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Most experimental design literature on causal inference focuses on establishing a causal relationship between variables, but there is
no literature on how to identify a design that results in the optimal parameter estimates for a structural equation model (SEM). In
this research, search algorithms are used to produce a D-optimal design for a SEM for three-stage least squares and full in-
formation maximum likelihood estimators. �en, a D-optimal design for the estimate of the model parameters of a mixed-e�ects
SEM is obtained. �e e�ciency of each of the D-optimal designs for SEMs is compared with univariate optimal and uniform
designs. In each case, the causal relationship changed the optimal designs dramatically and the new D-optimal designs were
more e�cient.

1. Introduction

Most experimental design literature on causal inference
focuses on establishing a causal relationship between vari-
ables, but there is no literature on how to identify a design
that results in the optimal parameter estimates for a
structural equation model (SEM). �is work was motivated
by an agricultural research study by Milander and colleagues
[1] where a SEM was proposed to determine the in�uence of
seeding rate on the yield components of waxy maize and to
better determine the interrelationship between yield and
yield components by estimating the direct e�ect of the path
model based on the biological understanding of the inter-
relationship among the endogenous and exogenous vari-
ables. �e endogenous variables in the proposed system as
described in Figure 1 were the yield components rows per
ear, ear length, kernels per row, kernels per ear, grain yield,
ear circumference, and kernel weight. Seeding rate was the
only exogenous variable.

�e goodness-of-�t parameters for the model were poor,
so the data were reanalyzed to obtain a model that better �t
the data, with the resulting model as described in Figure 2.

However, it did not give any insight into the interrela-
tionship among many of the variables, which raised the
question of whether or not the design was adequate for
structural equation modeling.

�e study was conducted over a period of three years and
the original model was known before the data were collected
[1]. Ideally, the researchers should have designed an ex-
periment which would have allowed for the most precise
estimates of the parameters, thus leading to more precise
inferential statistics. Rather than uniformly applying the
seeding rate levels across the experiment, the optimal design
would have provided the researchers the number of repli-
cates for each seeding rate level and which of the seeding rate
levels should have been replicated more. However, they did
not have the tools to obtain an optimal design for the
proposed model nor were they able to take advantage of the
information that was collected in the �rst year to adjust the
design for subsequent years. �ere simply was no literature
to support such an objective.

Historically, what drove the growth of optimal design
theory was the need to have a design that is optimal for all
parameters that need to be estimated [2, 3]. Technological
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advancements made it possible to develop the search al-
gorithms that are needed to obtain optimal designs [4–8].
)e new growth in the application of experimental design
came about because of the lack of theoretical results in the
optimal design of blocked and split-plot experiments, which
made the computerized design algorithms popular and led
to three proposals for point-exchange algorithms for con-
structing D-optimal blocked designs [9–15].

Traditional statistical analyses focus on univariate linear
models, which have limitations because most random
processes involve multiple dependent variables. )is, in
turn, led to the development of the multivariate linear model
that does not address the causal relationships among the
dependent (endogenous) variables, which is not the case
with structural equation modeling [16, 17]. SEMs allow
qualitative cause-effect information to be combined with
statistical data and provide quantitative assessment of the
cause-effect relationships among, and within, the endoge-
nous and exogenous variables [17, 18].

Even though there have been many algorithms devel-
oped for univariate optimal designs and univariate mixed
optimal designs, there is very limited literature about
multivariate optimal design with examples like the work of
Soumaya and fellow authors [19] and Schwabe [20]. )ere is
literature in experimental design in structural equation

modeling but not in optimal design.)e research in this area
so far is to establish causal relationships (direction of the
arrows) among the variables [21, 22]. )is research extends
to counterfactuals and experimental design where it is used
to establish causal relationships [23]. However, no research
exists to obtain an optimal design to estimate the parameters
of a SEM.

)e gap in literature demonstrates the need for this
current research, which comprises three objectives. For a
given causal structure, the first objective is to obtain a D-
optimal design that allows the most precise estimates of the
endogenous and exogenous parameters of that model. )en,
for a given mixed causal structure with random blocks or
split-plots, the second objective is to obtain a D-optimal
design for estimating the parameters of the model. Finally,
the efficiency of each of the D-optimal designs for causal
structures will be compared with the optimal designs for the
univariate case.

2. Methods

For the univariate case, the linear model is y � X β+ ε,
where y is an n × 1 vector of observations, X is an n × q

design matrix of rank q, β is a q × 1 vector of unknown
coefficients that are estimable, and ε is an n × 1 identically
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Figure 1: )e proposed causal model for a maize yield component study published in Maydica by Milander et al. [1].
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Figure 2: )e data-supported causal model for the maize yield component study published in Maydica by Milander et al. [1].
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independently normally distributed vector with E(ε) � 0
and Var(ε) � σ2I(n) where I(n) is the identity matrix with
rank n. )e least-squares estimate of β is β

∧
� (X′X)− 1X′ y.

