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Here, we present a method for a simple GARCH (1,1) model to �t higher order moments for di�erent companies’ stock prices.
When we assume a Gaussian conditional distribution, we fail to capture any empirical data when �tting the �rst three even
moments of �nancial time series. We show instead that a mixture of normal distributions is needed to better capture the higher
order moments of the data. To demonstrate this point, we construct regions (parameter diagrams), in the fourth- and sixth-order
standardised moment space, where a GARCH (1,1) model can be used to �t moment values and compare them with the
corresponding moments from empirical data for di�erent sectors of the economy.We found that the ability of the GARCHmodel
with a double normal conditional distribution to �t higher order moments is dictated by the time window our data spans. We can
only �t data collected within speci�c time window lengths and only with certain parameters of the conditional double Gaussian
distribution. In order to incorporate the nonstationarity of �nancial series, we assume that the parameters of the GARCH model
can have time dependence. Furthermore, using the method developed here, we investigate the e�ect of the COVID-19 pandemic
has upon stock’s stability and how this compares with the 2008 �nancial crash.

1. Introduction

Modelling of �nancial time series is a very extensive area of
research. One notable breakthrough in �nancial modelling is
the discovery of the heteroskedasticity and conditional
nature of volatility, manifesting itself in a slow stochastic
process in the dynamics of price variance, in addition to the
fast �uctuating price process itself.  is motivates the de-
velopment of the Autoregressive Conditional Hetero-
skedasticity models (ARCH) [1], which was later generalised
(GARCH) [2].  e autoregressive processes allow a sto-
chastic model to predict the price change probability density
for a given time series.  e level of return at a certain in-
stance is described by a probability distribution (usually
Gaussian) and the variance of the process.  e variance of
the process varies with time and is de�ned by both the
variance and level of return at the previous time instance (s).

However, GARCH is not limited to simply �nancial systems
but to any system where this two scale stochastic processes is
seen, for instance the study by Kumar et al. on atmospheric
cycles in [3] or the study on pathogen growth by Ali in [4].

Extensive research has been undertaken to adapt the
original Bollerslev GARCH model to �t empirical obser-
vations of time series [5–14]. Nevertheless, whilst these
modi�cations of GARCH increase the accuracy of fore-
casting volatility, there is an increase in the complexity of the
models and in the ambiguity of estimating model param-
eters. For example, �tting higher order statistical moments
of �nancial series is an attractive approach for estimating
model parameters [15, 16].  e original GARCH model
allows us to obtain analytical relations between the statistical
moments and the GARCH model parameters. In contrast,
the modi�cations of the GARCH model lead to an increase
in the complexity of the expressions for the higher order
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moments making the evaluation of the model parameters
very challenging. ,erefore, we wish to seek how effective
the original GARCH model is at fitting higher order mo-
ments of empirical financial data series for different sectors
of the economy. ,e focus of the study upon higher order
moments is primarily due to the higher order moments’
ability to capture general aspects of a given distribution. It is
well documented [17–20] that higher order moments are
able to quantitatively represent the number of events that
differ largely from the mean value of the process. In essence,
they provide a different way to capture and effectively de-
scribe the statistical dynamics of the system.

,ere are several commonly used ways to estimate
GARCH parameters [21, 22]. ,e most relevant and widely
used is the Maximum Likelihood Estimation (MLE) [23, 24].
However, there are several pitfalls of such a task, the main
one is the assumption of statistical properties within the
empirical data. If this assumption is wrong, the estimated
parameters are not reliable. Consequently, there has been
significant work to adapt and implement the generalised
method of moments (GMM) to the realm of financial studies
[15, 16]. We can set a task to fit a certain set of statistical
moments, for example 〈x2〉, 〈x4〉, and 〈x6〉. As we have
three parameters of the GARCH (1,1) model, we can solve
this task using relations between the higher order moments
and GARCH parameters derived in [2], and so we can
undertake a GMM algorithm for a GARCH (1,1) model. We
can ask if we can or cannot fit three empirically estimated
moments of a chosen stock price series by three GARCH
(1,1) parameters. ,e region where the parameters of the
GARCH model can fit empirical moments shall be referred
to throughout as the GARCH existence region or the
“GARCHable” region. If we evaluate the time series and
conclude that GARCH (1,1) parameters cannot fit empirical
moments, then we can judge that the time series might no
longer be purely stationary or a significant modification of
the GARCH (1,1) model is needed to capture the dynamics.

As in the case of stocks and shares, the global economic
climate and external factors are major stressors when deter-
mining the price of a given stock. Such a complex dependence
of factors leads to a very fluid economic environment. Higher
order moment analysis can determine the behaviour of the
time series in response to this economic environment. How-
ever, economic factors affect the individual time series on
different time scales. As such, the time window we analyse for
the financial series will show different signatures for these
different time scales as well as economic cycles and general
tendencies. ,erefore, it is plausible that truncating the time
series into different time windows, we will gain different sets of
model parameters for each time interval. ,e information
about the changing behaviour of time series can manifest itself
in a variation of the GARCH parameters and can identify

changing economic factors and trends, including crisis periods
[25]. ,e idea of truncating empirical data to relatively short
time windows can be challenged by the necessity to have long
data sampling to accurately estimate higher order statistical
moments, especially, if the moment values significantly exceed
the corresponding Gaussian values. ,is motivates us to de-
velop a practical procedure by combining empirical studies of
higher order moments within medium to long time windows
with reasonable accumulated statistics and evaluating GARCH
parameters from asymptotic analytical expressions of higher
order moments derived in [2]. In this study, we analysed data
for the period of 6 October 2000 to 6 October 2018, in most
cases we use a subset of this data set. For example, this can be
divided into a pre-crisis, post-crisis, and crisis period. ,is
division is extremely valuable in deducing the statistical fea-
tures that are inherent to an economic crisis. ,is will be
reflected in the results we gain from evaluating certain sta-
tistical moments in the years from 2000 to 2018.

,e study is organised as follows: in Section 2, we ini-
tially analyse the sixth-order moment for several companies
and discuss the economic environments. In Appendix E, we
present the findings for quarterly truncated time windows.
In Section 3, we discuss the methods we will be using and
how we have created the parameter diagrams in higher order
moment space where GARCH can describe empirical data.
Section 4 presents our findings for a GARCH model with a
Gaussian conditional probability distribution (we will
proceed calling these GARCH-normal models) for empirical
time-series fitting, whilst also showing the failure of the
GARCH-normal models to describe higher order moments
of financial time series. In Section 5, we discuss a GARCH
model with a double Gaussian conditional probability dis-
tribution (GARCH-double-normal models) to account for
this shortfall. We also show how with the assumption of
time-dependent parameters, the data we analyse can be
described by nonstationary GARCH-double-normal
models. In Section 6, we discuss problems faced when using
the likelihood method for an empirical data set, with given
fourth- and sixth-order standardised moments. In Section 7,
we perform analysis upon data series from the COVID-19
pandemic crisis period. Finally, Section 8 concludes our
study.

