by real white noise time change of a de-
terministic DS. It seems to be worthwhile to
investigate this RDS according to the general theory
of RDS as presented in the monograph [4].

(3) In the next paragraph, we deepen the study of this
RDS in the particular case when S is generated by an
ordinary diferential equation.

4. An Application to Ordinary
Differential Equations

For the following notions, we refer essentially to Chapters 3,
4, 5, and 7 of [21] (cf. also [17]).

Te Wiener DS (Ω,F, P, θ) is the appropriate sample
space in order to interpret stochastic diferential equations
(SDE) as RDS. Indeed, the associated white noise W allows
to defne Itô stochastic integral 􏽒

t

0 f(s,ω)dW(s)(ω) by
putting W(t): � W(t, .) (cf. [21] Chapter 3).

Let E be an open subset of Rd endowed with its Borel σ
-algebra B. A SDE on E is of the form

dX(t) � g(X(t))dt + f(X(t))dW(t); X(0) � x; t ∈ R, x ∈ E,

(18)

where f, g: E⟶ E are locally-Lipschitz functions.
According to [3] Chapter 6, equation (13) admits a

unique solution φ: R ×Ω × E⟶ E and (φ, θ) is a con-
tinuous RDS on E.

Te following useful result is a particular case of the so-
called Itô Formula.

Lemma 1. Let R⟶ R; r↦u(r) be a C2-function and let
Y(t): � u(W(t)), then

dY(t) �
1
2
d2u
dr

2 (W(t))dt +
du

dr
(W(t))dW(t). (19)

Proof. We refer to [21], Teorem 4.1.2 (where W is denoted
by B): by taking Xt � Wt and g(t, r) � u(r), formula (4.1.7)
of [21] becomes the following equation:

dY(t) � 0 +
du

dr
(W(t))dW(t) +

1
2
d2u
dr

2 (W(t))(dW(t))
2

�
du

dr
(W(t))dW(t) +

1
2
d2u
dr

2 (W(t))dt,

(20)

since (dW(t))2 � dt by formula (4.1.7) of [21].
Next, let E be an open subset ofRd, d≥ 1. For a givenC1

-function f: E⟶ E, we consider the associated autono-
mous frst order ordinary diferential equation (ODE)

dy(t) � f(y(t))dt; y(0) � x ∈ E. (21)

Te autonomous ODE (21) is said to be generated by f.
We noticed that for d≥ 2, the considered ODE is in fact a

system. Indeed, if f � (f1, . . . , fd), y � (y1, . . . , yd), and
x � (x1, . . . , xd), then equation (21) is equivalent to

dyk(t) � fk y1(t), . . . , yd(t)( 􏼁dt, yk(0) � xk, 1≤ k≤ d.

(22)

Since f is a C1-function, then equation (21) admits a
unique solution for each initial value x ∈ E. Te proof of this
classical result can be found in chapter 2 of [23]. We suppose
that the unique solution of equation (21) is global (cf. [23],
chapter 3 for more details). Tis means that, equation (21)
admits a unique solution S(., x): R⟶ E for each x ∈ E. In
fact, we have defned a system S: R × E⟶ E, (t, x)

↦S(t, x) satisfying the following equation:

z

zt
S(t, x) � f(S(t, x))

S(0, x) � x ∈ E

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

It is well known that(E,Ε, S) is a continuous DS on E (cf.
[15, 16, 23]). It is said to be generated by ODE (21).

By applying Teorem 1, we come to the second result of
this paper. □

Theorem  . Let W be the real white noise and let
S � (S1, . . . , Sd): R × E⟶ E be the solution of the system of
ODE’s generated by aC1-function f � : (f1, . . . , fd), that is,

z

zt
Sk(t, x) � fk(S(t, x)); Sk(0, x) � xk, 1≤ k≤ d, (24)

where x � (x1, . . . , xd) ∈ E. Ten, the RDS φ defned by
equation (13) is the solution X � : (X1, . . . , Xd) of the system
of SDE’s
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dXk(t) �
1
2
<∇fk, f>(X(t))dt + fk(X(t))dW(t); Xk(0) � xk, 1≤ k≤ d. (25)

Proof. Let 1≤ k≤d. We apply Lemma 1 to the function
uk(r) � Sk(r, x) for 1≤ k≤ d, x ∈ E. First,

duk

dr
(r) �

z

zr
Sk(r, x) � fk(S(r, x)). (26)

By derivation of equation (26), we get the following
equation by using equations (24) and (26).

d
2
uk

dr
2 (r) �

z

zr
fk(S(r, x))

�
z

zr
fk S1(r, x), . . . , Sd(r, x)( 􏼁

� 􏽘
i�d

i�1

z

zxi

fk(S(r, x))
z

zr
Si(r, x)

� 􏽘
i�d

i�1

z

zxi

fk(S(r, x))fi(S(r, x)).