Our objective is to choose a design “X” such that
maxX|Var(β

∧
)| � maxX|X′X| [7, 8]. Such a design “X” is

called a D-optimal design.
)e same philosophy would be followed for a mixed

model. )e model for the data that comes from experiments
with random blocks or split-plots is y � X β+Z u + ε where
y,X, β, and ε are defined above and u is a random vector with
E(u) � 0 and Var(u) � σ2uI(b). Z is an n × b matrix of the
form Z � diag[1 k1

, . . . , 1 kb
] where 1 ki

is a ki × 1 vector of
ones. )en, it follows that V � Var(y) � σ2εI(n) + σ2uZZ′.
Now it can be shown that 􏽥β � (X′V− 1X)− 1X′V− 1y where
Var(􏽥β ) � (X′V− 1X)− 1. )e objective becomes to choose
the design matrix “X” such that maxX|X′V− 1X|. However,
V is unknown.)is presents a new challenge and shows that
the more complicated the model, the more challenges can
arise when choosing a D-optimal design.

)e first solution to the above challenge is to assume that
V � Var(y) � σ2εI(n) + σ2uZZ′ is known by making as-
sumptions about σ2ε and σ2u. )e second solution is to
rewrite V � Var(y) � σ2εI(n) + σ2uZZ′ � σ2ε(I(n) + ηZZ′) �

σ2ε(I(n) + (ρ/1 − ρ)ZZ′), where η � (σ2u/σ
2
ε ) and

ρ � (σ2u/(σ
2
ε + σ2u)) [14, 15, 24]. )is allows us to rewrite

|X′V− 1X| � σ − 2q
ε |X′(I + ηZZ′)− 1X| as the function to op-

timize a univariate linear model. It can be assumed without
loss of generality σ2ε � 1 , thus |X′V− 1X| can be expressed in
terms of variance ratio η or in terms of the correlation
coefficient ρ. )erefore, the D-optimal design for a blocked
or a split-plot experiment depends on the variance ratio.
However, Goos and Vandebroek [14, 15] and Goos and
Jones [13] argued that the dependence is minor and pre-
sented algorithms for constructing locally optimal designs
for a given η or ρ. In some special cases, the optimal design is
globally optimal and neither depends on the variance ratio
nor the degree of correlation of which the most popular is
the orthogonal design [14].

)e previous method, or “traditional method” as it is
referred to in literature, is based on optimization of |Var(􏽥β )|

or |(X′V− 1X)| and has two weaknesses [25]. )e first
weakness is that theD-optimal design depends on η or ρ and
these values are not known prior to the experiment. )e
second weakness is that the optimal design focuses only on
the fixed effect parameters and ignores the estimate of the
random effect parameters. )ese weaknesses could have
severe consequences on the estimate of the variance com-
ponents, which severely affects the inferential statistics on
the fixed effect parameters. Mylona et al. [25] provided
scenarios for optimal designs that were constructed using
the traditional D-optimality criterion and, in these designs,
the random effects σ2u and σ2ε are not estimable.

Consequently, the two weaknesses led to a new
composite D-optimality criterion. )e new composite
criterion was proposed by Mylona et al. [25]. )e reason

for calling it composite is because this criterion takes into
consideration both the fixed effect and the random effect
parameters.

However, D-optimality criterion and orthogonal designs
are both dependent on an assumed model. If the assumed
model incorrectly represents the interrelationships between
the endogenous and exogenous variables, it may lead to an
increased bias error. )us, in cases where there is no
knowledge of the design specification, one of the most used
designs is the uniform design in which the design points are
scattered over the experimental region [26]. In comparison
to D-optimal and orthogonal designs, uniform designs are
less sensitive for model selection [27, 28]. Consequently,
uniform design does not require pre-experiment model
specification [29]. Uniform design could be used to explore
the relationship between variables.

For the same reasons that led to the development of
algorithms to account for all parameters of interest in the
univariate case, our objective is to develop algorithms for
SEMs that consider both the endogenous and exogenous
parameters. In structural equation modeling, estimation
methods are more complex and there are a variety of class
estimators.)is research focuses on three-stage least squares
(3SLS) and full information maximum likelihood (FIML)
methods because they are the only full-system estimation
methods where all parameters are estimated simultaneously.

3.D-Optimal Design for a Causal
Structure Model

3.1.,eInformationMatrixApproximation for3SLS. Inmost
systems, researchers are interested in more than one en-
dogenous variable and these variables directly and indirectly
affect each other. To model such a study, we use SEMs. To
demonstrate the methodology and introduce the new ap-
proach forD-optimal designs, the following examples will be
introduced. A simple example is shown in Figure 3 with two
exogenous variables and two endogenous variables.