2. Raw Data Analysis

In order to determine the behaviour of the moments of
financial time series, we first highlight the time dependence
of the sixth-order moment for several companies and a
government bond (gilt) through the financial crisis of 2008.
To do this, we use the daily closing price of each trading day
over 6month periods for 8 years, 2002–2010. We then use
the following equation to calculate the nth-order moment:

〈xn〉(t) �
1
N

􏽘
t− (N/2)δt< τ < t+(N/2δt

x(τ) −
1
N

􏽘
t− (N/2)<τ1 < t+(N/2)

x τ1( 􏼁⎛⎝ ⎞⎠

n

, (1)
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where we take N to be 6 months, so the period we average
over is 126 days (due to trading exclusion dates) and each
time step δt a trading day. Here, we define x as the logarithm
of price change:

x(τ) � ln
y(τ + δt)

y(τ)
􏼠 􏼡, (2)

y(τ) is the closing price at day τ. In this study, we also
consider the average over a longer time history, for example
when M � 4536, in essence, we consider an 18-year time
horizon:

〈xn〉 �
1

M
􏽘

M

i�1
x t0 + iδt( 􏼁 −

1
M

􏽘

M

j�1
x t0 + jδt( 􏼁⎛⎝ ⎞⎠

n

, (3)

where t0 corresponds to 6th October 2000. We also evaluate
empirical standardised moments for higher order moments:

Γ2m �
〈x2m〉
〈x2〉m

. (4)

Figure 1 shows the behaviour of the sixth-order statis-
tical moment in response to a shifting time window. To
create the plot, we take an 18-year time series, 2000–2018,
and move a six-month long window from the start to finish,
with nonoverlapping segments. We then calculate the
maximum and minimum values of our error intervals, as
described in Appendix A. For the time series between 2000
and 2007, we see a flat response of the higher order moment
with respect to time. However, when we move the window
over the 2008 financial crash, we see a large increase in the
value of the sixth-order moment.

We undertake this analysis for four banking securities
and one commodity. For the banking stocks, we can see the
value of the sixth-order moment increases within the region
of the financial crisis and then once the crisis is over, we see
the value of the moment return to this pre-crisis level. ,e
behaviour is not seen in the commodity security, Gold ETFs.
What we instead see, is a small increase throughout the
financial crisis period, a small deviation from its level before.
However, we do see a slight change in the behaviour of the
moment of the security before the financial crash, perhaps a
pre-cursor to the turmoil to come. It can thus be seen from

this simple analysis, that the banking securities have a very
distinct behaviour.

3. Stochastic Model

In this section, we focus upon a GARCH-normal (1,1)
model. We can see from Bollerslev’s work [2] that for such a
model xt is a random variable with zero mean and possesses
the conditional variance, σ2t . We define xt ≡ ζtσt. Here, ζt is
a random process with zero mean and variance equal to one.
Depending on the system, we wish to model the variable ζt

can be described by different probability distributions, see
for example [8, 26–29]. Following [17], we first assume the
conditional probability to be Gaussian, we will refer to such
models as the GARCH-normal model. ,e GARCH (1,1)
processes are defined via the relation:

σ2t � α0 + α1x
2
t− 1 + β1σ

2
t− 1, (5)

where, α0, α1, and β1 are the parameters, whilst t − 1 refers to
the previous value of the conditional variance and the
previous value of the innovation xt. If we know the exact
probability density p(x) of a process, we could write the
definition of moments by E[xm] � 􏽒

∞
− ∞ P(x)xmdx. How-

ever, we do not know the analytical expression for the
probability distribution of the GARCH process. To resolve
this problem, Bollerslev [2] proposed the recurrence rela-
tions for moments of the GARCH-normal (1,1) model:

E x
2m
t􏼐 􏼑 �

am 􏽐
m− 1
n�0 a

− 1
n E x

2n
t􏼐 􏼑􏼐 􏼑αm− n

0

m

m − n

⎛⎝ ⎞⎠μ α1, β1, n( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1 − μ α1, β1, m( 􏼁􏼂 􏼃
,

(6)

where

μ α1, β1, m( 􏼁 � 􏽘
m

j�0

m

j
􏼠 􏼡aiα

j
1β

m− j
1 , aj � 􏽙

j

i�1
(2i − 1). (7)

,erefore, we can derive equations for the unconditional
variance, the fourth-order and sixth-order standardised
moments [17]:

σ2 �
α0

1 − α1 − β1
, (8)

Γ4 �
E x

4
t􏼐 􏼑

E x
2
t􏼐 􏼑

2 � 3 +
6α21

1 − 3α21 − 2α1β1 − β21
,

(9)

Γ6 �
E x

6
t􏼐 􏼑

E x
2
t􏼐 􏼑􏼐 􏼑

3 �
15 1 − α1 − β1( 􏼁

3 1 + 3 α1 + β1( 􏼁/1 − α1 − β1( 􏼁 + 3 1 + 2 α1 + β1( 􏼁/1 − α1 − β1( 􏼁( 􏼁 β21 + 2α1β1 + 3α21􏼐 􏼑/1 − 3α21 − 2α1β1 − β21􏼐 􏼑􏼐 􏼑

1 − 15α31 − 9α21β1 − 3α1β
2
1 − β31

.

(10)
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,e relation (6) and (7) define all moments if we fix the
three GARCH parameters, α0, α1, and β1. For a moment to
exist, we should have μ(α1, β1, m)< 1. Solving
μ(α1, β1, m) � 1, we obtain the functions β1 � β(m)

1 (α1). In
doing so, we can create Figure 2 [2]. In this figure, we see the
different curves of β1 � β(m)

1 (α1) where m takes the value: 2,
4, 6, 8, 10, and 12. When β1 < β

(m)
1 (α1) the corresponding

moments E[x2m
t ] and standardised moments Γ2m have finite

values, whilst for β1 > β
(m)
1 (α1), these moments diverge.

Since the particular lines β1 � β(m)
1 (α1), below called di-

vergence lines, separate the region of parameters where the
2m-th moment exists and where it does not, we can interpret

this as a parameter diagram in model parameter space, [2].
For the second-, fourth-, and sixth-order divergence lines,
we are able to gain analytical expressions for the divergence
lines, see Appendix B. In Figure 2, we present a filled area
that shows the region of existence of the sixth-order mo-
ment. ,e red circle in this figure represents a set of pa-
rameter values that allow for the existence of the second,
fourth, and sixth moments but not the eighth or higher,
while for the black square in Figure 2, only the second- and
fourth-order moments are finite.

