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�e generalized extreme value distribution (GEVD) and various extreme value distributions are commonly applied in air
pollution, telecommunications, operational risk management, �nance, insurance, material sciences, economics, and hydrology,
among many other industries that deal with extreme events. Extreme value distributions (EVDs) typically limit the distribution of
maximum and minimum values for many random observations drawn from the same arbitrary distribution. Besides that, it is a
crucial method for forecasting future events and emerged as critical method for predicting future events. As a result, prior research
is required to select the best estimation method to obtain a reliable value for the parameters of extreme value distributions. �is
study provides an overview of three-parameter estimation methods based on goodness-of-�t statistics and root mean square error
(RMSE). �is paper reviewed and compared three estimation methods used to approximate values of parameters for simulated
observations taken from the EVD and GEVD. �e method of moments (MOMs), maximum likelihood estimator (MLE), and
maximum product of spacing (MPS) were the methods investigated in this study. Our �ndings indicated that the MPS performed
better based on the mean square errors (MSEs); meanwhile, the MPS had similar goodness-of-�t statistic values compared to
the MLE.

1. Introduction

Extreme value distribution (EVD) is used to limit distri-
butions for maximum or minimum [1]. �us, as the sample
size increases with the smallest or largest data in indepen-
dent identically distributed random variables, the data set
density shape will follow one of the three types of EVD [1, 2].
EVD is also used to model tail-related risk measurements
such as value at risk, return level, or expected shortfall [3].
Extreme wind speed analysis is used mainly in natural
emergency preparedness, mitigation, management, pre-
vention, and various civil engineering, environmental, and
ocean applications [4]. An accurate estimate of the pa-
rameters for any analyses using the EVD is a must. Hence,
there should be a suitable estimation method that provides
accurate estimates for the parameters of the EVD.�ere had

been many studies related to various parameter estimation
methods on EVD.

Without a doubt, parameter estimation is essential to �t
any probability distribution on any data sets. As a result,
various estimation methods could provide us with insight
into determining the “best-�tting” distribution and estimate
the parameters for EVD, such as the scale, shape, and lo-
cation parameters. �e following are some standard pa-
rameter estimation methods that are commonly used in
probability distribution �tting:

(i) �e MOM (Johan Bernoulli, 1667-1748).
(ii) �e MLE (Daniel Bernoulli, 1700-1782).
(iii) �e MPS (Cheng and Amin, 1979-1983).

Since their introduction, these methods have progressed
through several stages and have their drawbacks and bene�ts
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[5–7]. Nonetheless, the MLEmethod is the most widely used
estimation method.

&e three methods mentioned above are used in this
study to estimate EVD and GEVD parameters. Several
studies were comparing the various estimation methods for
different distributions. By reviewing other studies, we de-
scribed the basic idea of each estimation method and their
applications on EVD. A simulation study was carried out for
reference purposes to assess the performance of the esti-
mators. As it has been widely deployed in many research
areas, the EVD is used to represent the distributions of
various observations. &ese include wind speed and energy
data [4, 8–12], wave data prediction [13], data on air pol-
lution [14–18], information and communication technology
[19], data on flooding [20], financial risk [3, 21], temperature
[22], food drying technology [23], and rainfall [24]. It has
also been implemented in public health andmedical sciences
[25, 26].

&erefore, studies comparing MLE, MOM, and MPS
estimators for GEVD, two-parameter EVD, and three-pa-
rameter EVD were reviewed in this research. &e MOM
method is the oldest method for estimating parameters,
whereas the MLE is the most commonly used. However,
MLE can fail in various circumstances, necessitating a less
popular alternative (i.e., MPS). &is review article aimed to
guide selecting the best estimation method for the GEVD
and EVD, which will be of great interest to applied statis-
ticians.&e novelty of this review stems from the fact that no
thorough review of MOM, MLE, and MPS estimators for
EVD has been made. &e following is how this article was
structured.&e history of EVD is presented before reviewing
the MLE, MOM, and MPS. Next, EVD applications were
discussed, followed by a simulation study. Last but not least,
conclusions were drawn based on the factors reviewed and
discussed above.

2. Extreme Value Theory (EVT) and Extreme
Value Distribution (EVD)

An extreme value in a series of observations is either a very
large or small value. It can even be described as the outer or
outlier points, which are the highest and lowest values. EVT
is a theory of modeling and measuring events with the least
amount of probability [27]. To be specific, EVT identifies
extreme events based on a probability of occurrence and also
depicts the extreme events through statistical analysis of the
extreme properties. It consists of 3 types of distributions. It
only requires three distributions to model the maximum or
minimum random observations for the same distribution
[2]. Recently, the EVT has emerged as one of the most
important statistical disciplines for engineers and applied
scientists [14, 28].

If we assume X1; X2; . . ., Xn are independent random
variables with a standard distribution function (F). &en,
Mn � Max Xi; . . . ; Xn􏼈 􏼉 for each i with i � 1, . . . , n denotes
the maximum of observational process over n time units of
observations. According to Coles [28], the distribution of
Mn can be derived as follows:

Pr Mn ≤x􏼈 􏼉 � Pr X1 ≤x, X2 ≤x, . . . , Xn ≤x􏼈 􏼉

� Pr X1 ≤x( 􏼁Pr X2 ≤ x( 􏼁 . . .Pr Xn ≤ x( 􏼁,
(1)

Pr Mn ≤x􏼈 􏼉 � FX(x)􏼂 􏼃
n
.

(2)

&e probability density function (PDF), fX(x), for EVD
distribution derived from the cumulative function FX(x)

can be derived as below:

fX(x) � n FX(x)􏼂 􏼃
n− 1

fX(x). (3)

&ere is a concern with degeneration of the exact
function because the distribution function, F, is unknown,
and n⟶∞. Hence, we pursue approximate families of
models for Fn that can be estimated solely on the extreme
data. As per the central limit theorem (CLM), the estimation
is similar to the usual practice of approximating the sample
means for normal distribution. To resolve this situation, we
developed a normalized version of Mn to stabilize the
function. A normalized Mn could be generated as belowwith
the presence of normalizing constants, an and bn:

M
∗
n �

Mn − bn

an

. (4)

&e relevant and suitable choices of an and bn stabilize
the location and scale of Mn as n⟶∞. M∗n converges in
the form of three EVD distribution types: Type I, Type II,
and Type III. If the normalizing constants an and bn exist,
thus,

lim
n⟶∞

Pr
Mn − bn

an

≤x􏼠 􏼡 ≈ G(x), (5)

G(x) is the nondegenerate cumulative distribution
function (CDF), which relates to the three EVD families:
Type I, Type II, and Type III.