Many phenomena can be modeled based on this SEM.
For example, at the University of Washington Tacoma there
are two pre-calculus pathways into Calculus I, a two-course
sequence (TMATH 115 and TMATH 116) and a one-course
sequence (TMATH 120). In this model, x1 represents the
grade in TMATH 115, y1 represents the grade in TMATH
116, x2 represents the grade in TMATH 120, and y2 rep-
resents the Calculus I grade. If we are designing a study to
estimate the parameters in Figure 3, our first objective would
be to determine how many students should be enrolled in
each pathway to obtain the best estimates for the three
parameters c11, c22, and b12. )ere are two parameters that
need to be estimated through the first pathway but only one
through the second pathway. In this example, assigning half
of the sample size to each pathway may not be optimal
because there are more parameters on the first pathway than
the second. So, the fundamental question here is, how many
students should be assigned to each pathway to obtain the
optimal estimates for all parameters?

Journal of Probability and Statistics 3



We will focus on the model in Figure 3. In this centered
model, the kth observation can be expressed mathematically
as yk1 � c11xk1 + εk1 and yk2 � b12yk1 + c22xk2 + εk2 where
εk1
εk2

􏼢 􏼣 ∼ N(0,Σ) for k � 1 . . . n. Some definitions are nec-

essary to develop the model. Y(j) is an n × (pj − 1) matrix
that consists of the endogenous independent variables that
are in the jth equation. y

(j)
is an n × 1 vector that consists of

the responses of the endogenous dependent variable for the
jth equation. X(j) is an n × qj matrix that consists of the
exogenous variables that are in the jth equation, b(j) are the
endogenous parameters of the jth equation, and c

(j)
are the

exogenous parameters of the jth equation. ε(j) is an n × 1
vector of random error for the jth endogenous variable. Each
equation in the system can be rewritten using vector
notations. So, y

(j)
� Y(j)b(j) + X(j)c(j)

+ ε(j) and

ε(j) ∼ N(0 , σ2ε(j)
I(n)). Now rewrite the jth equation as y

(j)
�

Y(j) X(j)􏽨 􏽩 b(j)
′ c(j)
′􏽨 􏽩′ + ε(j) where W(j) � Y(j) X(j)􏽨 􏽩

and δ(j) � b(j)
′ c

(j)
′􏼔 􏼕. )erefore, y

(j)
� W(j)δ(j) + ε(j).

Multiply both sides by X′, use matrix notation, and use the
Kronecker product to obtain (I⊗X′)y∗ � (I⊗X′)W∗δ∗ +

(I⊗X′)ε∗ where y∗ � [y
(1)
′ , . . . , y

(p)
′ ]′, W∗ � diag(W(1),

. . . , W(p)), δ∗ � [δ(1)
′, . . . , δ(p)

′]′, and ε∗ � [ε(1)
′, . . . , ε(p)

′]′
[30].

)en, to estimate δ∗, use the Generalized Least Square

(GLS) to obtain δ
∧ ∗

3SLS � [W∗′(Σ− 1 ⊗ X[X′X]− 1X′)W∗]− 1

W∗′[Σ− 1 ⊗X[X′X]− 1X′]− 1y∗. So, the covariance matrix of

the 3SLS estimators is Var(δ
∧ ∗

3SLS) � [W
∧ ∗
′(Σ− 1 ⊗

X[X′X]− 1X′)W
∧ ∗

]− 1 + O(1/n) where W
∧ ∗

� E(W) [31, 32],
which is equivalent to the asymptotic information matrix for
FIML [33]. )us, the estimate of the covariance matrix
would be

Var
∧

δ
∧
∗

⎛⎜⎝ ⎞⎟⎠ � W
∧ ∗′ Σ
∧ − 1
⊗X X′X􏼂 􏼃

− 1
X′􏼠 􏼡W
∧ ∗

􏼢 􏼣

− 1

. (1)

)e reason that we are interested in Var
∧

(δ
∧ ∗

) is because
our objective is to obtain the design X that “minimizes”

Var
∧

(δ
∧ ∗

). Since normality is assumed throughout the re-

search, then Var
∧

(δ
∧ ∗

)− 1 is called the information matrix

estimate and is denoted by M
∧

� [Var
∧

(δ
∧ ∗

)]− 1. )us, our
objective would be to obtain the D-optimal design “X” such
that

max
X

M
∧

� min
X

Var δ
∧ ∗

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (2)

In this paper, we assume that there are no constraints on
the treatments or on the exogenous variables. However, if
there are constraints on the treatments, such as if one of the
treatments is limited, then the optimality criteria can be
adjusted as is done in the univariate case, which is known as
the optimal design of mixture experiments problem
[13, 34–37].