Whilst the present problem of finding the GARCH
moments knowing the three model parameters is
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Figure 1:,e behaviour of the logarithm of the sixth-order moment for six-month long intervals from 2000 to 2018, complete with the error
intervals, shown by the solid red lines for each security, for details see A. During the crisis period, 2007–2009, we see a spike in the value of
the rawmoment for all securities apart from gold. Before and after the financial crisis we see small fluctuations in the value of the sixth-order
moment over time. (a) Lloyds Bank, (b) Barclays Bank, (c) Gold, and (d) the Bank of America.
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straightforward, the inverse problem to estimate the three
GARCH parameters, if three moments are known, is much
more complicated and reduces to a set of transcendental
equations which are hard to solve.

4. GARCH-Normal Models

4.1. Company Trajectories. Here, we will consider the situ-
ation of when we need to fit only the second- and fourth-
order moments, or equivalently, fitting the unconditional
variance 〈x2〉 and fourth-order standardised moment Γ4.
Since the GARCH-normal (1,1) model has three parameters,
we can conclude that we can express two GARCH pa-
rameters, for instance, α1 and β1, as a function of the third
parameter α0. To do so, we use equations (8) and (9) to fit the
empirical values of variance σ2emp and the fourth-order
standardised moment, Γ4,emp, for a certain company, such
that σ2(α0, α1, β1) � σ2emp and Γ4(α1, β1) � Γ4,emp. In doing
so, we derive:

α1 �

����������������������

2α0/σ
2
emp􏼐 􏼑 − α20/ σ2emp􏼐 􏼑

2
􏼒 􏼓

6/Γ4,emp − 3􏼐 􏼑 + 2

􏽶
􏽴

, (11)

β1 �
α0
σ2emp

−

����������������������

2α0/σ
2
emp􏼐 􏼑 − α20/ σ2emp􏼐 􏼑

2
􏼒 􏼓

6/Γ4,emp − 3􏼐 􏼑 + 2

􏽶
􏽴

. (12)

It is clear from these equations that for any value of
Γ4,emp > 3 and σ2emp > 0, we can find a family of one-para-
metric GARCHmodels, corresponding to different values of
α0. So, we obtain the parametric curves; (α1(α0), β1(α0)) in
(α1, β1) space. Such curves represent the “company

trajectories” with already fixed (empirical) variance σ2emp and
empirical fourth-order standardised moments Γ4,emp.

In Figure 3, we see an extension of Figure 2 for a banking
stock, a commodity, a pharmaceutical, and a mining
company, respectively. ,e dotted lines represent the pa-
rameters of the GARCH-normal model for the given
company’s trajectory. ,ey allow us to see the “stability” of
the time series, in essence, which statistical moments can
exist for the GARCH description of the empirical data of a
certain company. It is evident, for the longest time period (18
years) that apart from the gold ETFs (Exchange Traded
Funds), trajectories of all other companies lie above the
divergence line of the sixth-order moment. ,is implies that
the empirical values of the second- and fourth-order em-
pirical statistical moments do not allow for any higher order
moments to be fitted via a GARCH-normal model.

If we decrease the time window of data collection, for
example a year, 6 October 2000 to 6 October 2001, or even
six months, 6 October 2000 to 6 April 2001, then we can see
the migration of the company’s trajectory to deeper inside
the stability region in the (α1, β1) plane, where higher
moments are finite (see Figures 3(a)–3(d)). We have also
examined the time windows of nine months, fifteen months,
and three years. In these figures (Figures 3(a)–3(d)), it is
clear that the Rio Tinto 6-month time series allows the
largest number of higher order moments to exist for its
description within the corresponding GARCH-normal (1,1)
model. In general, the shorter a time series we take, the more
moments exist for a GARCH-normal (1,1) model.

As we traverse a company’s trajectories in (α1, β1) space,
we can work out the value of the sixth-order standardised
moment generated from the GARCH-normal (1,1) model
for these specific α1 and β1 values. In Table 1, we see the
minimum and maximum of Γ6 which can be achieved. We
can see that Γ6 does not vary significantly along the com-
pany’s trajectory, resulting in a problem to fit diverse values
of the empirical sixth-order standardised moments.

4.2. Methods of Parameter Fitting. If we want to fit the
second, fourth, and sixth moments, the values of the pa-
rameters must be below the divergence curve: β1 < β

(6)
1 (α1),

which does not cover all parameter space for the existence of
the fourth (β1 < β

(4)
1 ) and second (β1 < β

(2)
1 ) order moments.

,is can result in some values of the fourth and second
moments, or fourth-order standardised moment and the
second-order moment being unreachable for GARCH
modelling, see Appendix C.

Let us consider the algorithms we can use to fit empirical
values of 〈x2〉, 〈x4〉 and 〈x6〉 which can be reformulated in
terms of the variance σ2emp as well as the fourth- and sixth-
order standardised moments Γ4,emp and Γ6,emp, respectively.
In the first approach, we present α1 and β1 as a function of
α0, that is, α1(α0, σ2emp, Γ4,emp) and β1(α0, σ2emp, Γ4,emp), from
equations (11) and (12), then numerically solve the equation:

Γ6 α1 α0, σ
2
emp, Γ4,emp􏼐 􏼑, β1 α0, σ

2
emp, Γ4,emp􏼐 􏼑, α0􏼐 􏼑 � Γ6,emp,

(13)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0
α1

0.0

0.5

1.0

β 1

Figure 2: ,e phase diagram, obtained in [2], shows the line of
divergence of moments in a GARCH-normal (1,1) model. ,e
highlighted area shows the existence region for the sixth-order
moment. ,e red circle presents an example of α1, β1 values that
allow for the second-, fourth-, and sixth-order moments to exist,
whilst the black square shows an example of α1, β1 values that allow
for only the second- and fourth-order moments to exist.
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To find the value of α0, this method is inspired by the
trajectory analysis we use in the previous section.We search for
α0 by traversing the trajectory and trying to fit the empirical
sixth-order standardised moment. However, if Γ6 is lower than
theminimumor larger than themaximumof possible Γ6 stated

in Table 1, this equation cannot be solved, indicating that the
GARCH-normal model with such a value of the empirical
sixth-order standardised moment does not exist.

