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�e present study addresses the problems of mean estimation and nonresponse under the three-stage RRT model. Auxiliary
information on an attribute and variable is used to propose a generalized class of exponential ratio-type estimators. Expressions
for the bias, mean squared error, andminimummean squared error for the proposed estimator are derived up to the �rst degree of
approximation.�e e�ciency of the proposed estimator is studied theoretically and numerically using two real datasets. From the
numerical analysis, the proposed generalized class of exponential ratio-type estimators outperforms ordinary mean estimators,
usual ratio estimators, and exponential ratio-type estimators. Furthermore, the e�ciencies of the mean estimators are observed to
decrease with an increase in the sensitivity level of the survey question. As the inverse sampling rate and nonresponse rate go up, so
does the e�ciency of the mean estimators, which makes them more accurate.

1. Introduction

When conducting a survey, a researcher faces the challenge
of estimating the mean in the presence of social desirability
and nonresponse. �e inability of a survey to collect data
from some of the units due to their absence or refusal to
participate is referred to as “nonresponse.” Nonresponse is a
signi�cant issue when the responding and nonresponding
units have dissimilar properties. Nonresponse reduces the
size of the sample in a survey, increasing the variance of the
mean estimate. As a result, the estimator’s e�ciency su�ers,
resulting in skewed estimates.

�e vast majority of researchers conduct surveys in the
hope of gathering reliable data to estimate demographic
parameters. However, collecting precise data in a survey
about a sensitive subject such as personal income, alcohol
consumption, induced abortion, tax evasion, the number of
sexual partners, negative website usage, homosexuality,
reckless driving, indiscriminate gambling, domestic vio-
lence, or illicit drug use, to name a few, is di�cult. Correct
responses to such sensitive variables are di�cult to obtain

during personal interviews involving direct questioning of
individuals because the respondent’s privacy is violated. In
reality, most respondents are always hesitant to provide an
unvarnished response to a contentious subject for fear of
embarrassment or loss of status. As a result, the respondent
will either refuse to answer the question or provide an in-
tentionally incorrect response. Warner [1] created the
randomized response technique (RRT), which aims to re-
duce nonresponse rates in surveys with a sensitive variable
by keeping respondents anonymous.

�e RRTuses a scrambled variable that is independent of
the study and auxiliary variables to estimate the mean of a
sensitive study variable. �e respondent is expected to
provide a correct response to the nonsensitive auxiliary
variable and a scrambled response to the study variable. In
the additive RRT model, the respondent scrambles the
genuine answer to a sensitive question (Pollock and Bek [2]).
�e survey practitioners are unaware of the value-added, but
the probability distribution of the scrambled response is
assumed to be known. By adding a random number to the
correct answer to a sensitive question, a scrambled response
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is created. &e value added is unknown to the survey
practitioners, but the probability distribution of the
scrambled response is assumed to be known.

Chaudhuri and Mukherjee [3] pioneered the optional
RRT model. If a respondent believes that the question is
sensitive, the strategy involves giving them the option of
responding directly or scrambling. Gupta et al. [4] proposed
a one-stage optional RRT model in which the respondent
provides a direct response if the question is not sensitive and
a scrambled response if it is sensitive. To improve respon-
dent participation and privacy, Gupta et al. [5] proposed a
two-stage additive optional RRT model. A predetermined
number of respondents th are asked to provide a direct
response to a sensitive question, while the remaining 1-th are
asked to provide a scrambled response. However, in order to
ensure a high level of privacy and respondent cooperation,
the technique requires a high value of th.

Mehta [6] proposed a three-stage optional RRTmodel to
encourage respondent cooperation and privacy. In the first
stage, a predetermined number of respondents th are asked
to provide a direct response to a sensitive subject. Another
predetermined proportion fh is asked to scramble their
response in the second stage. &e remaining
proportion1 − th − fh is then given the option of providing a
direct or scrambled response. Neeraj and Mehta [7] pro-
vided more details on the additive three-stage RRT model.

Several researchers have studied the problem of mean
estimation and the RRT model at the same time in the
literature. Sousa et al. [8] proposed a ratio estimator of a
sensitive variable’s population mean in the presence of
auxiliary information and a non-optional RRTmodel. Gupta
et al. [9] investigated mean estimation and non-optional
RRT in simple random sampling using a generalized mixture
estimator. Mushtaq et al. [10] proposed a ratio, regression,
and general class of mean estimators of a sensitive variable in
stratified two-phase sampling using a non-optional RRT
model. Mushtaq et al. [11] proposed a family of estimators in
stratified random sampling that use auxiliary information in
the presence of a non-optional RRT model. Shahzad et al.
[12] proposed a new family of estimators for the mean of a
sensitive study variable in simple random sampling using a
non-optional RRT model and a single auxiliary variable.

In a survey, nonresponse is accounted for through
imputation, weight adjustment processes, and the Hansen
and Hurwitz technique [13]. In the presence of missing data,
Khalid et al. [14] proposed some estimation procedures for
mean estimation using alternative imputation methods
under two-occasion successive sampling. In two-occasion
successive sampling, Khalid and Singh [15] proposed an
alternative imputation method for dealing with the problem
of random nonresponse. Khalid and Singh [16] proposed a
general class of mean estimators in two-occasion successive
sampling under the assumption that the number of non-
responding units follows a discrete probability distribution
due to random nonresponse behaviour. &e proposed es-
timators outperformed the existing mean estimators.
Shahzad et al. [17] proposed some adapted mean estimators
using auxiliary attributes in the presence of nonresponse on
a survey variable under stratified random sampling. Zahid

et al. [18] addressed the problems of mean estimation,
nonresponse, and measurement errors in simple random
sampling using a non-optional RRT model. Naeem and
Shabbir [19] discussed the issue of mean estimation and
nonresponse in the context of two-occasion sampling.
Zhang et al. [20] used a one-stage optional RRT model to
investigate mean estimation of a sensitive study variable in
the presence of nonresponse and measurement errors.