Example 1. .Based on equation (2), theD-optimal design for
the causal structure below (Figure 4) assumes that the
treatments are qualitative treatments for twenty observa-
tions and assumes that the true values for c11, c22, and b12 are
8, 2, and 5, respectively Figure 4:

In vector notation, the model can be expressed as y
(1)

�

c11x(1) + ε(1) and y
(2)

� b12y(1)
+ c22x(2) + ε(2) where

ε(1)

ε(2)
􏼢 􏼣 ∼ N(0 ,Σ⊗ I(20)). In this example, y

(1)
is a 20 × 1

vector that includes the responses of the first endogenous
variable, y

(2)
is a 20 × 1 vector that includes the responses of

the second endogenous variable, x(1) is a 20 × 1 vector that
indicates whether or not the first treatment is applied on the
kth experimental unit as denoted by (xk1 � 1) or (xk1 � 0),
x(2) is a 20 × 1 vector that indicates whether or not the
second treatment is applied on the kth experimental unit as
denoted by (xk2 � 1) or (xk2 � 0), ε(1) is a 20 × 1 vector of
random residuals for the first endogenous variable, ε(2) is a
20 × 1 vector of random residuals for the second endoge-
nous variable, 0 is a 40 × 1 vector of zeros, Σ � I(2), and I(20)

is a 20 × 20 identity matrix. To obtain a D-optimal design,
the algorithm starts with multiple random designs in order
to avoid local optimality. For this specific example, 50 initial
random designs were used, each design with size 20. )e
initial designs were constructed randomly where each xkj

value had a 50–50 chance of being a 1 or 0. To improve the
design, the algorithm compares each point in the design with
the candidate points (0, 0), (1, 0), (0, 1), (1, 1){ } and makes a
simultaneous exchange with the candidate point that im-
proves the optimality criterion from equation (2) the most.
)e exchanges will continue until no further improvement is
achieved or the improvement is sufficiently small. )is
procedure will be repeated for each of the 50 initial designs.
)e final designs will be compared.)e design X that has the

smallest Var
∧

(δ
∧ ∗

) from among the 50 final designs will be
selected as the D-optimal design.

Using the previous algorithm, a D-optimal design for 20
observations for the model in Example 1 is given in Table 1.

x1 y1

b12

x2 γ22

γ11

y2

Figure 3: Identified SEM where each exogenous variable directly
affects only one endogenous variable.
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In the D-optimal design for the causal structure for the
model in Figure 4, the points (1, 1) and (1, 0) were each
replicated nine times, and the point (0, 1) was replicated
twice. )e point (0, 0) was not replicated, which is expected
because the model was assumed to have no intercept.

Table 1 was based on the true value of W
∧ ∗

where the true

parameters are used in W
∧ ∗

. However, the true values are
unknown. )ere are two approaches that address this issue.
First, when prior data are available, estimates of the pa-

rameters can be used to estimate Var
∧

(δ
∧ ∗

3SLS) instead of the
true parameters. One question that arises with the use of this
approach is the robustness of the design. To address the
sensitivity of the true values of the parameters on the design,
simulation is used to obtain the optimal design based on the
estimates of the parameters.

When there is no prior data available, a second ap-
proach is a Bayesian approach which assumes a prior
distribution for the endogenous variables, which is similar
to the approach that is used by Mylona et al. [25] and Goos
and Mylona [38] to address the variance components
optimal design for blocked or split-plot experiments. )is
approach allows for the uncertainty of the endogenous
parameters. Using the Bayesian approach to obtain a 3SLS
D-optimal design for a causal structure will be the subject
of future work.

Optimal design theory is currently limited to univariate
or multivariate applications where one of the biggest
weaknesses of these approaches is that they ignore any
possible causal structure among the endogenous variables.
Because of the lack of theoretical results and the algorithms
to produce optimal designs for a causal structure, one ap-
proach is to use univariate optimal designs for causal
models, which leads to a loss of efficiency. To obtain a
univariate D-optimal design for Example 1, it is assumed
that the treatment will affect both endogenous variables to
avoid the situation where there is an optimal design for each
equation. In this case, we obtain a D-optimal design for both
treatment combinations. An optimal design in the univariate
case for two qualitative treatments (i.e.y � c11x(1)+

c22x(2) + ε) can be found in Table 2 where the four possible
candidate points are (0, 0), (0, 1), (1, 0), and (1, 1).)e three
candidate points (0, 1), (1, 0), and (1, 1) are replicated seven
times, seven times, and six times, respectively. For the same
reasons as in the D-optimal design for a causal structure, the
point (0, 0) was not replicated since the intercept was not
included in the model.

)e ratio of the determinants of the information ma-
trices of the univariate versus the 3SLS designs and the D-
efficiency of the two designs are used to compare the op-
timality of the designs [9, 10]. )e results from Table 3
compare the efficiency of the univariate optimal design from
Table 2 to the efficiency of the new D-optimal design from
Tables 2 and 3.