In the second approach to fit empirical values of 〈x2〉, Γ4
and Γ6, we first fit the empirical fourth- and sixth-order
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Figure 3: ,e stability phase diagram for the GARCH-normal (1,1) moments with an overlap of several company trajectories. (a) ,e
trajectory for Lloyds Bank, where the shortest time window allows up to the tenth-order moment to exist. (b) ,e trajectory of Gold ETFs
(Exchange Traded Funds), where the shortest time window allows to the sixth moment to exist. (c),e same for GSK, which allows up to the
sixth moment to exist and lastly. (d) ,e same for Rio Tinto, which allows up to the twelfth-order moment to exist. We also show the error
intervals of the trajectories, see Appendix A for details.
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standardised moments using the fact that Γ4(α1, β1) and
Γ6(α1, β1) do not depend on α0, see equations (9) and (10).
,erefore, we can reduce the problem to two equations:

Γ4 α1, β1( 􏼁 � Γ4,emp,

Γ6 α1, β1( 􏼁 � Γ6,emp.
(14)

Allowing us to evaluate values of α1, β1 and reserve α0 to
the fitting of variance: α0 � σ2emp(1 − α1 − β1). ,e set of
equations (14) can be further reduced to one equation by
eliminating β1 using the first equation of the set namely

β1 �

����������������

1 − 2α21 −
6α21
Γ4,emp − 3

􏽶
􏽴

− α1, (15)

And substitute it to the second equation of (14). ,is
enables us to write the one-variable equation:

Γ6 β1 α1, Γ4,emp􏼐 􏼑, α1􏼐 􏼑 � Γ6,emp. (16)

Note, we similarly can exclude α1, resulting in equations
for β1.

4.3. Phase Diagram. Equations (14) can only be solved for
some region, in standardised moment space, (Γ4, Γ6), which
is the region between the black lines in Figure 4(a). ,is is
the region of phase space where the respective values of the
fourth- and sixth-order standardised moments can be fitted
by a GARCH-normal model. For example, the first point
(1.7, 8) is inside the “GARCHable” region. However, the
second point (2.5, 8) is outside of the “GARCHable” region,
highlighting that these moment values cannot be fitted by a
GARCH-normal model. ,erefore, no solution is possible to
equations (14).

To evaluate the appropriateness of a GARCH-normal
(1,1) model for the fitting of higher order moments in stock
market data, we shall be investigating time series for
companies of different sectors of the economy by estimating
their empirical values of the fourth- and sixth-order
standardised moments and comparing with the GARCH-
normal (1,1) parameter region in (Γ4, Γ6) space, Figure 4(a).
To see the effect of the length of the time window on the
ability of the GARCH-normal (1,1) model to fit empirical
moments, we study data in different economic periods. We
start by taking a time window of 1% of the overall time series
and increment in percents up to its full length (see Figure 5),

an example of this can be seen for the several stocks in
Figure 4(a), [30], ignoring time windows shorter than 30
days. We then overlap these data points on top of the
“GARCHable” region detailed above. It can be seen from
Figure 4(b), the distribution of empirical data points
highlights a distinct corridor where the data sits. We gen-
erate much more information by this method than working
out the errors using a standard error procedure. In fact, we
see distinct areas in the parameter space where more em-
pirical data points reside than others. We further show by
this method there are only very specific regions where the
empirical data lies, and it does not span all of the parameter
space, seen by the grid of points in Figure 4(b).

We do not see the empirical data inside of the GARCH-
normal (1,1) phase region for the time period analysed.
,erefore, we can say that a GARCH-normal (1,1) model is
unable to simultaneously fit three even higher order mo-
ments of the empirical time series we have studied.

5. GARCH-Double-Normal Models

Since we cannot fit the fourth- and sixth-order standardised
moments with the GARCH-normal (1,1) model, we consider
a GARCH model with the more flexible double Gaussian
conditional distribution. Such GARCH-double-normal
models have been extensively researched [31–33], where the
authors use them for volatility and exchange rate modelling.
,e conditional double Gaussian distribution can be written
as

p(x) �
a

σ1
���
2π

√ e
− x2/2σ21( ) +

b

σ2
���
2π

√ e
− x2/2σ22( ). (17)

In addition to an obvious normalisation condition:

a + b � 1, (18)

we also have constraints on the second moment:

E x
2

􏽨 􏽩 � aσ21 + bσ22 � 1. (19)

Due to the requirement that the conditional distribution
for a GARCH process should have variance equal to one. We
can introduce two more convenient parameters (the 4th and
6th moments of the conditional distribution) which fully
define the distribution in (17):

E x
4

􏽨 􏽩 � aσ41 + bσ42 � μ4 �
η4
3

, (20)

E x
6

􏽨 􏽩 � aσ61 + bσ62 � μ6 �
η6
15

. (21)

,e parameterisation (20) and (21) of the double
Gaussian distribution allows us to generalise Bollerslev’s
equation (9). ,e second-order moment σ2 is not affected
and is still determined by equation (8), while the fourth- and
sixth-order standardisedmoments for GARCHwith double-
Gaussian distribution can be written as

Table 1: ,e minimum and maximum values of Γ6 along the
company’s trajectories in (α1, β1) space.

Company Minimum Maximum
Lloyds-6 months 33.3700 37.0000
GSK-6 months 60.3386 76.5162
Gold-3 year 90.3439 253.4463
Gold-1 year 79.3684 188.9430
RioTinto-3 year 36.1730 42.5383
RioTinto-1 year 34.1419 39.9972
RioTinto-6 months 30.9564 35.3291
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Γ4 �
η4 1 − α1 − β1( 􏼁

2 1 + 2 α1 + β1( 􏼁/1 − α1 − β1( 􏼁( 􏼁

1 − η4α
2
1 − 2α1β1 − β21

, (22)

Γ6 �
η6 1 − α1 − β1( 􏼁

3 1 + 3 α1 + β1( 􏼁/1 − α1 − β1( 􏼁 + 3 1 + 2 α1 + β1( 􏼁 η4α
2
1 + 2α1β1 + β21􏼐 􏼑/1 − η4α1 − 2α1β1 − β21􏼐 􏼑􏼐 􏼑􏼐 􏼑

1 − η6α
3
1 − 3η4α

2
1β1 − 3α1β

2
1 − β31

. (23)

Using the methods described prior and based on the
existence of solutions of the set of equations (14) with the
corresponding standardised moments, defined by equations
(22) and (23), we create a family of phase diagrams para-
meterised by η4 and η6. To understand which empirical
values are achievable using a GARCH-double-normal
model, we need to understand restrictions for the whole
family of phase diagrams.We see that these are bounded due
to limitations for η4 and η6 obtained in Appendix D
(conditions 43 and 44). ,ese limitations require all phase

diagrams be started from points above the dashed line,
Figure 6. As such only data above the dashed line can be
described by a GARCH-double-normal model (which is the
case for the empirical data collected for the securities we
have considered here).