&e goal of this study is to address the problem of mean
estimation in the presence of nonresponse using a three-
stage RRT model in stratified two-phase sampling. Fur-
thermore, the effect of nonresponse and the three-stage RRT
model on mean estimation is investigated.

&e remaining part of this paper is organised as follows.
Section 2 provides a comprehensive overview of the pop-
ulation under consideration. Section 3 examines some of the
existing mean estimators in the presence of nonresponse
using a three-stage RRT model. Section 4 introduces the
proposed generalized class of exponential ratio-type esti-
mators as well as their theoretical bias and MSE properties.
Section 5 investigates the proposed estimator’s theoretical
efficiency. Section 6 examines the numerical performance of
the proposed estimators. &e study’s findings are discussed
in Section 7. Section 8 contains a summary of the research.

2. Sampling Strategy and Notations

We consider a finite population U � Λ1,Λ2,Λ3, . . . ,ΛN􏼈 􏼉 of
a size N that can be stratified into L homogenous strata with
the hth stratum containing Nh, (h � 1, 2, . . . , L). &e sen-
sitive study variable, auxiliary variable, and scrambled re-
sponse are denoted as Y, X, and Z, respectively. Let Yhi, Xhi,
and Zhi denote the values of Y, X, and Z, respectively, for the
ith value in the hth stratum. Furthermore, let
S2Yh, S2Xh, and S2Zh denote the population variances of the
survey variable, auxiliary variable, and scrambled response,
respectively. Additionally, let SXZh and ρXZh be the co-
variance and coefficient of correlation between their sub-
scripts, respectively.

Let τhij denote the value of an auxiliary attribute τj in the
hth stratum (i� 1, 2, and j� 1, 2). If the ith population unit
possesses and does not possess an attribute, the auxiliary
attribute takes the values of 1 and 0, respectively. Let Ahj �

􏽐
Nh

i�1 τhij andPhj � Ahj/Nh denote the total number of units
with an attribute and the proportion of units with an at-
tribute, respectively, in the hth stratum. Furthermore, let
S2Ph � 1/Nh − 1􏽐

Nh

i�1 (τhij − phj)
2 be the population variance

of an auxiliary attribute in the hth stratum. Let SYPh, SXPh and
ρYPh, ρXPh denote the population bicovariance and biserial
coefficient of correlation between their subscripts,
respectively.

In the presence of nonresponse in a survey, the hth

stratum population is divided into responding and non-
responding groups of sizes N1h and N2h, respectively. Let
S2Yh(2), S2Xh(2), S2Xh(2), and S2Ph(2) denote the population vari-
ances of Y, X, Z, and auxiliary attribute for the non-
responding units, respectively. Additionally, let
SZXh(2), SZPh(2), SXPh(2) and ρZXh(2) ρZPh(2) ρXPh(2) denote the
population bicovariance and biserial coefficient of
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correlation between their subscripts for the nonresponding
group, respectively.

Recently, several researchers have attempted to improve
the efficiency of mean estimators by taking advantage of the
availability of known conventional and nonconventional
measures of auxiliary variables. Abid et al. [21], Almanjahie
et al. [22], and Subhash et al. [23] have used conventional
measures of dispersion to propose different mean estima-
tors. Shahzad et al. [24] proposed an exponential-type es-
timator based on the known median of the study variable.
Shahzad et al. [25] used supplemental information on
minimum covariance determinant-based quantile to pro-
pose a robust regression-type mean estimator under simple
random sampling. On the one hand, some of the most
common conventional measures of an auxiliary variable are
the coefficient of correlation, coefficient of variation, coef-
ficient of skewness, and coefficient of kurtosis.

&e coefficient of variation is defined as CXh � SXh/Xh,
coefficient of skewness is defined as β1h(x) �

Nh 􏽐
N
i�1 (Xhi − Xh)3/(Nh − 1)(Nh − 2)S3Xh, and coefficient

of kurtosis is defined as
β2h(x) � (Nh(Nh +1) 􏽐

N
i�1 (Xhi − Xh)4/(Nh −1)(Nh −2)

(Nh −3) S4Xh) −3((Nh −1)/(Nh −2)3(Nh − 3)2). On the
other hand, nonconventional measures of an auxiliary
variable include the midrange value, trimean, quartile de-
viation, and the Hodges–Lehmann [26] estimator. &e
midrange is defined as MRh(x) � xh(1) + xh(Nh)/2, where
xh(1) is the minimum value and x(Nh) is the maximum value
in a dataset. Turkey [27] proposed the trimean, which is
defined as TMh(x) � Q1h(x) +2Q2h(x) + Q3h(x)/4, where
Q1h(x), Q2h(x) , and Q3h(x) are the first, second, and third
quartiles, respectively. &e quartile deviation is defined as
QDh(x) � Q3h(x) − Q1h(x)/2. &e Hodges−Lehmann [26]
estimator is defined as HLh(x) �Median(xjh + xkh/2),