(27)

Hence,

d2uk

dr
2 (r) � <∇fk, f>(S(r, x)). (28)

Let Xk(t)(ω)x: � Sk(W(t), x). Notice frst that from
equation (24)

Xk(0) � Sk(W(0), x) � Sk(0, x) � xk. (29)

Moreover, we have the following equation:

X(t) ≔ X1(t), . . . , Xd(t)( 􏼁 � S(W(t)). (30)

By using equations (20)–(22), the Itô formula (19) gives
the following equation:

dXk(t) �
1
2
〈∇fk, f〉( 􏼁S(W(t))dt + fkS(W(t))dW(t)

�
1
2
〈∇fk, f〉( 􏼁(X(t))dt + fk(X(t))dW(t).

(31)

Tis completes the proof. □

Remark 3. In Teorem 2, we have associated a SDE to a
given ODE by the random time change W. Our approach is
completely diferent from the classical idea, mentioned in
the introduction, which consists of adding a stochastic term
(say g(X(t))dW(t)) to an ODE (of the form
dX(t) � f(X(t))dt) in order to obtain the SDE dX(t) �

f(X(t))dt + g(X(t))dW(t).

Example 1. Recall that (Ω,F, P, θ) is the Wiener DS and W

is the associated white noise. For simplicity, we suppose that
E: � Rd.

For the one-dimensional case, Teorem 2 reads as fol-
lows: Let S: R × R⟶ R be the DS solution of the ODE
generated by a C1-function f: R⟶ R. Ten,
(t,ω, x)↦φ(t,ω, x): � S(W(t,ω), x) is the solution X of
the SDE

dX(t) �
1
2

􏼒 􏼓 f′f( 􏼁(X(t))dt + f(X(t))dW(t); X(0) � x ∈ R. (32)

For example, if f(x) � x(1 − x), x ∈ R, then S(t, x) �

x(x + (1 − x)e− t)− 1; t, x ∈ R. Hence, the SDE

dX(t) �
1
2

􏼒 􏼓X(t) 1 − 3X(t) + 2X
2
(t)􏼐 􏼑dt + X(t)(1 − X(t))dW(t); X(0) � x ∈ R. (33)

Admits a unique solution given by
φ(t,ω, x) � x(x + (1 − x)e− W(t,ω))− 1.

Example 2. For the two-dimensional case, consider the
system of ODE’s

dy1 � f1 y1, y2( 􏼁dt

dy2 � f2 y1, y2( 􏼁dt

y1(0), y2(0)( 􏼁 � x1, x2( 􏼁 � x ∈ R2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, (34)

where f: � (f1, f2): R
2⟶ R2 is a C1-function and let

S: R × R2⟶ R2 the DS solution of this system. Ten, φ �
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(φ1,φ2): R ×Ω × R2⟶ R2 defned by φ(t,ω, x):

� S(W(t)(ω), x) is the solution X: � (X1, X2) of the sys-
tem of SDE’s

dX1(t) �
1
2

􏼒 􏼓
zf1

zx1
f1 +

zf1

zx2
f2􏼠 􏼡(X(t))dt + f1(X(t))dW(t)

dX2(t) �
1
2

􏼒 􏼓
zf2

zx1
f1 +

zf2

zx2
f2􏼠 􏼡(X(t))dt + f2(X(t))dW(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

. (35)

With the initial condition (X1(0), X2(0)) � (x1, x2) �

x ∈ R2.

Example 3. We illustrate the three-dimensional case by
considering an example on R3. We consider the system of
ODEs

dy1 � y2y3dt

dy2 � y1 + y3( 􏼁dt

dy3 � y
2
1dt

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

. (36)

Let S: R × R3⟶ R3 be the DS solution of this system.
Ten, φ � (φ1,φ2,φ3): R ×Ω × R3⟶ R3 defned by
φ(t,ω, x): � S(W(t)(ω), x) is the solution
X: � (X1, X2, X3) of the system of SDE’s

dX1(t) �
1
2

􏼒 􏼓 X1(t)X3(t) + X
2
3(t) + X2(t)X

2
1(t)􏼐 􏼑dt + X2(t)X3(t)dW(t)

dX2(t) �
1
2

􏼒 􏼓 X2(t)X3(t) + X
2
1(t)􏼐 􏼑dt + X1(t) + X3(t)( 􏼁dW(t)

dX3(t) � X1(t)X2(t))X3(t)dt + X
2
1(t)dW(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (37)

With the initial condition X1(0), X2(0),􏼈

X3(0) � (x1, x2, x3) � x ∈ R3.
Remark 4. Teorem 2 can be read as follows: we consider the
SDE

dX(t) � g(X(t))dt + f(X(t))dW(t); X(0) � x; t ∈ R,

x ∈ E,
(38)

where f, g: E⟶ E are twoC1-functions. We consider the
ODE

dy(t) � f(y(t))dt; y(0) � x ∈ E. (39)

And let S(t, x); t ∈ R, x ∈ E be the solution of the ODE
(39). Ten, φ(t,ω, x): � S(W(t,ω), x); t ∈ R,ω ∈ Ω, x ∈ E

is the solution of the SDE (38) if and only if

gk � <∇fk, f> ; 1≤ k≤d, (40)

where f � : (f1, . . . , fd) and g � : (g1, . . . , gd).

Hence, we have reduced the resolution of a class of
stochastic diferential equations to the resolution of the
associated ordinary diferential equations.
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