When comparing the univariate optimal design to the
3SLS D-optimal design for a causal structure, there was an
approximately 18% increase in the determinant of the as-
ymptotic information matrix estimates. )e univariate op-
timal design is about 94% as D-efficient as the 3SLS D-
optimal design for a causal structure in all four cases.

One criticism over the comparison of the D-optimal
designs obtained above is that they are based on the as-
ymptotic information matrices, but the D-optimal designs
were obtained for small samples sizes (20 observations).
)us, it is important to ensure that the results are consistent
for small samples sizes, as well. To verify the comparison, we
simulated data based on the causal structure D-optimal
design and data based on the univariate optimal design
100,000 times each. We then estimated the parameters for

both designs using the GLS estimate δ
∧ ∗

3SLS and calculated the
covariance matrix of the parameter estimates for both de-

signs, whose elements are cov(δ
∧

i, δ
∧

j) � 􏽐
105
j�1 􏽐

105
i�1

(δi − δ
∧

i)(δj − δ
∧

j)/(105 − 1) where δ
∧

i is the ith element of

δ
∧ ∗

3SLS. )e determinants of the covariance matrices of the
parameters estimates were computed. )is process was re-
peated three times. )e determinant of the covariance matrix
of the parameters estimates for the 3SLS causal structure D-
optimal design was consistently smaller than the determinant

x(1) y(1)

x(2)

γ11 = 8

b12 = 5

γ22 = 2 y(2)

y(1) = γ11x(1) + ε(1) = 8x(1) + ε(1)

y(2) = b12y(1) + γ22x(2) + ε(2) = 5y(1) + 2x(2) + ε(2)

Figure 4: )e path model for Example 1.

Table 1: 3SLS and FIML D-optimal design for Example 1.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
x2 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0
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of the covariance matrix of the parameters estimates for the
univariate optimal design, as shown in Table 4.

)e results from Table 4 were consistent with the results
for the comparison of the asymptotic information matrices.
)e 3SLS causal structure D-optimal design consistently
produced a smaller determinant for the covariance matrix of
the parameters estimates than the 3SLS univariate optimal
design. Specifically, the determinant of the covariance
matrix of the parameter estimates for the 3SLS causal
structure D-optimal design was about 15%–19% smaller
than the determinant of the covariance matrix of the pa-
rameter estimates for the 3SLS univariate optimal design.
Based on those results, the 3SLS causal structure D-optimal
design was 5%–7% more D-efficient than the univariate
optimal design. It is important to note that whether the true
parameters or their estimates are used, the 3SLS D-optimal
design for a causal structure did not change.

3.2. ,e Information Matrix Approximation for FIML.
)e full information maximum likelihood (FIML) is another
estimation method for SEMs. In this section, we will discuss
optimal designs based on the FIML estimators and will
investigate the relationship between the optimal designs.

Durbin [33] proposed a transformation for the maxi-
mum likelihood equations that simplified the computations
andmade it easier to study the properties of FIML estimators
and their advantages over 3SLS estimators. However, even
with the special notations, the FIML information matrix is

sophisticated and takes much more work to obtain than the
3SLS informationmatrix. Based onDurbin’s [33] results, our
objective is to obtain a design matrix “X” such that
maxX|MFIML| � maxX|Q′GQ|. )e derivation and the spe-
cial notation are noted in Appendix A. )e reason that both
D-optimal designs are considered is because the 3SLS in-
formation matrix is easy to obtain, but FIML estimators have
advantages over 3SLS estimators as discussed by Durbin
[33].

As with the 3SLS D-optimal design, the objective would
be to obtain the design matrix X that will minimize the
estimate of the determinant of the covariance of the FIML
estimates or maximize the determinant of the FIML in-
formation matrix estimate. )e performance of the D-op-
timal design for a causal structure will then be compared to
the univariate optimal design by computing |Var

∧
(δ
∧ ∗

FIML)|

through simulation. )e design which consistently has the
largest determinants of the information matrix would be the
better design. In the following example, the objective will be
to use the estimate of the information matrix to obtain the
FIML optimal design.

For the causal structure in Example 1, the 3SLS D-op-
timal design is also the D-optimal design for the FIML
estimates. Similar to 3SLS, the true parameters are unknown,
so the FIML estimates are used to replace the true param-
eters for the three simulations. In practice, the information
matrix is estimated based on the parameters estimates. )is
is similar to the approach of Goos and Vandebroek [14, 15]
and Goos and Jones [13] in the case of optimal design for

Table 2: Classical optimal design for univariate model y � c11x(1) + c22x(2) + ε.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
x2 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

Table 3: Parameter values, estimates, determinants of information matrices, their ratios, andD-efficiency based on a 3SLSD-optimal design
and a univariate optimal design for three simulations.