1≤jh≤kh≤N.
Under stratified two-phase sampling, a first phase sample

of a certain size nh
′ is selected from the population using

simple random sampling without replacement (SRSWOR).
&ereafter, a second phase sample of size nh is obtained from
the first phase sample using SRSWOR. In the second phase
sample n1h, units are observed to respond while the
remaining n2h units do not. Let xh

′ � (1/nh
′) 􏽐

nh
′

i�1 xhi and ph
′ �

(ahj/nh
′) be the sample mean of an auxiliary variable and the

proportion of units with an auxiliary attribute, respectively, in
the first phase sample. Furthermore, let z1h � (1/ n1h) 􏽐

n1h

i�1 zhi

and x1h � (1/ n1h) 􏽐
n1h

i�1 xhi be the sample means of Z and X
for the responding group in the second phase sample. A
subsample of size r2h � ( n2h/ k2h) is drawn from the non-
responding sample, where k2h is the inverse sampling rate.
Let z2h � (1/ r2h) 􏽐

r2h

i�1 zhi and x2h � (1/ r2h) 􏽐
r2h

i�1 xhi be the
subsample means of Z andX, respectively.

Let p1h � (ahj/ n1h) and p2h � (ahj/ r2h) denote the
proportion of responding units with an auxiliary attribute in
the second stage sample and the nonresponding units in the
subsample, respectively. &e estimates of the population
mean for the survey and auxiliary variables in the hth stratum
are y∗h � w1hy1h + w2hy2h and x∗h � w1hx1h + w2hx2h,

respectively, where w1h � (n1h/ nh) and w2h � (n2h/ nh).
Furthermore, let p∗h � w1hp1h + w2hp2h represent an esti-
mate of the population proportion possessing an auxiliary
attribute in the hth stratum.

3. Some Existing Estimators

&e ordinary mean estimator, the usual ratio estimator, and
exponential ratio-type estimator are some of the existing
estimators in the presence of nonresponse under the three-
stage RRT model.

(i) &e ordinary mean estimator is defined as

t0 � 􏽘
L

h�1
whz
∗
h . (1)

&e variance of the estimator is given as

Var t0( 􏼁 � 􏽘

L

h�1
W

2
hB
∗
h . (2)

(ii) &e usual ratio estimator is defined as

tR � 􏽘
L

h�1
whz
∗
h

xh
′

x
∗
h

. (3)

&e bias and mean squared error (MSE) are given as

Bias tR( 􏼁 � 􏽘
L

h�1

Wh

Xh

9
8
Rh A

∗
h − C
∗
h( 􏼁 − E

∗
h − D

∗
h( 􏼁􏼔 􏼕,

MSE tR( 􏼁 � 􏽘
L

h�1
W

2
h Bh + R

2
h A
∗
h − C
∗
h( 􏼁 − 2Rh E

∗
h − D

∗
h( 􏼁􏽨 􏽩.

(4)

respectively.
(iii) &e exponential ratio-type estimator is defined as

tER � 􏽘
L

h�1
whz
∗
h

xh
′ − x
∗
h

xh
′ + x
∗
h

􏼠 􏼡. (5)

&e bias and mean squared error (MSE) are given as

Bias tER( 􏼁 � 􏽘
L

h�1

Wh

2Xh

3
4
Rh A

∗
h − C
∗
h( 􏼁 − E

∗
h − D

∗
h( 􏼁􏼔 􏼕,

MSE tER( 􏼁 � 􏽘
L

h�1
W

2
h Bh +

1
4
R
2
h A
∗
h − C
∗
h( 􏼁 − Rh E

∗
h − D

∗
h( 􏼁􏼔 􏼕.

(6)

respectively,
where A∗h � θhS2Xh + θ∗hS2Xh(2),B

∗
h � θhS2Zh +θ∗hS2Zh(2)C

∗
h �

θh
′S2Xh, D∗h � θh

′SZXh,E∗h � θhSZXh +θ∗hSZXh(2),θh
′� (1/nh

′−1/
Nh), θh �(1/nh −1/Nh),θ∗h �Wh(k2h −1)/nh,and Wh �Nh/N
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4. Methodology

Various researchers have discussed the problem of mean
estimation and nonresponse under non-optional RRT
models, one-stage RRT models, and two-stage RRT models
in the literature. &e problem of mean estimation, however,
has been ignored in the three-stage RRT model. Further-
more, there is no literature on the issue of mean estimation
in the presence of social desirability bias and nonresponse in
stratified two-phase sampling. &is study fills a gap in the
literature by proposing a generalized class of exponential
ratio-type estimators that can be used in the case of non-
response. It does this by using the three-stage RRT model
and auxiliary information.

Neeraj andMehta [7] assumed that the sensitivity level is
known and proposed an additive three-stage RRTmodel in
which a respondent is required to provide a scrambled
response defined as

Zhi �
Yhi, with probability th + 1 − th − fh( 􏼁 1 − πh( 􏼁

Yhi + Shi, with probabilityfh + 1 − th − fh( 􏼁πh

⎧⎨

⎩ ,

(7)

where πh and Shi denote the sensitivity level and scrambling
variable, respectively. &e scrambling variable has a known
mean and variance of 0 and S2Sh, respectively.

&e expectation of the scrambled response under ran-
domization mechanisms is given as

ER Zhi( 􏼁 � ER Yhi 1 − φh( 􏼁 + Yhi + Shi( 􏼁φh􏼂 􏼃,

ER Zhi( 􏼁 � Yhi + φh Sh,

whereφh � fh + πh 1 − th − fh( 􏼁.