2.1. Gumbel Distribution (Type I). Emil Gumbel, a German
mathematician, invented the Gumbel distribution (1891-
1966). &e primary focus was on the extensive use of the
EVT in various fields for modeling extreme events [2]. &e
formula includes the following PDF:

f(x; μ, σ) �
1
σ

× exp −
x − μ
σ

− exp −
x − μ
σ

􏼒 􏼓􏼔 􏼕, (6)

whereby σ � distribution scale (σ > 0) and μ� location pa-
rameter. &e CDF can then be given as follows:

F(x; μ, σ) � exp − exp −
x − μ
σ

􏼒 􏼓􏼒 􏼓. (7)

2.2. Fréchet Distribution (Type II). A French mathematician,
Maurice Fréchet (1878-1973), had derived the Fréchet
Distribution. In 1927, he proposed one possible limiting
distribution for the maximal order statistics [2]. &e Fréchet
distribution is also known as the inverse Weibull distribu-
tion (IWD). It includes the following CDF and PDF:
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2.2.1. Two-Parameter Fréchet Distribution. PDF is as
follows:

f(x; α, σ) �
α
σ

σ
x

􏼒 􏼓
(α+1)

exp −
σ
x

􏼒 􏼓
α

􏼒 􏼓. (8)

CDF is as follows:

F(x; α, σ) � exp −
σ
x

􏼒 􏼓
α

􏼒 􏼓. (9)

2.2.2. .ree-Parameter Fréchet Distribution. PDF is as
follows:

f(x; α, σ, μ) �
α
σ

σ
x − μ

􏼠 􏼡

(α+1)

exp −
σ

x − μ
􏼠 􏼡

α

􏼠 􏼡. (10)

CDF is as follows:

F(x; α, σ, μ) � exp −
σ

x − μ
􏼠 􏼡

α

􏼠 􏼡, (11)

whereby μ� location parameter (μ� 0 for the two-parameter
Fréchet distribution), σ � scale parameter (σ > 0), and α
� shape parameter (α> 0).

2.3.Weibull Distribution (Type III). Waloddi Weibull (1887-
1979), a Swedish engineer, invented the Weibull distribu-
tion. Initially, the distribution was developed to address
minima problems in material sciences [2] where

min X1, . . . , Xn( 􏼁 � − max − X1, . . . , − Xn( 􏼁. (12)

&e CDF and PDF for this distribution are as below:

2.3.1. Two-Parameter Weibull Distribution. PDF is as
follows:

f(x; α, σ) �
α
σ

x

σ
􏼒 􏼓

(α− 1)

exp −
x

σ
􏼒 􏼓

α
􏼒 􏼓. (13)

CDF is as follows:

F(x; α, σ) � 1 − exp −
x

σ
􏼒 􏼓

α
􏼒 􏼓. (14)

2.3.2. .ree-Parameter Weibull Distribution. PDF is as
follows:

f(x; α, σ, μ) �
α
σ

x − μ
σ

􏼒 􏼓
(α− 1)

exp −
x − μ
σ

􏼒 􏼓
α

􏼒 􏼓. (15)

CDF is as follows:

F(x; α, σ, μ) � 1 − exp −
x − μ
σ

􏼒 􏼓
α

􏼒 􏼓, (16)

whereby μ� location parameter (μ� 0 for the two-parameter
Weibull Distribution), σ � scale parameter (σ > 0), and α
� shape parameter (α> 0).

&e three EVD families can be generalized to form a
single distribution called the generalized extreme value

distribution (GEVD). &e GEVD was an extension of the
EVT developed by Fisher–Tippett (1928) and Gnedenko
(1943). It is a good choice for representing the distribution
of the minimum and maximum sequences of independent
identically distributed random variables [1, 2].

2.4. GEVD. &e CDF for the three-parameter is as follows:

F(x; μ, σ, α) � exp − 1 + α
x − μ
σ

􏼒 􏼓􏼔 􏼕
(− 1/α)

􏼨 􏼩. (17)

From equation (17), σ and 1 + α(x − μ)/σ > 0, where μ
and α can take any real value. &e three types of EVD can be
obtained through GEVD based on the value of alpha where
α � 0 is the Type I EVD (Gumbel distribution), α> 0 is the
Type II EVD (Fréchet distribution), and α< 0 is the Type II
EVD (Weibull distribution).

Meanwhile, for the PDF for GEVD is given in equation
(18) with σ > 0, with α and μ, can take any real value.

f(x; μ, σ, α) �

exp − 1 +
α(x − μ)

σ
􏼠 􏼡

− (1/α)

×
1
σ

1 + α
x − μ
σ

􏼒 􏼓􏼚 􏼛, α≠ 0,

1
σ
exp −

x − μ
σ

􏼒 􏼓 − exp −
x − μ
σ

􏼒 􏼓􏼔 􏼕, α � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

GEVD is broadly used in hydrology, telecommuni-
cations, risk management, economics, finance, material
sciences, or insurance that deal with extreme events
[29–33].

3. Application Study Review

In this section, we will review and discuss the comparison of
MOM,MLE, and MPS estimation methods using actual data
or simulation studies as the following:

Hall et al. [34] estimated the generalized Gumbel dis-
tribution parameters using the MLE method in 1989.

A comparison study was conducted between the stan-
dardMLE and the unbiasedMLE estimator, which is derived
from MLE linear functions, product spacing method, and
quantile estimate method to estimate two exponential dis-
tribution parameters. For both the location and scale pa-
rameters, the unbiased MLE had the lowest RMSE, followed
by MPS and MLE. Overall, both methods performed nearly
identically equivalent. However, the unbiased MLE provides
better parameter estimates [35].