5.1. Time Windows. In Figure 6, we see three-parameter
diagrams for three different double Gaussian distributions.
Parameters for these diagrams are given in Table 2.
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Figure 4: In (a), the phase diagram for (ln(Γ4), ln(Γ6)) space. ,e enclosed area between the black lines shows the region in which the
GARCH-normal model is able to fit the fourth- and sixth-order standardised moment, whilst the rest of the space is where the values of Γ4
and Γ6 cannot be fitted by a GARCH-normal (1,1) model. ,e two highlighted points (1.7, 8) and (2.5, 8) show the examples of values of Γ4
and Γ6 that can be fitted by a GARCH-normal model and those that cannot, respectively. ,e other data points in the space represent the
empirical data for several companies, truncated to 1% of its overall length, incrementing in percents up to its full length. In (b), we show the
histogram for point density on the higher order moment phase space, we detail the specifics of this calculation in A.We consider all possible
windows with duration longer than 30 days. We show the histogram alongside the “GARCHable” region. ,e empirical data is shown for
Lloyds Bank, GSK, Barclays Bank, Gold ETFs, S&P 500, DowJones, Rio Tinto, Bank of America, Oil, Natural Gas, Vale, Pfizer, and Citi Bank.
,is histogram shows the scattering of empirical data in a much clearer way than any error bar estimation, in which some information about
the point distribution is lost.

2000 2001 2003 2018
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Figure 5:,e timeline of time-series windows that we investigate within the study.We investigate the periods of economic turmoil as well as
relatively stable periods. We also highlight here the truncation of 18 years, 3 years, 15 months, 1 year, 9 months, and 6 months.
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Figure 6 demonstrates how altering the parameters η4
and η6 of the GARCH-double-normal model enables us to
capture different time windows of the empirical data. ,e
data used in Figure 6 is for the Bank of America time series
from 6 October 2000 to 6 October 2018. We truncate the
time series into different lengths. We start with 1% of the
overall length and increment by 1% up to the whole length of
the time series. In other words, the first, most left point,
corresponds to 43 days of data (from 06/10/2000 to 04/12/
2000), the second point corresponds to moments obtained
for 86 days of data (from 06/10/2000 to 31/01/2001), and so
on. For the leftmost phase diagram, we use a double
Gaussian distribution with η4 � 5, η6 � 41.7. ,is allows us
to fit σ2, Γ4 and Γ6 for the time window of duration in the

interval, 171≤ t≤ 600 days. When fitting higher order
moments for longer time windows, we need to use double
Gaussian distributions with parameters summarised in
Table 2. It is not possible to gain a GARCH process with a
double Gaussian distribution to capture all of the empirical
data’s higher order standardised moments. We denote this
behaviour as the local ability tomodel higher order moments
of financial time series by the GARCH-double-normal
model. Figure 6 only uses the data from the Bank of America;
however, this behaviour is seen throughout the empirical
data we have studied. In order to capture the empirical data,
we must first decide on the time window we wish to model
and then ascertain a suitable distribution that will capture
this window.
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Figure 6: ,e phase diagrams for (Γ4, Γ6) space for GARCH-double-normal (1,1) models corresponding to different parameters given in
Table 2. We overlay the empirical data for Bank of America, truncated from 1% to 100% of the length of the time series, incremented in one
percent steps, for the period of 6 October 2000 to 6 October 2018. To highlight the ability of the GARCH-double-normal model to fit higher
order moments for specific lengths of time windows, we present three regions for the space that allow the fitting of the fourth- and sixth-
order standardised moments by a GARCH-double-normal model. Each has a different time window that it can fit, shown by the letter,
associated with Table 2.

Table 2: Parameters of the conditional double Gaussian distributions used to construct “GARCHable” regions in Figure 6.

Position η4 η6 tmin(days) tmin(days)

Leftmost (red) 5 41.7 171 (A) 600 (B)
Centre (blue) 7 81.7 943 (C) 1500 (D)
Rightmost (green) 12 240 1586 (E)
,e table summarises the parameters of the distributions used to model the time windows (A) to (B), (C) to (D), and from (E).,ese are the limits of the time
windows in days that the particular instance of the double Gaussian distribution can be used to fit the higher order moments of the empirical data of the Bank
of America.
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5.2. Time Dependence of GARCH-Double-Normal
Parameters. Once we have fixed the time windowwe wish to
analyse, we can study what happens when the window with
this fixed duration shifts in time. ,is can be done by at-
tributing to the higher order moments a time moment, t,
corresponding to the middle point (the median) of the time
window, see equation (1).,is can be seen in Figure 7, where
we detail the schematic of a fixed time window moving in
time for a long time series.

If we fix the double Gaussian distribution (in essence,
select certain η4 and η6), we can gain the set of GARCH
parameters, α0, α1 and β1 that describes the particular time
median. If we change the time window we look at by moving
its time median, then the GARCH parameters α0, α1, and β1
also change. Below, we observe that the GARCH parameters
α0(t), α1(t), and β1(t) significantly vary with the moving
time window, highlighting the nonstationarity of our
modelling.

Given equations (8) and (22), we are able to define
trajectories in (α1, β1) space for a fixed value of σ2emp and
Γ4,emp. Unlike the GARCH-normal methods, we now have
the trajectories which change when η4 varies. ,ese can be
seen below:

α1 �

��������������������������������

2α0/σ
2
emp􏼐 􏼑 − α0/σ

2
emp􏼐 􏼑

2
􏼒 􏼓 Γ4,emp − η4􏼐 􏼑

Γ4,emp − η4􏼐 􏼑 η4 − 1( 􏼁 − η24 − η4􏼐 􏼑

􏽶
􏽴

, (24)

β1 � 1 −
α0
σ2emp

�

��������������������������������

2α0/σ
2
emp􏼐 􏼑 − α0/σ

2
emp􏼐 􏼑

2
􏼒 􏼓 Γ4,emp − η4􏼐 􏼑

Γ4,emp − η4􏼐 􏼑 η4 − 1( 􏼁 − η24 − η4􏼐 􏼑

􏽶
􏽴

.

(25)

Now for each desired dataset we can use the trajectories
in the same manner as we have done with the GARCH-
normal model. We can plot Γ6 along the trajectories of (α1,
β1) using the running parameter α0, overlaying this with the
empirical value (see Figure 8).

From the above method, we can recover the value of
α0(t) that allows the fitting of σ2emp(t), Γ4,emp(t), and
Γ6,emp(t), where t is the median of the running window,
enabling us to create Figure 9. ,is is done for several banks:
Lloyds Bank, Barclays Bank, and Bank of America, and a
commodity, Gold ETFs. We seek to find a fingerprint of the
companies’ GARCH parameters through the financial crisis.
It is evident from Figure 9 that the banking sector has a
unique behaviour in response to the crisis. We see an initial
flat signal, but when the crisis period occurs we see an
increase in the parameter value followed by a very dramatic
reduction. ,is behaviour is mirrored in the commodity,
Gold. We propose to use this specific behaviour exhibited by
the banking companies as an indicator for future banking
crisis periods. In Figure 9, we highlight an interval of the α0
value which reflects the error interval of the α0 parameter.
,is was recovered using the same method as described in
Appendix A, the interval reflects the maximum and mini-
mum values, a similar method to that used in Figure 1.