(8)

&e variance of the response variable under randomi-
zation mechanisms is given as

VR Zhi( 􏼁 � VR Yhi + φhShi( 􏼁,

VR Zhi( 􏼁 � φ2
h S

2
Sh + S

2
h􏼒 􏼓 − φ2

hS
2
h,

VR Zhi( 􏼁 � φ2
hS

2
Sh.

(9)

&e transformed value of the randomized response is
given as

y
∧

hi � zhi − φhSh, (10)

withER(y
∧

hi) � yhi andVR(y
∧

hi) � φ2
hS2Sh,whereyhi is the true

response.

4.1. Modification of HH Technique [13] under the3ree-Stage
RRT Model. &e use of the Hansen and Hurwitz technique
[13] in a survey involving a sensitive variable may result in
response bias. Also, the respondent may provide an un-
truthful response to a sensitive question. In this study, the
respondent is given the opportunity to provide a scrambled
response using the additive three-stage RRT model in the
first and second phases of the Hansen and Hurwitz tech-
nique [13].

&e modified Hansen and Hurwitz [13] technique with
an additive three-stage RRT model added is defined as

y
∧

h � w1hy
∧

1h + w2hy
∧

2h,

E y
∧

h􏼒 􏼓 � Yh,

var y
∧

h􏼒 􏼓 � E1 V2 y
∧

h􏼒 􏼓􏼔 􏼕 + V1 E2 y
∧

h􏼒 􏼓􏼔 􏼕,

var y
∧

h􏼒 􏼓 � E1 V2 y
∧

h􏼒 􏼓􏼔 􏼕 + V1 E2 y
∧

h􏼒 􏼓􏼔 􏼕,

var y
∧

h􏼒 􏼓 � var yh( 􏼁 + E1
n1h

n
2
h

φ2
hS

2
Sh

n1h

􏼢 􏼣 + E1
n2h

n
2
h

k2hφ
2
h S

2
Sh􏼢 􏼣,

var y
∧

h􏼒 􏼓 � var yh( 􏼁 +Ωh,

(11)

where Ω � (Φ2hS2Sh/nh)(W1h + W2hk2h) it is the contribution
of the three-stage RRTmodel to the variance of the Hansen
and Hurwitz [13] mean estimator.

4.2. Proposed Generalized Class of Exponential Ratio-type
Estimators and3eirMSE. &e proposed mean estimator of
a sensitive study variable using the three-stage RRT model
and auxiliary information is defined as

tk � 􏽘
L

h�1
whψh exp

uh xh
′ − x
∗
h( 􏼁

uh xh
′ + x
∗
h( 􏼁 + 2vh

􏼠 􏼡, (12)

where ψh � z∗h + m1h(xh
′ − x∗h ) + m2h(ph

′ − p∗h ). αh, and βh

are appropriately chosen constants; uh and vh, are either real
numbers or the functions of known population parameters
of an auxiliary variable.

To obtain the bias and mean squared error (MSE) ex-
pressions for the suggested mean estimators, let

σX1h � xh
′ − Xh,

σP1h � ph
′ − Ph,

σPh � p
∗
h − Ph,

σXh � x
∗
h − Xh,

σXh � x
∗
h − Xh,

σZh � z
∗
h − Zh.

(13)

We take expectations on both sides of equation (13) to
obtain

E σZh( 􏼁 � E σXh( 􏼁 � E σX1h( 􏼁 � E σP1h( 􏼁 � E σPh( 􏼁 � 0. (14)

We square both sides of equation (13) and then intro-
duce expectations to obtain

E σ2Xh􏼐 􏼑 � θhS
2
Xh + θ∗hS

2
Xh(2) � A

∗
h , (15)

E σ2Zh􏼐 􏼑 � θhS
2
Yh + θ∗hS

2
Yh(2) +Ωh � B

∗
h , (16)

E σ2X1h􏼐 􏼑 � θh
′S2Xh � C

∗
h , (17)
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E σX1hσZh( 􏼁 � θh
′SZXh � D

∗
h , (18)

E σXhσZh( 􏼁 � θhSZXh + θ∗hSZXh(2) � E
∗
h , (19)

E σ2Ph􏼐 􏼑 � θhS
2
ph + θ∗hS

2
ph(2) � F

∗
h , (20)

E σ2P1h􏼐 􏼑 � θh
′S2Ph � G

∗
h , (21)

E σPhσZh( 􏼁 � θhSZph + θ∗hSZph(2) � H
∗
h , (22)

E σP1hσZh( 􏼁 � θh
′SZph � I

∗
h , (23)

E σXhσPh( 􏼁 � θhSXph + θ∗hSXph(2) � J
∗
h , (24)

E σX1hσXh( 􏼁 � E σX1hσPh( 􏼁 � E σX1hσP1h( 􏼁 � θh
′SXPh � L

∗
h .