Hurairah et al. [36] proposed a new Gumbel distribution
for handling air pollution data by introducing a new pa-
rameter that shapes the parameter α. &e MLE method is
applied to estimate the parameters of the new Gumbel
distribution. &e simulated results indicated that the new
Gumbel distribution could achieve higher accuracy in fitting
carbon monoxide (CO) data and significantly impacting air
pollution studies [14].
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Other research also used the MLE to estimate the fol-
lowing parameters: Gumbel, generalized Pareto distribution
with two and three parameters, Weibull with two and three
parameters, and GEVD [17]. &e two-year daily maximum
data were used to analyze the efficiency of the six distri-
butions using error and accuracy measures as performance
indicators. &e GEVD was found to be an adequate dis-
tribution for maximum daily density of particulate matter
(PM10) for all monitoring stations under study. MOM was
used in another study to estimate the parameters of the
Gumbel and Fréchet distribution instead of lognormal to fit
the daily maximum concentration of PM10 in Malaysia. &e
goodness-of-fit was used to select the distribution that best
fits the data for PM10 exceedances based on the Malaysian
Ambient Air Quality Guidelines (MAAQG). &e work
concluded that the EVD fits the actual high value of PM10
better than central fitting distribution [16].

On the other hand,Wong and Li [37] compared theMLE
and theMPS in estimating parameters of EVD using samples
with small sample sizes. His study found that the MPS
functioned satisfactorily. Not only does it performs con-
sistently for data maxima extracted from clusters, but it also
accurately estimated more data generated from a known
parameter set, whereas the MLE does not. Based on this
finding, the MPS is considered one of the best estimation
methods for fitting EVD.

Jiang [38] had demonstrated that the location and scale
estimator parameters were biased, and MPS underestimated
the shape parameter. Hence, he modified an MPS to fit a
three-parameter Weibull distribution that could accurately
estimate parameters better. Meanwhile, Huang and Lin [39]
also altered the MPS method to improve the estimate pa-
rameters of the GEVD. &e simulations revealed that not
only is the suggested method highly efficient and applicable
across the entire parameters, but it also outperforms the
study’s existing parametric and nonparametric methods.

A least square estimation (LSE), MLE, and MPS were
used to compare traditional estimation methods to fit the
generalized inverted exponential distribution [40].&e study
was also intended to analyze the estimates’ behavior for
small samples. Results showed that MPS outperformed the
other two methods with a minor mean square error (MSE).
&erefore, the study suggested using MPS since it exceeded
both MLE and LSE.

Akram and Hayat [41] compared the performance of
fitting a three-parameter Weibull distribution with the
following parameter estimation methods in terms of bias
and RMSE in a small sample: L-moments, LSE, the modified
MLE, MOM, and MPS. Overall, the L-moments method
performed well and is the best estimation method. &e
modified MPS performed well when the shape parameter
was less than a specific value. In contrast, the modified MLE
method was inefficient and inconsistent because it might not
exist.

Next, Soukissian and Tsalis [4] investigated parameter
estimation methods for predicting extreme wind speeds in
the Atlantic and Pacific ocean basins. A natural wind
measurements and simulation study from four buoys were
used in the analysis. According to the research, the MPS,

elemental percentile (EP), and standard entropy method
appeared less accurate than the MLE. Based on the MSE,
bias, and variance of the estimated data, the MLE was a
much better estimation method.

Meanwhile, Salah et al. [42] used various estimation
methods such as weighted least squares, MLE, probability-
weighted moments, and LSE for the accelerated life test
(ALT) under the family of exponentiated distributions. He
chose the best method to estimate the reliability function.
&e four methods were applied using both simulated and
actual-world data. Among other estimation methods, it has
been discovered that the MLE produces the best results.
Louzada et al. [43] considered the MLE, modified moments,
MOM, L-moments, minimum distance estimator percentile
estimation, MPS, ordinary, and weighted least squares for
estimating unknown parameters of the extended exponential
geometric distribution. Compared to its competitors, the
MPS estimated the best for the extended exponential geo-
metric distribution parameters.

Singh et al. [44] studied the possibility of estimating the
scale and shape parameters for the generalized inverted
exponential distribution using progressive type-II censored
samples.&eMPS was used to estimate the reliability, hazard
functions, and parameters of the model. Based on a Monte
Carlo simulation study, the MPS was compared to the
corresponding MLE. Based on MSE, it is discovered that the
MPSmethod outperforms theMLE. As a result, regardless of
sample size, the former method could estimate reliability,
hazard function, and distribution parameters well.

Dey et al. [45] investigated various methods and
properties for estimating unknown parameters for the fol-
lowing distributions”

(i) Exponentiated Chen distribution.

(ii) Transmuted Rayleigh distribution.
(iii) Exponentiated Gumbel distribution.

&e right-tail Anderson–Darling, MLE, percentile esti-
mation, MOM, least squares estimation, Cramér-von-Mises,
MPS, and Anderson–Darling methods were used in this
study. Extensive simulation studies were used to compare
them using Monte Carlo simulations. &e results revealed
that the MPS is the best estimator for transmuted Rayleigh
and exponentiated Chen distributions in terms of biases and
RMSE. &e MLE method, on the other hand, is the best for
estimating the exponentiated Gumbel distribution param-
eters [7, 46, 47].

&e finite sample properties of the Marshall–Olkin ex-
tended exponential distribution parameters were obtained
by ten estimation methods using Monte Carlo simulations.
&ey were Anderson–Darling, weighted least squares,
L-moments, maximum likelihood, right-tail Ander-
son–Darling, ordinary least squares, modified moments,
MPS, percentile estimation, and Cramér-von-Mises. &e
performance of all the methods was compared using the
absolute, bias, and maximum absolute difference between
RMSE and the estimated and actual distribution functions.
&e simulation demonstrated that the MLE and L-moments
perform admirably in large sample sizes. Nonetheless, both
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methods have lower accuracy with small sample sizes than
the MPS and Anderson–Darling methods [48].

&e MPS was employed in the linear regression model
based on Student-t, normal, skewed Student-t, and MLE
distributions. A study found that all of the estimates were
consistent and, in some cases, outperformed the MLE
method. Furthermore, the MPS estimator is likely to exceed
MLE when the sample size is small [49].

Vivekanandan [22] conducted Hissar extreme value
analysis of rainfall and temperature using a logged Pearson
Type-3 probability distribution and two-parameter log-
normal fitted to one-day maximum and minimum rainfall
and annual temperature series. L-moments, MLE, and
MOM estimation methods were used to determine the
distribution parameters based on their applicability. &e
study’s tests revealed that the MLE estimated better than
other methods for allocating the minimum and maximum
rainfall and temperature.