6. Likelihood Estimations for Γ4 and Γ6
Here, we consider a likelihood estimation for the parameters
of a GARCH model using higher order moments. We focus
on the procedure of fitting when the empirical data is located
outside of the “GARCHable” region of the GARCH-normal
(1,1) process shown in Figure 5(b). As we can see from
below, the Maximum Likelihood Estimators (MLE) and the
methods outlined in this study are the same when we are
inside the “GARCHable” region. However, when the em-
pirical points are outside of this region, each of the methods
presented above does not allow us to estimate the GARCH
parameters. In this section, we will analyse if and how a
likelihood estimate can resolve the issue.

If we follow the method of error estimation described in
appendix A, we need to shift a central point of the studied
time window. For each central point of the studied time
window we estimate the Γ4,emp, Γ6,emp. Considering an en-
semble of these moments for different central points as a
dataset, we estimate the mean values, Γμ4,emp, Γ

μ
6,emp, the

standard deviations σ4,emp, σ6,emp and the mutual Pearson
correlation coefficient ρ, of these time windows. ,e sta-
tistics of the studied data points of the fourth and sixth have
not been investigated as of yet. In the absence of such a
study, we assume that the data’s distribution can be ap-
proximated by a bi-variant Gaussian function. To fit this
distribution to the data, we can maximise the corresponding
cost function, which is in line with the common use of the
Maximum Likelihood Estimation (MLE). As such, we can
follow the MLE methods, [21, 23], and derive a cost function
that needs to be optimised:

F �
Γ4 − Γμ4,emp􏼐 􏼑

2

σ24,emp
− 2ρ
Γ4 − Γμ4,emp􏼐 􏼑 Γ6 − Γμ6,emp􏼐 􏼑

σ4,empσ6,emp

+
Γ6 − Γμ6,emp􏼐 􏼑

2

σ26,emp
.

(26)

Moreover, if we take the derivative of this cost function
with respect to α1 and β1 and setting the derivatives equal to
zero, we will recover equations (14) (section 4.2), which have
solutions inside of the “GARCHable” region. Note, if we
assume that the fourth- and sixth-order standardised mo-
ments are distributed according to a Gaussian law, the
minimum of the cost function (26) will correspond to the
maximum probability density. Furthermore, based on the
cost function we can define a distance as:

L
2

� X − X0( 􏼁
2

− 2ρ X − X0( 􏼁 Y − Y0( 􏼁( 􏼁 + Y − Y0( 􏼁
2
.

(27)

By defining, X � Γ4/σ4,emp, X0 � Γμ4,emp/σ4,emp, Y �

Γ6/σ6,emp and Y0 � Γμ6,emp/σ6,emp. Since we consider a
GARCH process, we have to assume, Γ4 � Γ4(α1, β1) and
Γ6 � Γ6(α1, β1) described by equations (9) and (10), re-
spectively. We have used a similar algorithm to that defined
in the phase diagram section to find the minimum distances
between the “GARCHable” region and the empirical data.
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Figure 8: Γ6 as a function of the running parameter α0. Here, we show how we calculate the value of α0 for a particular time window. ,e
orange line is the value of Γ6 for the empirical time window, Γ6 � Γ6,emp, whilst the blue line shows Γ6(α0), equation (23) when α1 �

α1(η4, α0, σ2emp, Γ4,emp) (equation (24)) and β1 � β1(η4, α0, σ2emp, Γ4,emp) (equation (25)), for the GARCH-double-normal model. ,e in-
tercept of the two lines shows the value of α0 which allows us to model data for a certain median time and a certain time window within the
GARCH-double-normal (1,1) model.
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Figure 7: Here, we show how we take a rolling window for a long time series (from the start to the end). We highlight two fixed time
windows, of certain length, T, with time median that corresponds to the middle of these windows. ,is time window then shifts in time, by
δt, taken here to be six months.
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Figure 9:,e evolution of the GARCH parameter α0 for the period 2000–2009.,e two plotted curves provide the upper and lower bounds
of the confidence interval for α0 estimated by the method described within Appendix A, for Gold ETFs (a) and Barclays Bank (b). In all
figures, we see a large increase in the value of α0 prior to the financial crisis of 2008, followed by a very large decrease either before or during
the crisis period.
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,e values α1 and β1, which minimise the distance L, could
be considered as the best likelihood estimation of the pa-
rameters. We have investigated the dependence of the
minimum distance Lmin on the size of empirical data
collection windows for Gold ETFs and Barclays Bank (see
Figure 10). ,e distances exceed 1 indicating the low
probability of the system described by the GARCH process
in agreement with our conclusions above.

When we study the empirical data we discover the
empirical values of the fourth- and sixth-order standardised
moments are highly correlated, ρ ≈ 1, see insert of Figure 10.
,is is to be expected since both higher order standardised
moments are affected by rare-events within our time series.
As such, if the number of rare-events increases so does the
value of both higher order standardised moments. Due to
this high level of dependence (correlation) between our
random variables (Γμ4,emp and Γμ6,emp), we can evaluate the
probability of fitting our GARCH model to empirical data
using higher order standardised moments by just one of the
random variables. If we choose to use Γ4 as our random
variable and assuming this variable is to follow the distri-
bution: p(X) � (1/

�������
2πσ4,emp

􏽱
)e− (X− X0)2 , where X and X0

are defined as above. When we calculate such values, we see
the values of the probability being low (p(x) ∼ 10− 3),
highlighting our conclusion that fitting empirical data by a
GARCH-normal (1,1) model is very unlikely when we wish
to fit higher order standardised moments.

7. Analysis of COVID-19 Time Window

,e study focusses primarily upon the 2008 financial crash;
however, in recent times, the world has undergone a much
more profound economic and social shock, the COVID-19
pandemic. It is reasonable to assume, the pandemic would
create a similar, if not greater, impact on economic and
financial systems, given the nature of the crisis period.
,erefore, we carry out the analysis, namely, deriving the
time evolution of the GARCH parameter, α0 and the time
evolution of the sixth-order standardised moment for the
empirical time series of several stock instruments within the
COVID-19 pandemic time period.

In Figure 11, we show the sixth-order standardised
moments for Lloyds Bank, Barclays Bank and the Bank of
America for the period 2019–2021. In each panel, we show
the error interval using the same method described previ-
ously. It can be seen that Barclays Bank and the Bank of
America show quintessential features of their sixth-order
standardised moment evolution that is indicative of a crisis
period: a sharp increase, followed by a sharp decrease
around the start of the pandemic. Whereas, Lloyds Bank sees
a steadier increase followed by a sharp decrease further into
2020, this could be attributed to the U.K.’s handling of the
pandemic, as the UK did not go into lockdown until March
2020.