(25)

We substitute equation (13) in (12) and solve using
Taylor’s approximation while ignoring terms of order
greater than two. After that, we subtract the population
mean from both sides to get

tk − Y( 􏼁 � 􏽘

L

h�1
wh

1
2
chZhσX1h −

1
2
chZhσX1h +

3
8
Zh c

2
hσ

2
Xh −

3
8
Zhc

2
hσ

2
X1h

+σZh −
1
2
chσZhσXh +

1
2
chσZhσX1h + m1hσX1h

−
1
2
chm1hσXhσX1h +

1
2
chm1hσ

2
X1h − m1hσXh +

1
2
chm1hσ

2
Xh −

1
2
chm1hσXhσX1h

+m2hσP1h −
1
2
chm2hσXhσP1hψ +

1
2
chm1hσX1hσP1h − m2hσPh

+
1
2
chm2hσXhσPh −

1
2
chm2hσX1hσPh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where ch � (ah/ahXh + bh). We take expectations on both sides of equation (26) and
substitute equations (14)–(25) to obtain an approximation
for the bias as

Bias tk( 􏼁 � 􏽘
L

h�1

Whλ
2
h

(3/4)chZh A
∗
h − C
∗
h( 􏼁 + m1h A

∗
h − C
∗
h( 􏼁 − E

∗
h − D

∗
h( 􏼁 + m2h J

∗
h − L
∗
h( 􏼁􏽨 􏽩

. (27)

We square both sides of equation (26) and simplify while
ignoring terms of order greater than two.&ereafter, we take

expectations on both sides and substitute equations
(15)–(25) to obtain an approximation for the MSE as

MSE tk( 􏼁 � 􏽘
L

h�1
W

2
h B
∗
h + Δ1h + m

2
1hΔ2h + m

2
2hΔ3h + m2hΔ4h + m1hΔ5h + 2m1hm2hΔ6h􏽨 􏽩,

whereΔ1h �
1
4
λ2hY

2
h A
∗
h − C
∗
h( 􏼁 − λhYh E

∗
h − D

∗
h( 􏼁,

Δ2h � A
∗
h − C
∗
h( 􏼁,

Δ3h � F
∗
h − G
∗
h( 􏼁,

Δ4h � Zhλh J
∗
h − L
∗
h( 􏼁 − 2 H

∗
h − I
∗
h( 􏼁,
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Δ2h � A
∗
h − C
∗
h( 􏼁,

Δ3h � F
∗
h − G
∗
h( 􏼁,

Δ4h � Zhλh J
∗
h − L
∗
h( 􏼁 − 2 H

∗
h − I
∗
h( 􏼁,

Δ5h � Zhλh A
∗
h − C
∗
h( 􏼁 − 2 E

∗
h − D

∗
h( 􏼁,

Δ6h � J
∗
h − L
∗
h( 􏼁.

(28)

We differentiate equation (28) partially with respect to
m1h and m2h and then equate to zero to obtain

m
(opt)

1h �
Δ4hΔ6h − Δ5hΔ3h

2 Δ2hΔ3h − Δ26h􏼐 􏼑
,

m
(opt)

2h �
Δ5hΔ6h − Δ4hΔ2h

2 Δ2hΔ3h − Δ26h􏼐 􏼑
.

(29)

We substitute equation (29) in (28) to obtain the
minimum MSE as

MSE tk( 􏼁min � 􏽘
L

h�1
W

2
h B
∗
h + Δ1h −

Δ24h

4Δ3h

−
Δ5hΔ3h − Δ4hΔ6h( 􏼁

2

4Δ3h Δ2hΔ3h − Δ26h􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦.

(30)

4.3. Members of the Family of Proposed Generalized Class of
Exponential Ratio-Type Estimators. Members of the pro-
posed generalized class of exponential ratio-type estimators
can be obtained by making appropriate choices of uh andvh.

(i) Putting uh � 1 and vh � 0, we get

t1 � 􏽘
L

h�1
whψh exp

xh
′ − xh( 􏼁

xh
′ + xh( 􏼁

􏼠 􏼡. (31)

(ii) Putting uh � 1 and vh � CXh, we get

t2 � 􏽘
L

h�1
whψhexp

CXh xh
′ − x
∗
h( 􏼁

CXh xh
′ + x
∗
h( 􏼁 + 2ρXYh

􏼠 􏼡. (32)

(iii) Putting uh � CXh and vh � ρXYh, we get

t3 � 􏽘
L

h�1
whψh exp

CXh xh
′ − x
∗
h( 􏼁

CXh xh
′ + x
∗
h( 􏼁 + 2ρXYh

􏼠 􏼡. (33)

(iv) Putting uh � β1h(x) and vh � ρXYh, we get

t4 � 􏽘
L

h�1
whψh exp

β1h(x) xh
′ − x
∗
h( 􏼁

β1h(x) xh
′ + x
∗
h( 􏼁 + 2ρXYh

􏼠 􏼡. (34)

(v) Putting uh � β2h(x) and vh � β1h(x), we get

t5 � 􏽘
L

h�1
whψh exp

β2h(x) xh
′ − x
∗
h( 􏼁

β2h(x) xh
′ + x
∗
h( 􏼁 + 2β1h(x)

􏼠 􏼡. (35)

(vi) Putting uh � QDh(x) and vh � TMh(x), we get

t6 � 􏽘
L

h�1
whψh exp

QDh(x) xh
′ − x
∗
h( 􏼁

QDh(x) xh
′ + x
∗
h( 􏼁 + 2TMh(x)

􏼠 􏼡.

(36)

(vii) Putting uh � QDh(x) and vh � MRh(x), we get

t7 � 􏽘
L

h�1
whψh exp

QDh(x) xh
′ − x
∗
h( 􏼁

QDh(x) xh
′ + x
∗
h( 􏼁 + 2MRh(x)

􏼠 􏼡.