Meanwhile, Nassar et al. [50] proposed a new extension
for Weibull distribution. Two shape parameters and one
scale parameter were included in the proposed distribution.
It also contains submodels such as logarithmic-altered
Weibull distribution and exponential distribution and the
logarithmic-transformed exponential and logarithmic-
transformed Weibull distributions. &e research concen-
trated on the unknown parameters as well as several new
mathematical properties. Least squares, MLE, percentile-
based, MPS, and weighted-least square estimators have all
been used. Monte Carlo simulations were used to compare
the proposed estimation methods for large and small
samples. Based on the results, percentile-based was the best
performing estimator with respect to MSE. &e applications
on two actual data sets showed that the MPS performed
better than the least square estimator for data set
I. Meanwhile, the least square method is a better estimator
for data set II.

Dey et al. [45] applied various estimation methods on
the Gompertz distribution in a medical application.
Fourteen methods were used to estimate the model pa-
rameters. A simulation study was conducted to compare
these methods, and it was discovered that modified mo-
ments and moment estimators outperform others. None-
theless, MPS estimators can still perform reasonably well
and produce good results.

Last but not least, Ramos et al. [51] investigated the
estimation of Fréchet distribution parameters. MLE, per-
centile estimators, MOM, L-moments, MPS, and ordinary
and weighted-least squares were compared in this study,
focusing onMSE. In terms of RMSE, the results revealed that
MPS outperformed the other estimators significantly.

4. Parameter Estimation Methods

&e parameters of EVD have been estimated using a variety
of methods. Nonetheless, we will only concentrate on MLE,
MOM, and MPS for the distributions mentioned above to
evaluate the performance of each estimation method.

4.1. Maximum Likelihood Estimator. Maximum likelihood
estimator (MLE) is one of the methods used for estimating
model parameters [5].&eMLE principle is to use the model
with the highest likelihood. It is a necessary tool for many
statistical modeling techniques and becomes a favored
method of parameter estimation in statistics [52]. &ere are
three advantages of MLE [28]: it has desirable mathematical
and optimality properties, it could give a consistent ap-
proach to parameter estimation problems, and it is appli-
cable in almost all popular statistical software packages. An
example of using MLE to estimate parameters for a prob-
ability distribution with 3 parameters μ, σ, and α is as
follows:

(i) Step I. &e likelihood function of the probability
distribution L(μ, σ, α) is obtained and written as
follows:

L(μ, σ, α) � 􏽙
n

i�1
fμ,σ,α xi( 􏼁,

L(μ, σ, α|x) � L μ, σ, α|x1,∧, xn( 􏼁 � 􏽙
n

i�1
f xi|μ, σ, α( 􏼁.

(19)

(ii) Step II. Take the natural log of the likelihood and
collect terms involving μ, σ, α.

(iii) Step III. &e differentiation of L(μ, σ, α) and solve it
with respect to μ, σ, and α:

z

zμ
log L(μ)􏼈 􏼉 � 0,

z

zσ
log L(σ)􏼈 􏼉 � 0,

z

zα
log L(α)􏼈 􏼉 � 0.

(20)

&e formulas for estimating μ, σ, and α for various ex-
treme value distributions using MLE are shown in Table 1.

4.2. Method of Moments. Method of moments (MOMs) is
one of the conventional estimation methods for fitting
statistical distributions [51]. &e MOM estimators are
usually easy to use and almost always produce some esti-
mate. Unfortunately, MOM frequently generates estimators
that could be improved. &is method relies on matching the
distributionmoment to the sample moment. It is built on the
presumption that sample moments should provide rea-
sonable estimates of the corresponding population moments
[53]. Equations in Table 2 show that x and S represent the
sample mean and standard deviation, respectively. We de-
fine the mean value by μ � (1/n) 􏽐

n
i�1 (Xi). &e jth sample

moment is then computed as follows:

μj �
1
n

􏽘

n

i�1
Xi( 􏼁

j
, (21)
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and the populationmoment by μj(θ1, . . . , θn) � E(X)j, forj �

1, . . . , n, where θ1, . . . , θn are unknown parameters. Next,
mj � μj(θ1, . . . , θn) is set and solved for θ1, . . . , θn. &e
equations are the MOM’s estimator for 􏽢θ1, . . . , 􏽢θn. &e for-
mulas to estimate the parameters μ, σ, and α for various ex-
treme value distributions using MOM are shown in Table 2.

4.3. Maximum Product of Spacing. Cheng and Amin [54]
pioneered the maximum product of Spacing (MPS) method
for univariate distributions while Ranneby [55] developed

this method to approximate the Kullback–Leibler infor-
mation measure. Both researchers demonstrated that the
MPS method could work in situations where the MLE
method fails. &ey also discovered that MPS estimators own
nearly all of the MLE properties. &e MPS estimator pos-
sesses almost all properties, and it gives consistent estimators
with asymptotic efficiency equal to MLE estimators. Fur-
thermore, in some cases where MLE fails, it provides con-
sistent, asymptotically efficient estimators [56].

Di(μ, σ, α) � F x(i); μ, σ, α􏼐 􏼑 − F x(i− 1); μ, σ, α􏼐 􏼑, i � 1, . . . , n + 1. (22)

&e MPS estimators are regarded as values that maxi-
mize the logarithm of the sample spacing geometric. &e
estimated parameters μ, σ, and α.

H(􏽢μ, 􏽢σ, 􏽢α) � argmax
μ,σ,α∈Θ

Sn(μ, σ, α), (23)

where

Sn(μ, σ, α) � lnn+1 ��������������
D1, D2, . . . , Dn+1

􏽰

�
1

n + 1
􏽘

n+1

i�1
ln Di(μ, σ, α),

(24)

􏽢μ, 􏽢σ, and 􏽢α estimators from the parameter μ, σ, and α could
be achieved by solving the nonlinear equations as follows:

z(μ, σ, α)

zμ
�

1
n + 1

􏽘

n+1

i�1

1
Di(μ, σ, α)

δ1 xi|μ, σ, α( 􏼁 − δ1 xi− 1|μ, σ, α( 􏼁􏼂 􏼃,

z(μ, σ, α)

zσ
�

1
n + 1

􏽘

n+1

i�1

1
Di(μ, σ, α)

δ1 xi|μ, σ, α( 􏼁 − δ1 xi− 1|μ, σ, α( 􏼁􏼂 􏼃,

z(μ, σ, α)

zα
�

1
n + 1

􏽘

n+1

i�1

1
Di(μ, σ, α)

δ1 xi|μ, σ, α( 􏼁 − δ1 xi− 1|μ, σ, α( 􏼁􏼂 􏼃,

(25)

where δ = the derivative of the cumulative function of the
extreme distribution with respect to the estimated param-
eter. Reference [54] demonstrated that maximizing μ, σ, and
α in MOM is as efficient as MLE. Compared to the MLE
estimator, the MPS is more consistent under general con-
ditions. &e equations for estimating μ, σ, and α for various
extreme value distributions using MPS are shown in Table 3.