We also investigate the evolution of the GARCH pa-
rameter, α0 in the same time period. In Figure 12, we see the
evolution of α0 for Lloyds Bank, Barclays Bank and the Bank
of America. It can be seen that in all empirical time series

analysed, we recover the signal of the crisis period: a sharp
increase followed by a sharp decrease, around the start of the
pandemic. A strong indication of a crisis period affects the
instruments.

In Figure 13, we show the time evolution for the sixth-
order standardised moment and the GARCH parameter α0
for the S & P 500 for the COVID-19 pandemic and the
financial crash of 2007–2009. In panel (a), we can see that
when the pandemic started, around 2020, we gain a large
increase in the moment’s value. ,is is followed by a very
sharp decrease in the value. Whilst in panel (b), we show the
evolution of the GARCH parameter α0, we see a very similar
behaviour compared to the banking stocks of the same
period. A sharp increase is seen in the parameter value,
followed by the now expected sharp drop around the start of
the crisis period.

In panel (c), we detail the behaviour of the sixth-order
standardised moment for the index over the period
2004–2012. It can be seen that the sixth-order standardised
moment is very noisy and as such, we are unable to de-
termine any behaviour that could allude to the type of
economic environment the index inhabits at this instance in
time.,is can be attributed to the structure of the index.,e
S&P 500 index is the 500 largest companies by market
capitalisation, within the United States of America as ranked
by Standard and Poor’s credit agency. ,erefore, a plethora
of different sectors will be represented in such an instru-
ment. ,is means that sectors which would normally be at
risk from financial crises, for example banks, will be miti-
gated by the other sectors within the index. Moreover, in
panel (d), we show the evolution of the GARCH parameter,
α0 in time. For this parameter’s evolution, we see a similar
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Figure 10: ,e minimum distance of two time series, Barclays
Bank (red) and Gold ETFs (blue) between 2000 and 2018, when we
truncate the time series into different lengths, is shown for the cost
function (27). An insert of this plot highlights the correlation
between Γ4 and Γ6 for Gold ETFs, which corresponds to a cor-
relation coefficient, ρ � 0.9953.
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Figure 11: ,e time evolution for the sixth-order standardised moments for the period 2019–2021, the COVID-19 pandemic. In panel (a),
we show the analysis for Lloyds Bank, (b) details the same for Barclays Bank, and finally (c) shows the Bank of America. In panels (b) and (c),
we see the sharp increase followed by a decrease, which is the representative of an economic crisis being present, this is around the start of the
pandemic. However, Lloyds Bank does not necessarily follow this and instead, we see a steady increase followed by a sharp decrease further
into 2020. ,is could be attributed to the U.K.’s slow handling of the pandemic.
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Figure 12: Continued.
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Figure 12: ,e GARCH parameter’s (α0) time evolution for Lloyds Bank (a), Barclays Bank (b), and the Bank of America (c) for the period
2019–2021. In all panels, we see the typical α0 signal for a crisis period.,ere is a very high peak of the parameter value around the start of the
crisis period. In all time series analysed, we detail the error interval for the parameter’s value, using the method described previously.
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Figure 13: Continued.
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Figure 13:,e evolution of the sixth-order standardised moment and GARCH parameter α0 throughout the COVID-19 pandemic. (a),e
sixth-order standardised moment evolution for the COVID-19 pandemic period. (b) ,e evolution for the GARCH parameter for the same
period.,e behaviour seen is in agreement with the banking stocks through the financial crisis of 2008. (c),e behaviour of the sixth-order
standardised moment for the S&P 500 stock index through the 2008 financial crisis. We see a very noisy signal for much of the time period
analysed. (d),e evolution of the GARCH parameter, α0. We show the analysis for the parameter for the period 2004 to 2012.,e parameter
evolution for the S&P 500 shows a similar dynamic to the pandemic period. However, the peak is an order of magnitude lower than seen in
the COVID-19 pandemic period.
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Figure 14:,e schematic for the calculation of the error bars for the time window of length, ΔT, with a starting position, t0. We displace the
window by ±i, where i � 0 − 10 days, and work out the value of the moments for this window. We take either the raw values of the moments
and the maximum and minimum values of the range or the standard deviation of this, as described in the text.
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Figure 15:,e time evolution of the sixth-order standardisedmoment for Lloyds Bank, panel (a) and the S&P 500 index, panel (b), when we
truncate the long 18-year time series into quarterly time windows (around 63 days).
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response as has been seen within the COVID-19 pandemic,
an increase in the value of the parameter followed by a
decrease. However, the magnitude of increase and decrease
is much smaller than for the COVID-19 period.

In the two crisis periods studied, we gain different
responses for the index’s sixth-order standardised moment,
but gain a similar behaviour in its GARCH parameter
evolution α0, albeit some difference in the scaling of the
parameter. In the COVID-19 pandemic, all sectors of the
economy were affected and as such, the index’s sixth-order
standardised moment reflects this. Whilst, the financial
crisis of 2008 predominantly affected banking companies,
so we see a reduced effect in the standardised moment. In
addition, we can see that the COVID-19 peak is an order of
magnitude higher than the peak gained in the banking
crisis. Due to this observation, we can conclude that the
GARCH parameter behaviour allows us to analyse the
depth of the crisis, the larger the peak, the deeper the crisis
penetrates into the economy for the analysis undertaken on
this index.

8. Conclusion

We use the time series of ,e Bank of America, Barclays
Bank, Citi Bank, HSBC, Gold ETFs, GlaxoSmithKlein and
Lloyds Bank, among others, to highlight the inability of a
GARCH (1,1) model with the Gaussian conditional distri-
bution to fit higher order moments of empirical time series.

In discovering this, we turn our attention towards dif-
ferent conditional distributions to try to capture the em-
pirical data’s higher order moments. We show that with the
use of a GARCH-double-normal model we can fit the
empirical data’s higher order moments. However, through
this enquiry, we still cannot capture the long run dynamics
of the empirical data. We show that it is only possible to fit a
model to empirical data within certain time horizons. To
model a different time horizon we have to change the pa-
rameters of the double Gaussian distribution we use.

Fixing the distribution within certain time horizons to
enable the fitting of higher order moments, highlights that
the obtained GARCH-double-normal (1,1) model describes
a nonstationary process. ,erefore, if we wish to describe a
long time series by a GARCH-double-normal model, we
have to truncate it to smaller time windows. In doing so, we
have to potentially fit GARCH-double-normal models with
different parameters (α0, α1 and β1) to each time window.
,erefore, we produce a time dependence of the GARCH
model’s parameters, for example, α0. As such, we are able to
build up a time signature of the α0 parameter through the
2008 financial crash for several companies. We focus our
attention on the banking sector to distinguish any shared
behaviour in the evolution of α0, through this crisis period.
,e banking companies’ values of α0 have a distinct be-
haviour from other sectors of the economy, giving hope of a
standardised signal of these periods. It is seen through the
banking sector’s empirical data that before the financial
crash there is an increase in α0 and during the financial
period, the value of α0 reduces extremely quickly. A be-
haviour that is found among banking companies but not

other securities’ time series. Analysis undertaken upon the
COVID-19 pandemic period reinforces this belief. ,is
finding is potentially useful for either forecasting or pre-
dicting financial turbulence in economic periods.