(37)

(viii) Putting uh � HLh(x) and vh � TMh(x), we get

t8 � 􏽘
L

h�1
whψh exp

HLh(x) xh
′ − x
∗
h( 􏼁

HLh(x) xh
′ + x
∗
h( 􏼁 + 2TMh(x)

􏼠 􏼡.

(38)

(ix) Putting uh � ρXYh and vh � QDh(x), we get

t9 � 􏽘
L

h�1
whψh exp

ρXYh xh
′ − x
∗
h( 􏼁

ρXYh xh
′ + x
∗
h( 􏼁 + 2QDh(x)

􏼠 􏼡. (39)

(x) Putting uh � 1 and vh � ρXYh, we get

t10 � 􏽘
L

h�1
whψh exp

xh
′ − x
∗
h( 􏼁

xh
′ + x
∗
h( 􏼁 + 2ρXYh

􏼠 􏼡. (40)

(xi) Putting uh � 1 and vh � QDh(x), we get

t11 � 􏽘
L

h�1
whψh exp

xh
′ − x
∗
h( 􏼁

xh
′ + x
∗
h( 􏼁 + 2QDh(x)

􏼠 􏼡. (41)

&e bias and mean squared error (MSE) expressions for
the special cases of the proposed estimators are obtained by
substituting appropriate values of m1h and m2h in (27) and
(30) respectively.

5. Theoretical Comparison

In this section, the performance of the proposed estimator is
compared theoretically to other existing mean estimators.

Condition 1. From equations (2) and (43),
MSE(tk)min<Var(t0) when
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Δ1h −
Δ24h

4Δ3h

−
Δ5hΔ3h − Δ4hΔ6h( 􏼁

2

4Δ3h Δ2hΔ3h − Δ26h􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦< 0. (42)

Condition 2. From equations (5) and (43),
MSE(tk)min<MSE(tR) when

Δ1h −
Δ24h

4Δ3h

−
Δ5hΔ3h − Δ4hΔ6h( 􏼁

2

4Δ3h Δ2hΔ3h − Δ26h􏼐 􏼑
− R

2
h A
∗
h − C
∗
h( 􏼁 + 2Rh E

∗
h − D

∗
h( 􏼁⎡⎢⎣ ⎤⎥⎦< 0. (43)

Condition 3. From equations (8) and (43),
MSE(tk)min<MSE(tER) when

Δ1h −
Δ24h

4Δ3h

−
Δ5hΔ3h − Δ4hΔ6h( 􏼁

2

4Δ3h Δ2hΔ3h − Δ26h􏼐 􏼑
−
1
4
R
2
h A
∗
h − C
∗
h( 􏼁 − Rh E

∗
h − D

∗
h( 􏼁⎡⎢⎣ ⎤⎥⎦< 0. (44)

&ese three conditions are always true. &erefore, the
proposed generalized class of exponential ratio-type esti-
mators performs better than other existing mean estimators.

6. Application

A numerical study is conducted to compare the performance
of the proposed generalized class of exponential ratio-type
estimators to the performance of existing mean estimators.
Nonresponse and the three-stage RRT model’s effects on
mean estimation are also investigated.&e COVID-19 global
pandemic (http//www.worldometer.info) and Rosner [28]
datasets are used. &e R programming language is used for
data simulation and coding. &e proposed estimators’ effi-
ciency is compared to that of other estimators using the
percent relative efficiency (PRE) approach. To calculate the
PREs of the mean estimators,

PRE �
Var t0( 􏼁

MSE tk( 􏼁
, (45)

where k� R, ER, 1, 2, . . . , 11. &e estimator with the
highest PRE when compared to the ordinary mean estimator
is thought to be more efficient than the others. &e PREs are
also calculated when the sensitivity level is set to 20% and
80%, respectively.

&e following is a description of the data used:

6.1. Population I: COVID-19 Global Pandemic Data. &e
dataset covers the COVID-19 global pandemic (http//www.
worldometer.info) from January 3rd, 2020 to September 17th,
2021.&e data are divided into six categories based onWorld
Health Organisation (WHO) regions; African region
(N1 � 31200), the American region (N2 � 34944), the East-
ern Mediterranean region (N3 �13728), the European re-
gion (N4 � 38688), the South-East Asia region (N5 � 6864),
and the Western Pacific region (N6 � 21840).

&e auxiliary and study variables are the number of new
cases and deaths on a given day, respectively. &e auxiliary
attribute is the number of new deaths with a value of less

than one. A scrambled variable with a mean of 0 and a
variance of 2 is generated for each unit in the dataset and
used to calculate the scrambled response. Tables 1 and 2
show the population parameter for the responding and
nonresponding units, respectively.

6.2. Population II: Rosner [28]. &e population is divided
into two strata;N1 � 480 andN2 �174, with forced expiratory
volume as the study variable, age (in years) as an auxiliary
variable, and gender (Male� 1, Female� 0) as an auxiliary
attribute. Furthermore, smoking (Yes� 1, No� 0) is chosen
as the scrambling variable and used in the generation of the
scrambled response. Tables 3 and 4 show the population
parameter for the responding and nonresponding units,
respectively.

7. Results and Discussion

Table 5 summarizes the results for the PREs of various mean
estimators for population I. &e PRE values decrease as the
sensitivity level of the survey question increases. For t5, for
example, the value of PRE at 20% nonresponse and k2h � 2 is
181.0869 and 181.0735 at 0.2 and 0.8 sensitivity levels, re-
spectively. Furthermore, the values for PREs are found to
increase as the inverse sampling rate and nonresponse rate
increase. &e proposed estimator t7 has the best PRE of all
the estimators that were looked at in this study.