Parameters and information matrices Parameter values Simulation 1 estimates Simulation 2 estimates Simulation 3 estimates
c11 8 7.91 8.25 8.34
c22 2 2.31 0.19 1.30
b12 5 5.01 5.10 5.03
|M| � |Var(δ∗Univariate)|

− 1 110,656 108,062.4 117,621.26 120,228.29
|M3SLS| � |Var(δ∗3SLS)|

− 1 134,784 131,624.88 143,268 146,443.48
|M|/|M3SLS| 82% 82% 82% 82%
D‡ − efficiency � (|M|/|M3SLS|)

1/3 94% 94% 94% 94%
‡ See [10].

Table 4: Determinants of the covariance matrices for the 3SLS causal structure D-optimal design and the 3SLS univariate optimal design
based on three simulations each with 100,000 data sets.

1st 100,000
data sets

2nd 100,000
data sets

3rd 100,000
data sets

Determinant of the covariance matrix for the causal structure D-optimal design 7,613,179.5 7,718,001.3 7,290,743.0
Determinant of the covariance matrix for the univariate optimal design 9,008,371.8 8,893,254.3 9,035,191.3
|M|/|M3SLS| 85% 87% 81%
D − efficiency � (|M|/|M3SLS|)

1/3 95% 95% 93%
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random blocks or split-plots where they suggest using the
estimates of the variance parameters or a reasonable guess,
arguing that the design minimally depends on those values.
)e results obtained for a D-optimal design for a causal
structure in this research are consistent with those of Goos
and Vandebroek [14, 15] and Goos and Jones [13] where the
optimal design did not change when replacing the true
parameters with their estimates.

)e results shown in Table 5 show the efficiency of theD-
optimal design from Table 1 as compared to the efficiency of
the univariate optimal design from Table 2.

)e results for the FIML causal structure D-optimal
design are similar to the results for the 3SLS causal structure
D-optimal design. )e optimal design for the univariate case
was about 6% less D-efficient than the FIML design for the
causal structure. )e loss of efficiency demonstrates the
importance of taking the endogenous parameters into ac-
count to obtain an optimal design to study the causal
structure.

For both the 3SLS and FIML D-optimal designs, the goal
of the three simulations is to show that theD-optimal design
did not change even though the estimate of the parameters
deviated from the true value. However, it may be prob-
lematic to base a conclusion on three simulations only;
therefore, 300 data sets were simulated and then the pa-
rameters were estimated. )ese parameters were used to
obtain a D-optimal design based on the estimate of the
parameters. In each of the 300 simulations, the D-optimal
design did not change and was equivalent to the D-optimal
design in Table 1.

Another way to demonstrate the robustness of the design
is to incrementally change the value of the parameter(s) from
the true value, then obtain a D-optimal design based on the
value of the parameters, and finally compare the D-optimal
design to that which was obtained based on the true value.
For the model in Figure 4, the D-optimal design depends
only on c11 � 8 since W

∧ ∗
includes only y

(1)
� c11x(1) + ε(1).

Table 1 is the D-optimal design for c11 � 8. Now, we will
change the value of c11 incrementally based on the interval
8 ± 6 � [14, 2]. We first start with 8 and then decrease c11
incrementally by 0.1 (i.e.8, 7.9, 7.8, . . . , 2). )en, we obtain
the D-optimal design based on these values and check
whether it is equivalent to the D-optimal design in Table 1.
Similarly, we start with 8 and then increase c11 incrementally
by 0.1 (i.e.8, 8.1, 8.2, . . . , 14). )en, again, we obtain the D-
optimal design based on these values and check whether it is
equivalent to theD-optimal design in Table 1.)eD-optimal
designs did not change even though the value of the pa-
rameters changed up to 75% from the true value. )ese
results are consistent with Goos and Vandebroek [14, 15]
and Goos and Jones [13] where they argued that the optimal
design dependedminimally on the specific parameter values.

4.D-Optimal Design for a Causal Structure
Model with Random Blocks

In applied research, blocked designs are likely the most
commonly used experimental designs since they can be used
to account for variation attributable to sources other than

treatments and can considerably improve the precision of
the experiment. )e first objective is to establish the blocked
causal structure and then to obtain the 3SLS and FIML
estimators for the endogenous and exogenous parameters,
which will be used to estimate their information matrices.
)e second objective of this section is to use the algorithm
described in Section 1.1 in Example 1 to obtain a D-optimal
design for both the endogenous and exogenous parameters.
)e last objective is to compare the efficiency of the D-
optimal design to the classical univariate mixed model
optimal design.