5. Simulation Study

Some experimental results comparing the MOM, MLE, and
MPS estimation methods were discussed in this section
using a simulated study to investigate the performances of
the proposed estimators. We simulated Gumbel distribution
(Type I), Fréchet distribution (Type II), Weibull distribution

Table 2: Estimation parameters by method of moments (MOMs).

Extreme value distribution (EVD) Parameter estimator using MOM
Gumbel (Type I) 􏽢μ � x − ασ, 􏽢σ � (

�
6

√
S/π)

2-Fréchet (Type II) 􏽢α �
����������������������
Γ(1 − (2/α))/Γ2(1 − α − 1)

􏽰
− 1 − (8/x), 􏽢σ � (xα/Γα(1 − α − 1))

2-Weibull (Type III) 􏽢σ � (􏽢αx/Γ(1/􏽢α)), 􏽢α � (􏽐
n
i�1 x2

i [Γ(1/􏽢α)]2/2nx2Γ(2/􏽢α))

3-Weibull (Type III)
􏽢σ � (x − μ/Γ(1 + (1/α)))

􏽢α � (Γ[1 + (1/α)]/
�������������������������
[Γ[1 + (2/α)] − Γ2[1 + (1/α)]]

􏽰
)

􏽢μ � (x1xn − x2
2/x1 + xn − 2x2)

GEV-distribution (GEVD)
􏽢μ � x + (􏽢σ/α[Γ(1 + α) − 1])

􏽢σ � ((± 􏽢α)S(α)/
��������������������

[(Γ1 + 2α) − (Γ1 + 2α)2]

􏽱

)
􏽢α � (± 􏽢α(− Γ(1 + 3􏽢α) + 3Γ(1 + 􏽢α)Γ(1 + 2􏽢α) − 2[Γ(1 + 􏽢α)]3)/(Γ(1 + 2􏽢α) − Γ(1 + 􏽢α)2)3/2)
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Table 4: Maximum likelihood estimation method (MLE).

Parameter Gumbel dist 2-Fréchet dist 3-Fréchet dist 2-Weibull dist 3-Weibull dist GEV-distribution
N� 1,000 μ� 5, σ � 9 σ � 2, α� 5 μ� 1, σ � 5, α� 3, σ � 3, α� 7 μ� 3, σ � 1, α� 5, μ� 1, σ � 3, α� 0.01
Location μ 5.113738 — 1.1914393 — 3.0428244 1.143650684

95% CI (4.534619,
5.693822) — (0.0011892,

2.38169) — (2.468179,
3.617469)

(0.876557,
1.410744)

CP 0.946 — 0.951 — 0.941 0.939
Bias 0.113738 — 0.1914393 — 0.0428244 0.143650684
MSE 0.015054 — 0.0405421 — 0.0877919 0.039205604
Scale σ 8.869851 1.991488 4.7274478 2.999102 0.9575833 3.085025926

95% CI (8.164171,
9.575531)

(1.867646,
2.115330)

(3.757663,
5.69723)

(2.790232,
3.207972)

(0.557583,
1.357578)

(2.836395,
3.333657)

CP 0.941 0.970 0.940 0.978 0.957 0.936
Bias − 0.130149 − 0.008512 − 0.2725522 − 0.000898 − 0.0424167 0.085025926
MSE 0.014656 0.004064 0.0319098 0.011357 0.0434473 0.023320987
Shape α — 5.047998 2.9302638 7.204294 4.8323436 0.009948418

95% CI — (4.849987,
5.246009)

(2.096661,
3.763867)

(6.892497,
7.516091)

(4.4164256,
5.248262)

(− 0.003527,
0.023424)

CP — 0.961 0.936 0.935 0.955 0.971
Bias — 0.047998 − 0.0697362 0.204294 − 0.1676564 − 5.1582E − 05
MSE — 0.012510 0.0018574 0.0067042 0.0073138 4.72724E − 05

N� 1,000,000 μ� 3, σ � 5 σ � 15, α� 30 μ� 0, σ � 30,
α� 10, σ � 10, α� 10 μ� 0.5, σ � 13,

α� 10, μ� 3, σ � 5, α� 0.01

Location μ 2.997115 — − 0.08513055 — 0.46896840 3.005138285

95% CI (2.617996,
3.376234) — (− 1.275381,

1.105119) — (− 0.389635,
1.32757)

(2.828848,
3.181428)

CP 0.961 — 0.929 — 0.947 0.964
Bias − 0.002885 — − 0.08513055 — − 0.0310316 0.005138285
MSE 0.000374 — 0.00376024 — 0.0019286 0.008116277
Scale σ 4.998493 14.98750 30.09018208 9.999651 13.0295087 5.006856483

95% CI (4.692813,
5.304173)

(14.85046,
15.12455)

(29.05454,
31.12583)

(9.553377,
10.44592) (12.41002, 13.6490) (4.810955,

5.202757)
CP 0.971 0.969 0.959 0.963 0.934 0.965
Bias − 0.00150700 − 0.012500 0.09018208 − 0.0003490 0.02950870 0.006856483
MSE 0.00024550 0.0002051 0.010924786 0.0005185 0.001869747 0.000146910
Shape α — 30.63226 10.02834579 9.990547 10.0163149 0.009561359

95% CI — (29.44289,
31.82163)

(9.199042,
10.85765)

(9.487613,
10.49348)

(9.227676,
10.80495)

(− 0.068591,
0.087714)

CP — 0.921 0.953 0.979 0.929 0.967
Bias — 0.632260 0.02834579 − 0.009453 0.0163149 − 0.000438641
MSE — 0.0403435 0.00259374 0.000747787 0.001885151 1.60916E − 05

Table 5: Moment method estimator (MOM).