Appendix

A. Error Bar Calculations

To calculate the error intervals for the plots in this study, we
carried out a time kernel type calculation. For the time
window we investigate, we displace the starting point, t0 by a
value between [− 10, 10]. ,erefore, we move the starting
point by t0 ± i where, i � 0 − 10 days. We are able to work
out the value of the moments for each displaced time
window. For the range of values of the moment we gain, we
can either take all of the values of the moments and plot
them, as seen in Figure 5(a), creating error “clouds” or we
can calculate the maximum and minimum values and get an
error interval, as seen in Figure 1. ,e schematic for this
method can be seen in Figure 14.

We also detail within the study a method of using two
dimensional histograms to show the point density of the
empirical data in the (Γ4, Γ6) space versus the “GARCHable”
region, see Figure 5(a). To do this, we displace the time
window as described above and plot all of themoment values
we gain from the displaced windows. Taking these and
plotting a histogram of the empirical points we are able to
show the number of points with certain moment values. To
gain more points we move the time window more than the
ten days highlighted above. In some cases we displace the
window by 100 days.

B. Divergence Line Expressions

For the fourth- and sixth-order moment we can obtain the
divergence line explicitly, and so derive:

β(4)
1 �

������

1 − 2α21
􏽱

− α1,

β(6)
1 �

− 8α31 +

�������������

96α61 − 16α31 + 1
􏽱

+ 1􏼒 􏼓
1/3

21/3

− α1 −
2(2)

1/3α21

− 8α31 +

�������������

96α61 − 16α31 + 1
􏽱

+ 1􏼒 􏼓
1/3.

(B.1)

For higher order moments, the divergence lines are
defined by high order algebraic equations, which cannot be
solved analytically.

C. Conditions for Γ4
For a general GARCH conditional probability distribution
with variance equal to one, the equation for the sixth-order
divergence line (the denominator of equation (10)) becomes:

1 − β31 − 3α1β
2
1 − 3η4α

2
1β1 − η6α

3
1 � 0. (C.1)
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Expanding β1 in a series with respect to α1 we derive:

β1 � 1 − Aα1 − Bα21 − Cα31 − · · · . (C.2)

Substituting this into our sixth-order divergence line we
can equate coefficients up to the second order and so β1
becomes:

β1 � 1 − α1 − η4 + 1( 􏼁α21 + O α31􏼐 􏼑. (C.3)

If we now neglect α1 orders higher than the second, we
get the equation; β1 � 1 − α1 − (η4 + 1)α21. Substituting this
into our equation for the fourth-order standardised mo-
ment, we obtain:

Γ4 �
η4 1 − α1 − 1 − α1 − η4 + 1( 􏼁α21􏼐 􏼑􏼐 􏼑

1 − η4α
2
1 − 2α1 1 − α1 − η4 + 1( 􏼁α21􏼐 􏼑 − 1 − α1 − η4 + 1( 􏼁α21􏼐 􏼑

2.

(C.4)

Considering the limit when α1⟶ 1 we finally obtain:

lim
α1⟶ 1
Γ4 � 2η4. (C.5)

D. Relations between the Parameters of the
Double Gaussian Distribution and Its Higher
Order Moments

,e normalisation condition for the double Gaussian dis-
tribution described by equation (17) is a + b � 1.
Substituting a � 1 − b into equation (19), E[x2], we get:

b �
1 − σ21
σ22 − σ21

,

a �
σ22 − 1
σ22 − σ21

.

(D.1)

Assuming σ21 < 1< σ22, and substituting the equations for
a and b into the fourth and sixth moment equations we
derive:

μ4 � σ22 + σ21 − σ21σ
2
2,

μ6 � σ21 + σ22􏼐 􏼑
2

− σ21σ
2
2 − σ21σ

2
2 σ21 + σ22􏼐 􏼑

(D.2)

where μ4 � η4/3 and μ6 � η6/15. Introducing the new var-
iables, X � σ22 + σ21 and Y � σ21σ22, we can simplify the ob-
tained equations:

Y � X − μ4,

X μ4 − 1( 􏼁 + μ4 � μ6.
(D.3)

Solving the above equations for X and Y we finally
obtain:

X �
μ6 − μ4
μ4 − 1

,

Y �
μ6 − μ24
μ4 − 1

.

(D.4)

Since X and Y must be positive, this gives us three
conditions; μ4 > 1, μ6 > μ4 and μ6 > μ24. Due to the first
condition, we can disregard the second as μ24 > μ4. Using
relations between μ6 and μ4 and η4 and η6 we obtain:

η4 > 3, (D.6)

η6 >
15
9
η24. (D.7)

We can then set-up equations for solving σ21 or σ22:

σ42 − Xσ22 + Y � 0,

σ21 �
Y

σ22
.

(D.8)

Solving for σ22, we can obtain relations for the parameters
of the double Gaussian distribution:

σ22 �
1
2

X +
�������
X

2
− 4Y

􏽰
􏼒 􏼓. (D.9)

And so,

σ21 �
2Y

X +
�������
X

2
− 4Y

􏽰
􏼒 􏼓

.
(D.10)

Since, σ21 and σ22 must be both real and positive, this gives
us the relation: X> 4Y. As such we get the following
inequality:

μ26 − 6μ4μ6 − 4μ6 − μ24 3 − 4μ4( 􏼁> 0. (D.11)

Solving this inequality for μ6, we get the condition:
μ4 > − 1. Obviously, μ4 is always larger than − 1, and so we
always satisfy the condition shown in equation (D.11). As
such, the parameters η4 and η6 have to only obey the
conditions shown in equations (D.6) and (D.7).

E. Quarterly Time-Series Analysis

In this appendix, we show the time evolution for the sixth-
order standardised moment for Lloyds Bank and the S&P
500 index, when we truncate the data in quarterly time
periods (around 63 days). In Figure 15, it can be seen that
compared with the analysis undertaken for the truncation of
the sixth-month time period, the quarterly truncation causes
very noisy signals. As such, we cannot discern any shared
behaviour around any moment in time, particularly not the
financial crash of 2008.

We present these findings as an illustrative exercise,
taking such a short time window can cause the statistics of
these periods to be inaccurate. If we are to assume a Gaussian
distribution for the error of these statistics, then the standard
error of the metrics scale is 1/n, where n is the length of time
window we take, [34]. Given the sixth- month window is
over 100 days, the error for this window is below one
percent; however, when we take a window of half of this
length, we double our error [30]. ,erefore, the conclusions
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reached by the analysis of quarterly time periods should be
studied with caution.
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