Figures 1–4 show PRE plots for various mean estimators.
As the inverse sampling rates rise, the values of PREs for the
mean estimators get larger. Generally, the proposed esti-
mators perform better than other existing mean estimators.

Table 6 summarizes the PREs of various mean estimators
for population II. From the table, PREs are found to increase
in value as the inverse sampling rate and nonresponse rate
increase. Furthermore, the values of PREs are found to
increase as the sensitivity level of the survey question in-
creases. For example, at 30% nonresponse rate and k2h � 8,
PRE for t3 is 155.2214 and 151.2631 at 0.2 and 0.8 sensitivity
levels, respectively.
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PRE plots for different mean estimators for population II
are shown in Figures 5−8. PREs are found to increase in
value as nonresponse rates and inverse sampling rates

increase. &e proposed generalized class of exponential
ratio-type estimators has higher PREs than existing mean
estimators.

Table 1: Parameters for population I.

Parameter Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5 Stratum 6
Xh 188.9035 2502.012 1120.151 1757.061 6175.008 356.2095
Yh 4.543181 61.90972 20.51225 33.79095 97.12205 4.833472
S2Xh 1094471 187408859 8526375 24712119 817189958 318940
S2Zh 926.4621 76639.99 2937.237 11588.58 145353 849.8079
S2Ph 0.2017896 0.2328431 0.2253055 0.2467874 0.247146 0.1323922
ρXZh 0.8171398 0.7944946 0.834325 0.6559524 0.8679977 0.7237861
ρXPh −0.2608673 −0.2379639 −0.265470 −0.2982271 −0.239344 −0.4403104
ρZPh −0.2386865 −0.2924192 −0.272994 −0.2802833 −0.2839612 −0.3832064

Table 2: Parameters for nonresponding units for population I.

Nonresponse rate (%) Stratum S2Xh(2) S2Ph(2) S2Zh(2) S2XZh(2) S2XPh(2) S2ZPh(2)

20

1 989315.2 0.2050127 763.9706 0.7535727 −0.2691771 −0.2557058
2 199477087 0.2343414 80842.35 0.8166929 −0.229914 −0.2876454
3 8176575 0.2249875 2718.171 0.8154184 −0.2564837 −0.2718289
4 25298233 0.2462478 11741.33 0.6713044 −0.2984032 −0.2839888
5 708141536 0.2460244 96127.52 0.8765226 −0.2487161 −0.3082972
6 708141536 0.1284571 857.4592 0.7296066 −0.4390315 −0.402489

30

1 1071816 0.2047748 781.3434 0.7820729 −0.2610072 −0.2520072
2 206269098 0.2334903 81677.25 0.7969911 −0.2297942 −0.2881574
3 8525833 0.2250371 2856.095 0.8312795 −0.2655035 −0.2720948
4 24546992 0.2462213 11427.83 0.6609692 −0.3004036 −0.2837976
5 681811147 0.2462587 128890.3 0.8571617 −0.2454178 −0.28936
6 681811147 0.1297743 849.4515 0.7375239 −0.4392996 −0.4083239

Table 3: Parameters for population II.

Parameter Stratum 1 Stratum 2
Xh 8.558333 13.71839
Yh 2.363715 3.763615
S2Xh 3.604106 3.301741
S2Zh 0.5254207 0.7556429
S2Ph 0.2503653 0.2511461
ρXZh 0.7239923 0.3619965
ρXPh 0.02999931 0.07201403
ρZPh 0.08365375 0.4809902

Table 4: Parameters for nonresponding units for population II.

Nonresponse rate (%) Stratum S2Xh(2) S2Ph(2) S2Zh(2) S2XZh(2) S2XPh(2) S2ZPh(2)

20 1
2

3.803509
4.198319

0.2486842
0.2319328

0.5833481
0.4723521

0.7305239
0.2932356

0.02164662
−0.2094929

0.1079512
0.2899405

30 1
2

3.746503
4.015239

0.2513112
0.2394775

0.5804701
0.6125016

0.7363216
0.3607974

0.07657269
−0.0199814

0.1124887
0.3836556
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Table 5: PREs of different mean estimators for population I.