4.1. 3SLS D-Optimal Design for a Causal Structure with
RandomBlocks. )emodel with random blocks is similar to
the model for a completely randomized design except that
the block effect needs to be added to every endogenous
variable. )erefore, for the ith endogenous variable as the
dependent variable, the model can be written as.

y
(i)

� Y(i)b(i) + X(i)c(i)
+ Zu(i) + ε(i) where

u(i)

u(j)
􏼢 􏼣∼

N 0,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

σ2u(i)
σu(ij)

σu(ij)
σ2u(j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⊗I(b)

⎛⎝ ⎞⎠ and all of the other terms have

been previously defined. If the blocks have the same size,
then Z�diag1k,1k,...,1k �Ib×b⊗1k, the elements of u(i) and
ε(i) are assumed to be mutually independent and normally
distributed with zero mean and variances σ2u(i)

and σ2(i),
respectively.

Let W(i) � Y(i) X(i)􏽨 􏽩 and δ(i) � b(i)
′ c

(i)
′􏽨 􏽩′ . )en, the

model with random blocks can be rewritten as
y

(i)
� W(i)δ(i) + Zu(i) + ε(i). Use matrix notation and then

the Kronecker product to rewrite the previous model as
(I⊗X′)y∗ � (I⊗X′)W∗δ∗ + (I⊗X′Z)u∗ + (I⊗X′)ε∗.

)erefore, δ
∧∗

3SLS � [(I⊗X′)W∗]′􏼈 V− 1[(I⊗X′)W∗]}− 1

[(I⊗X′)W∗]′V− 1[(I⊗X′)y∗] where V � Var[(I⊗X′Z)u∗+

(I⊗X′)ε∗]. Let Var(u∗) �Σu⊗I(b) and Var(ε∗) �Σ⊗I(n)

where Σu is a p × p nonnegative definite matrix. )en,
Var[(I⊗X′Z)u∗+(I⊗X′)ε∗]�(I⊗X′Z)Var[u∗](I⊗X′Z)′

+(I⊗X′)Var[ε∗](I⊗X′)′�(I⊗X′Z) Σu⊗Ib􏼈 􏼉(I⊗X′Z)′+
(I⊗X′) Σ⊗In􏼈 􏼉(I⊗X′)′�Z∗G∗Z

∗′+R∗ where z∗�(I⊗
X′Z) and G∗�Σu⊗Ib.

Using the same approach as described in Section 1.1, the
asymptotic information matrix would be Μ3SLS �

[(I⊗X′)W
∧ ∗

]′V− 1[(I⊗X′)W
∧ ∗

] where V � Z∗G∗Z
∗′ + R∗.

Based on the information matrix for the 3SLS estimates
for the causal structure D-optimal design with random
blocks, our objective would be to use the algorithm described
in Section 1.1 in Example 1 to obtain the design X such

that maxX|M3SLS| � maxX|[(I⊗X′)W
∧ ∗

]′V− 1[(I⊗X′)W
∧ ∗

]|.
Since the information matrix depends on the unknown

parameters through Σ
∧
and W
∧ ∗

, we face the same predica-
ment as in the case of the completely randomized D-optimal
design for a causal structure where the parameters are
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unknown. )e solutions that were proposed for the com-
pletely randomized D-optimal design for a causal structure
in Section 1.1 are appropriate for the causal structure D-
optimal design with random blocks. Other approaches are
also possible. For example, in an experiment with random
blocks that is conducted in multiple sequential stages, the
data of one block (year, lab, day, etc.) could be utilized to
obtain initial estimates that are then used to obtain the D-
optimal design for the rest of the blocks (other years, other
labs, other days, etc.). Requiring preliminary information is a
standard part of univariate design. If there is no prior data,
then a reasonable guess can be used similar to the approach
of Goos and Vandebroek [14, 15] and Goos and Jones [13].
In many experiments, multiple factors and limitations of the
experimental material require the use of split-plot designs
and/or incomplete block designs. Specifically, the way the
factors are applied and the nature of the experimental
material give rise to different sizes of experimental units and
limits on block size. For this reason, an incomplete block
design with three factors is used as an example in this
section. In the next example, the objective is to use the
asymptotic information matrix estimates to obtain a D-
optimal design for a causal structure with four random
blocks where the size of each block is four.

Example 2. .Assume that there are three binary treatment
factors (exogenous variables) with two endogenous variables
for the causal structure given in Figure 5. Here, the x(i), i �

1, 2, 3 each with a xkj value, had a 50–50 chance of being a 1
or − 1. Also, assume that the true values for c11, c22, c31, and
b12 are 8, 2, 3, and 5, respectively Figure 5:

A D-optimal design for a causal structure with four
random blocks with block size equal to four under the given
assumptions can be found in Table 6.