Parameter Gumbel dist 2-Fréchet dist 3-Fréchet dist 2-Weibull dist 3-Weibull dist GEV-distribution
N� 1,000 μ� 5, σ � 9 σ � 2, α� 5 μ� 1, σ � 5, α� 3, σ � 3, α� 7 μ� 3, σ � 1, α� 5, μ� 1, σ � 3, α� 0.01
Location μ 5.209467 — 0.3666667 — 1.2104030 1.182236950

95% CI (3.974989,
6.443945) — (− 1.245415,

1.978749) — (− 0.589689,
3.01049)

(0.8251437,
1.53933)

C 0.923 — 0.409 — 0.119 0.890
Bias 0.209467 — − 0.6333333 — − 1.789597 0.18223695
MSE 0.044289216 — 0.401815014 — 3.203535133 0.033244846
Scale σ 8.590332 2.008617 7.5555556 2.994487 0.1442575 3.180989490

95% CI (7.22174,
9.958924)

(1.734339,
2.282895)

(6.208391,
8.902721)

(2.854526,
3.134448)

(− 1.141305,
1.42982)

(2.892358,
3.469621)

CP 0.881 0.929 0.551 0.957 0.393 0.948
Bias − 0.409668 0.008617 2.5555556 − 0.005513 − 0.8557425 0.18098949
MSE 0.655396 0.019656 7.0032859 0.0051295 1.1624990 0.05444299
Shape α — 5.465167 2.8888889 7.619065 3.7844660 0.018791750

95% CI — (4.856787,
6.073547)

(2.031479,
3.746299)

(6.967252,
8.270878)

(0.888693,
6.68024)

(0.0053161,
0.032267)
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Table 6: Maximum product of spacings (MPS).

Parameter Gumbel dist 2-Fréchet dist 3-Fréchet dist 2-Weibull dist 3-Weibull dist GEV-distribution
N� 1,000 μ� 5, σ � 9 σ � 2, α� 5 μ� 1, σ � 5, α� 3, σ � 3, α� 7 μ� 3, σ � 1, α� 5, μ� 1, σ � 3, α� 0.01
Location μ 5.107336 — 1.181352 — 3.0144140 1.136788370

95% CI (4.03858,
6.176092) — (− 0.023294,

2.385998) — (2.439769,
3.589059) (0.882695, 1.39088)

CP 0.979 — 0.965 — 0.961 0.959
Bias 0.1073360 — 0.1813520 — 0.0144140 0.13678837
MSE 0.0118304 — 0.0332816 — 0.0002972 0.01872854
Scale σ 8.923836 1.990858 4.737531 2.999377 0.9868423 3.085039300

95% CI (8.006222,
9.84145)

(1.905312,
2.076404)

(3.488991,
5.986071)

(2.781011,
3.217743)

(0.679259,
1.294426)

(2.845176,
3.324902)

CP 0.981 0.978 0.968 0.984 0.974 0.979
Bias − 0.0761640 − 0.00914200 − 0.26246900 − 0.00062300 − 0.01315770 0.08503930
MSE 0.00602903 8.55584E − 5 0.069312226 1.33043E − 05 0.000198752 0.00724726
Shape α — 5.015951 2.918228 7.162783 4.9621254 0.009968900

95% CI — (4.93862,
5.093282)

(1.991924,
3.844532)

(6.938631,
7.386935)

(4.539782,
5.384468)

(− 0.003507,
0.023445)

CP — 0.959 0.964 0.958 0.972 0.967
Bias — 0.01595100 − 0.08177200 0.16278300 − 0.037874600 − 3.110E − 05
MSE — 0.00025605 0.00691907 0.02651191 0.001482802 5.0159E − 08

N � 1,000,000 μ� 3, σ � 5 σ � 15, α� 30 μ� 0, σ � 30, α� 10, σ � 10, α� 10 μ� 0.5, σ � 13,
α� 10, μ� 3, σ � 5, α� 0.01

Location μ 2.998510 — 0.01248723 — 0.4794425 3.003037123

95% CI (2.640391,
3.356629) — (− 0.506537,

0.531512) — (− 0.281934,
1.240819) (2.863204, 3.14287)

CP 0.984 — 0.978 — 0.968 0.988
Bias − 0.00149000 — 0.012487230 — − 0.020557500 0.003037123
MSE 2.25348E − 06 — 0.000156001 — 0.000422762 9.22921E − 06
Scale σ 4.997087 14.99970 29.99258016 9.999803 13.018940 5.004417502

95% CI (4.611407,
5.382767)

(14.85415,
15.14525)

(29.25693,
30.72823)

(9.650049,
10.34956)

(12.46146,
13.57642)

(4.828128,
5.180707)

CP 0.989 0.997 0.991 0.998 0.987 0.986
Bias − 0.00291300 − 0.00030000 − 0.00741984 − 0.00019700 0.018940000 0.004417502

Table 5: Continued.

Parameter Gumbel dist 2-Fréchet dist 3-Fréchet dist 2-Weibull dist 3-Weibull dist GEV-distribution
CP — 0.779 0.864 0.742 0.286 0.931
Bias — 0.465167 − 0.1111111 0.619065 − 1.215534 0.00879175
MSE — 0.312727 0.2037117 0.493836 3.6603391 0.00012456

N� 1,000,000 μ� 3, σ � 5 σ � 15, α� 30 μ� 0, σ � 30, α� 10, σ � 10, α� 10 μ� 0.5, σ � 13,
α� 10, μ� 3, σ � 5, α� 0.01

Location μ 2.966366 — 11.872800 — 0.50000009 3.006222137

95% CI (2.577247,
3.355485) — (6.68255, 17.06305) — (0.455781,

0.544219) (2.765454, 3.24699)

CP 0.859 — 0.110 — 0.979 0.961
Bias − 0.033634 — 11.8728 — 0.000000009 0.006222137
MSE 0.0405454 — 147.9757 — 0.000508984 0.015128564
Scale σ 5.011782 15.01847 1.0707010 9.999611 18.0001921 5.009725335

95% CI (4.406102,
5.617462)

(14.76892,
15.26802)

(− 14.83286,
16.97427)

(9.564931,
10.43429)

(14.57669,
21.42369)

(4.732609,
5.286841)

CP 0.917 0.941 0.019 0.935 0.367 0.897
Bias 0.011782 0.01847 − 28.929299 − 0.000389 5.0001921 0.009725335
MSE 0.0956324 0.0165518 902.74240 0.049184302 28.05282115 0.020084454
Shape α — 31.76106 10.274778 9.992710 22.0002100 0.008961094

95% CI — (30.50113,
33.02099)

(9.345474,
11.20408)

(9.599808,
10.38561)

(16.43889,
27.56153)

(− 0.073961,
0.091883)

CP — 0.687 0.762 0.899 0.153 0.951
Bias — 1.76106 0.274778 − 0.00729 12.00021 − 0.001038906
MSE — 3.101332 0.300305 0.0402370 152.0559 0.001790970
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(Type III), and the GEVD with different values for the
parameters.