Estimator πh

20% nonresponse 30% nonresponse
k2h k2h

2 4 8 2 4 8

t0
0.2
0.8

100
100

100
100

100
100

100
100

100
100

100
100

tR

0.2
0.8

115.3888
115.3871

102.5616
102.5614

95.65319
95.65344

112.2147
112.2136

101.5183
101.5182

96.6019
96.6022

tER

0.2
0.8

161.3319
161.3229

172.3874
172.3785

180.4193
180.4107

164.6804
164.6716

175.0072
174.9989

181.0740
181.0664

t1
0.2
0.8

181.0869
181.0735

208.5838
208.5675

230.8077
230.7898

188.3997
188.3860

214.4384
214.4230

231.1358
231.120

t2
0.2
0.8

181.1115
181.0981

208.712
208.6957

231.0598
231.0418

188.4469
188.4332

214.5998
214.5843

231.3967
231.3808

t3
0.2
0.8

181.0876
181.0741

208.5874
208.5711

230.8149
230.797

188.4010
188.3873

214.4431
214.4277

231.1434
231.1275

t4
0.2
0.8

168.5379
168.5273

191.8925
191.8798

210.9381
210.9242

174.6901
174.6794

196.8989
196.8869

211.2498
211.2375

t5
0.2
0.8

181.0869
181.0735

208.5838
208.5675

229.9411
229.9234

188.3997
188.386

214.4384
214.4230

229.4915
229.4760

t6
0.2
0.8

181.0893
181.0759

208.5968
208.5805

230.8334
230.8155

188.4044
188.3907

214.4549
214.4395

231.1625
231.1466

t7
0.2
0.8

180.1932
180.1800

210.048
210.0314

235.4472
235.4283

187.9831
187.9696

216.7631
216.7473

236.0666
236.0498

t8
0.2
0.8

181.0862
181.0728

208.583
208.5667

230.8069
230.7890

188.3990
188.3853

214.4377
214.4223

231.1351
231.1192

t9
0.2
0.8

179.9839
179.9707

207.0395
207.0236

228.8866
228.8691

187.1721
187.1587

212.7807
212.7656

229.1884
229.1729

t10
0.2
0.8

181.0903
181.0769

208.6023
208.586

230.8443
230.8264

188.4064
188.3927

214.4618
214.4464

231.1738
231.1579

t11
0.2
0.8

180.2022
180.189

207.3365
207.3205

229.2469
229.2293

187.4102
187.3967

213.0907
213.0756

229.5443
229.5287
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Figure 1: Plot of PREs at 20% nonresponse and 0.2 sensitivity level for population I.
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Figure 2: Plot of PREs at 20% nonresponse and 0.8 sensitivity level for population I.
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Figure 3: Plot of PREs at 30% nonresponse and 0.2 sensitivity level for population I.
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Figure 4: Plot of PREs at 30% nonresponse and 0.8 sensitivity level for population I.
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Table 6: PREs of different mean estimators for population II.

πh

20% nonresponse 30% nonresponse
k2h k2h

2 4 8 2 4 8

t0
0.2
0.8

100
100

100
100

100
100

100
100

100
100

100
100

tR

0.2
0.8

127.2439
124.743

134.9012
132.0578

140.8874
137.8932

132.3932
129.5512

142.3453
139.1108

148.7683
145.4079

tER

0.2
0.8

122.2609
120.2903

129.041
126.7698

134.2996
131.8971

125.1812
123.0822

132.5172
130.1927

137.133
134.7617

t1
0.2
0.8

131.2392
128.2900

142.4024
138.7723

151.5345
147.4977

135.5274
132.3433

147.4847
143.7370

155.362
151.3903

t2
0.2
0.8

131.2432
128.2935

142.4159
138.7843

151.5557
147.5168

135.5190
132.3358

147.4734
143.7269

155.3484
151.378

t3
0.2
0.8

131.3257
128.3666

142.6600
139.0018

151.9334
147.8555

135.4225
132.2500

147.3606
143.6256

155.2214
151.2631

t4
0.2
0.8

131.8164
128.8007

143.9719
140.1695

153.8973
149.6149

135.0548
131.9230

147.0131
143.3136

154.8764
150.9510

t5
0.2
0.8

131.2392
128.2900

142.4024
138.7723

151.5345
147.4977

135.5274
132.3433

147.4847
143.7370

155.3620
151.3903

t6
0.2
0.8

131.3706
128.4064

142.7725
139.102

152.1017
148.0064

135.4173
132.2454

147.3736
143.6373

155.2473
151.2865

t7
0.2
0.8

131.3901
128.4236

142.8146
139.1394

152.1626
148.0610

135.4314
132.2580

147.4051
143.6656

155.2916
151.3266

t8
0.2
0.8

131.2759
128.3225

142.5122
138.8701

151.7049
147.6506

135.4828
132.3036

147.432
143.6897

155.3024
151.3364

t9
0.2
0.8

131.4914
128.5132

143.0900
139.3848

152.5798
148.4349

135.3591
132.1936

147.3393
143.6065

155.2284
151.2694

t10
0.2
0.8

131.2487
128.2984

142.4368
138.8029

151.5894
147.5469

135.5019
132.3206

147.4493
143.7052

155.3188
151.3512

t11
0.2
0.8

131.3516
128.3895

142.7266
139.0611

152.0335
147.9453

135.4151
132.2434

147.3612
143.6262

155.2275
151.2686
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Figure 5: Plot of PREs at 20% nonresponse and 0.2 sensitivity level for population II.
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Figure 6: Plot of PREs at 20% nonresponse and 0.8 sensitivity level for population II.
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Figure 8: Plot of PREs at 30% nonresponse and 0.8 sensitivity level for population II.
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Figure 7: Plot of PREs at 30% nonresponse and 0.2 sensitivity level for population II.
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8. Conclusion

Using auxiliary information, this study proposes a gener-
alized class of exponential ratio-type estimators in the
presence of nonresponse and the three-stage RRT model.
&e theoretical properties of bias and mean squared error of
the proposed estimators are investigated up to the first
degree of approximation.&e theoretical performance of the
proposed mean estimators is investigated. &e applicability
of the proposed mean estimators in practice is demonstrated
using two different datasets.

According to the numerical analysis, the efficiency of the
mean estimators increases as inverse sampling rates and
nonresponse rates increase. Furthermore, as the sensitivity
level of the survey question increases, the values for PREs
decrease. &e most important result of the study is that the
proposed estimators outperform existing mean estimators.
In the future, the proposed method could be used to estimate
other population parameters of sensitive variables, like
variance and distribution function in stratified two-phase
sampling.
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