&e number of sample sizes (N) used in previous
studies varies greatly. Dey et al. [57] generated N= 1,000
samples of transformed generalized exponential distri-
bution, whereas Ramos et al. [51] chose N= 500,000 for

the fitted Fréchet distribution to compare the perfor-
mance of the various estimation methods. Meanwhile,
Dey et al. [58] simulated N= 100,000 samples of
Kumaraswamy distribution. Rodrigues [49] chose N

= 10,000 to simulate the Poisson-exponential distribution
with various estimation methods. Soukissian and Tsalis

Table 7: Test of goodness of fit and root mean square error with N � 1,000.

Model Log likelihood AIC BIC A W RMSE
Gumbel-MLE − 3752.731 7509.463 7519.278 0.46348167 0.08595688 0.0002449354
Gumbel-MOM − 3753.938 7511.875 7521.691 0.82281230 0.12025590 0.0002451353
Gumbel-MPS − 3752.765 7509.531 7519.346 0.45361000 0.08321900 0.0002449302
Fréchet-MLE − 750.0248 1504.050 1513.865 0.37583648 0.05649818 0.0484279100
Fréchet-MOM − 759.2681 1522.536 1532.352 2.62954654 0.24126612 0.0488245900
Fréchet-MPS − 748.1436 1500.287 1510.103 0.14331630 0.01800061 0.0483957900
Fréchet-3-MLE − 2251.918 4509.837 4524.560 0.32955505 0.03942906 0.0003658070
Fréchet-3-MOM − 2715.859 5437.718 5452.441 416.150933 63.9804000 0.0706939100
Fréchet-3-MPS − 2251.556 4509.112 4523.835 0.31835000 0.04096900 0.0003511651
Weibull- MLE − 620.1875 1244.375 1254.191 0.33785956 0.05217847 0.0060328220
Weibull-MOM − 623.5558 1251.112 1260.927 0.90885173 0.07155323 0.0429038775
Weibull-MPS − 620.2193 1244.439 1254.254 0.37032000 0.06027300 0.0054950800
Weibull-3- MLE 157.6339 − 309.2678 − 294.5446 0.32842518 0.04926565 0.0162757710
Weibull-3-MOM Inf Inf Inf Inf 18.3143900 1.1018382408
Weibull-3-MPS 157.5496 − 309.0991 − 294.3759 0.2807572 0.04370577 0.0162663061
GEVD-MLE − 2711.417 5428.834 5443.557 0.24270623 0.03737667 0.0007444118
GEVD-MOM − 2800.544 5607.088 5621.811 0.42912000 0.06136600 0.0009445907
GEVD-MPS − 2711.411 5428.822 5443.545 0.21240000 0.03254400 0.0007406615

Table 8: Test of goodness of fit and root mean square error with N � 1,000,000.

Model Log likelihood AIC BIC A W RMSE
Gumbel-MLE − 3186828 6373660 6373683 0.5766605925 0.0723973654 0.0002133718
Gumbel-MOM − 3185937 6371879 6371902 16.477515229 2.6486539940 0.0002133731
Gumbel-MPS − 3185902 6371809 6371833 0.2699600000 0.0393380000 0.0002133710
Fréchet-MLE − 902633.6 1805271 1805295 388.21043208 74.546302650 0.0021526790
Fréchet-MOM − 906994.7 1813993 1814017 1342.0150000 148.35070000 0.0021630910
Fréchet-MPS − 902160.6 1804325 1804349 0.1119400000 0.5669100000 0.0021503496
Fréchet-3-MLE − 2733422 5466850 5466885 0.2180080150 0.0315607600 0.0001907248
Fréchet-3-MOM − 2807887 5615779 5615815 18333.010000 1797.1600000 0.0091505427
Fréchet-3-MPS − 2733422 5466850 5466885 0.2612600000 0.0366090000 0.0001906232
Weibull-MLE − 1520320 3040645 3040668 0.3530187557 0.0480795187 0.0020330810
Weibull-MOM − 1520320 3040645 3040668 0.4048516230 0.0580089449 0.0020330760
Weibull-MPS − 1520320 3040645 3040668 0.4294500000 0.0662080000 0.0020330750
Weibull-3-MLE − 1782463 3564932 3564967 0.3671212475 0.0553202892 0.0015759554
Weibull-3-MOM Inf Inf Inf Inf 18149.390000 1.1149331907
Weibull-3-MPS − 1782463 3564932 3564967 0.3011628000 0.0419733100 0.0015754390
GEVD-MLE − 3193448 6386901 6386937 0.2156288283 0.0336231660 0.0002303789
GEVD-MOM − 3291039 6582086 6582121 0.2515600000 0.0255580000 0.0002313981
GEVD-MPS − 3193448 6386901 6386937 0.1927100000 0.0260980000 0.0002303411

Table 6: Continued.

Parameter Gumbel dist 2-Fréchet dist 3-Fréchet dist 2-Weibull dist 3-Weibull dist GEV-distribution
MSE 8.52429E − 06 9.55146E − 08 5.51949E − 05 7.06525E − 08 0.000358804 1.95224E − 05
Shape α — 30.02264 9.99751933 9.992998 10.010710 0.009833649

95% CI — (29.84531,
30.19997)

(9.271215,
10.72382)

(9.550806,
10.43519) (9.568518, 10.4529) (− 0.057776,

0.077444)
CP — 0.953 0.994 0.992 0.943 0.998
Bias — 0.02264000 − 0.00248067 − 0.00700200 0.0107100 − 0.000166351
MSE — 0.00051257 6.29104E − 06 4.90789E − 05 0.0001147 2.88626E − 08
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[59] studied the effects of the sample size for the GEVD on
the design values of wind speed. &e assessment was based
on a simulation study which includes each simulation is
being run for 1000 random samples of each size of maxima
as well as an analysis of real wind speed data. It is also
reported that over 28 years in the Czech Republic, fre-
quency analysis for two-component GEVD was applied to
analyze 6-hour precipitation data from 11 stations [60].

It is critical to differentiate between two types of required
sample sizes based on MOM, MPS, or MLE. As a result, we

considered two different sample size values: small
(N � 1,000) and large (N � 1,000,000). Each sample size
has a different set of parameter values chosen at random,
with the idea that the randomly chosen parameter values
determine the shape of the extreme distributions. &e
goodness-of-fit statistics to compare the fitted distributions
were also calculated: L (maximized log likelihood), AIC
(Akaike Information Criterion), BIC (Bayesian Information
Criterion), Anderson–Darling (A), the Cramér-von Mises
(W), and RMSE. &e model with the lowest values for these
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Figure 1: Density histograms and Gumbel distribution for three methods of parameter estimates.
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Figure 2: Density histograms and two para Fréchet distribution for three methods of parameter estimates.
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statistics was chosen as the best fit for the data. A distribution
with the smallest AIC and BIC values was found to fit the
data better.

AIC � 2K − 2LL,

BIC � K∗ log(N) − 2LL,
(26)

where N � sample size, K � number of parameters in the
statistical model, and LL� the maximized value of the

logarithmic likelihood function for the estimated model.
Meanwhile, the calculation for RMSE is as follows:

RMSE �

��������������
􏽢f xi( 􏼁 − f xi( 􏼁􏼐 􏼑

2

N

􏽳

,
(27)

where f(xi) � fitted distribution, i � 1 until N, 􏽢f(xi) in-
terval is the observed frequency distribution, and xi is
the mid-value for the ith. RMSE was calculated for all
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EVDs using the three-parameter estimation methods
considered. &e estimation method which provides the
smallest value of RMSE is considered as the best esti-
mation method. Finally, a histogram with a density plot
was used to compare the MPS with MLE and MOM
graphically.

5.1. Estimation of Parameters. &e simulation results for all
EVDs of MLE, MOM, and MPS estimation methods as well
as the 95% confidence intervals are presented in Tables 4-6.

&e goodness-of-fit statistics for all EVDs of MLE,
MOM, and MPS are presented in Tables 7 and 8 with small
and large sample sizes, respectively.

Based on the tables, there are virtually no significant
differences in the estimates obtained using the MLE and
MPS methods. In other words, MLE and MPS variations for
all EVDs were approximately 0.06% difference (for μ), 0.04%
difference (for σ), and 0.02% difference (for α). &e nar-
rowest 95% CI widths are provided by MPS and MLE, re-
spectively. Moreover, the MPS estimator provides the lowest
values for MSE and bias of estimated parameters. Similarly,
the values of the goodness-of-fit tests performed, Akaike’s
Information Criterion (AIC), the Bayesian Information
Criterion (BIC), Anderson–Darling (A) test, and the
Cramér-von Mises (W) test are shown in Tables 7 and 8.&e
estimates obtained by the MPS consistently showed lower
values of goodness-of-fit statistics than those obtained by
other methods for both sample sizes with different pa-
rameter values. &e MOM had lower accuracy in estimating
almost all of the parameters for the EVD. Nonetheless, it
provided a better estimate for GEVD than the MLE method.

&e root mean square error (RMSE) of each parameter
estimation method for all EVDs of both sample sizes is also

shown in Tables 7 and 8. For both sample sizes, the MPS
method has the lowest RMSE estimates for all EVDs.
However, in some distributions, the difference in RMSE
values for MPS and MLE estimation methods is considered
almost nonexistent. RMSE values for estimates using the
MOM method, on the other hand, are significantly higher
for almost all distributions. &is indicates that the MPS is a
better fit for the EVD simulated data. As a result, various
estimation methods provide a comprehensive view of the
validity and performance of the estimation methods in
multiple situations of extreme value analysis. Again, it is
shown that MPS could be the best estimation method for
fitting EVD.

5.2. Graphical Results. A histogram is considered one of the
best tools for observed data to represent the goodness-of-fit
of theoretical models. It virtually provides a visual inter-
pretation of the proposed estimation methods. Conse-
quently, the asymptotic behavior of the proposed estimation
methods is established, and their performances are inves-
tigated in the simulation study using the extreme distri-
bution density plot.

Figures 1-6 show the fitted models for all EVDs with N �

1,000 andN � 1,000,000, indicating that theMPS estimation
method fitted the data well for almost all EVDs. Meanwhile,
for some distributions, theMOMfitted the data to EVDwith
less accuracy. As illustrated in Figure 5, the MOM consis-
tently provides a poor fit for the three-parameter Weibull
distribution. &is outcome is consistent with the goodness-
of-fit test results for all EVDs, shown in Tables 7 and 8. As a
result, the histograms show that the MPS method remains
prominent for all extreme distributions.
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Figure 5: Density histograms and three para Weibull distribution for three methods of parameter estimates.
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6. Conclusions

&is review article provides an overview of fitting EVD using
MOM, MLE, and MPS. &e methods’ efficiency is evaluated
by comparing the RMSE and several goodness-of-fit indices
for two sample sizes. &ree types of distributions, namely,
the Gumbel, the Fréchet, and Weibull, were used to rep-
resent the distributions of extreme events. Nonetheless,
determining which distribution is best suited for all extreme
statistical events remains difficult. All of the examined
methods can give point estimates of the GEVD parameters.
However, proposing a unique parameter estimation method
for all data sets and types of cases is difficult.

Based on this study, the MPS method is highly recom-
mended regardless of the sample size because it provides better
estimates for the unknown parameters and the reliability
function. &is review article also revealed that the majority of
the related publications used MPS and other estimation
methods to simulate real-life data, which offers more accurate
parameter estimates. To conclude, the MPS performed better
than MOM and MLE estimation methods in the majority of
cases with the smallest values of RMSE and the narrowest 95%
CIwidths. However, theMPS provided very similar values with
regard to goodness-of-fit statistics to the MLE method.
&erefore, the improvement of the performance of the MPS
method could be taken into consideration for future studies.
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