)e expected determinant of the information matrix is
5,222,400 and the previous design is not orthogonal. )e
expected determinant of the information matrix of the
orthogonal design in Table 7 is 4,784,128. )e orthogonal
design is the optimal design for the univariate mixed model
with three binary treatment factors and four blocks each
block with size four.

One concern for both D-optimal and orthogonal designs
is that they both require an assumed model structure. One
popular alternative is the uniform design, which is “a space
filling design” ([39], p. 131) that uniformly distributes ex-
perimental points across the design domain without model

pre-specification [39]. )erefore, we will compare the in-
formation of the uniform design to the orthogonal design
and the new D-optimal design. Using a uniform design table
[39, 40], a uniform design for 16 runs with 3 factors and an
experimental cube of [− 1, 1]3 is shown in Tables 7 and 8.

)e expected determinant of the information matrix for
the uniform design is 28,612, which is significantly smaller
than the determinants of the D-optimal and the orthogonal
design information matrices.

)e results show that the new D-optimal design was
approximately 2.2% more D-efficient than the orthogonal
design, whereas the D-optimal design was 72.8% more
D-efficient than the uniform design. )e D-optimal design
performed significantly better than the uniform design but is
still comparable to the orthogonal design. Although or-
thogonal designs are desirable because they are universally
optimal for first-order linear models and are also robust for
nonlinear models, they also come with concerns in that they
sometimes do not exist and require a large sample size [25].
It is also important to keep in mind that in Example 2, there
is only one endogenous parameter. )e significance in the
increase in efficiency of the determinant may not be easily
identified through our simple example. In a more complex
design, there will be more endogenous variables and if those
variables are interconnected in a more sophisticated way,
then the increase of the determinant of the information
matrix would be amplified.

It is worth noting the differences between the 3SLS causal
structure D-optimal design and the orthogonal design. First,
the orthogonal design completely confounds the three-way
interaction (xi1xj2xk3) with the blocks where xi1 is the ith

element of x(1), xj2 is the jth element of x(2), and xk3 is the
kth element of x(3). )e number of replicates for each
candidate point is 2. However, this is not the case in the 3SLS
causal structure D-optimal design where the two-way in-
teraction of (xj2xk3) is confounded with Blocks 1 and 3, the
three-way interaction of (xi1xj2xk3) is confounded with
Block 4, and the two-way interaction of (xi1xk3) is con-
founded with Block 2. In the 3SLS causal structure D-op-
timal design, the number of candidate points is not
replicated equally. For example, the candidate point
(− 1, − 1, − 1) was replicated three times, but the candidate
point (1, − 1, − 1) was replicated only once.

To understand the differences between the designs, it is
important to contrast the asymptotic information matrix of
the 3SLS D-optimal design for a causal structure with that of

Table 5: Parameter values, estimates, determinants of information matrices, their ratios, and D-efficiency based on a FIML D-optimal
design and a univariate optimal design for three simulations.

Parameters and information matrices Parameter values Simulation 1 estimates Simulation 2 estimates Simulation 3 estimates
c11 8 7.98 8.20 8.36
c22 2 2.05 1.17 2.04
b12 5 5.03 4.98 4.98
|M| � |Var(δ∗Univariate)|

− 1 110,656 110,169.65 116,153.07 120,709.06
|MFIML| � |Var(δ∗FIML)|− 1 134,784 133,044.67 141,479.68 147,029.08
|M|/|MFIML| 82% 83% 82% 82%
D‡ − efficiency � (|M|/|MFIML|)1/3 94% 94% 94% 94%
‡ See [10].
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the orthogonal design. In this way, we can see where in-
formation is gained and parameter estimates are improved
for the former design and where information is sacrificed
and parameter estimates worsen for the latter design. Ta-
bles 9 and 10 show the asymptotic information matrices for
the model in Figure 5 for the orthogonal design and the 3SLS
D-optimal design, respectively Table 9.

When the information of the estimates is compared, we
can see that the exogenous parameters in both models have
the same information except for the elements.

c11, c31. However, the endogenous parameters in the
3SLS D-optimal design gained more information with an
increase of about 16% over the orthogonal design. )ese
results are expected because univariate optimal designs do
not take the precision of the endogenous parameters into
account, whereasD-optimal designs for causal structures do.
)erefore, our new approach has the advantage of giving the
optimal combination of treatments for the entire model and
taking into account the precision of both the exogenous and
endogenous parameters.

4.2. FIML D-Optimal Design for a Causal Structure with
Random Blocks. As in the completely randomized D-opti-
mal design for a causal structure, another important class of
estimators is the maximum likelihood estimators. We will
obtain the FIML estimators for a causal structure with

random blocks and then obtain the covariance matrix
estimates for the estimators, or the information matrix
estimates. )e information matrix estimates will then be
used to obtain a D-optimal design for the FIML
estimators.

Starting with the notation from Section 2.1, y∗ − W∗δ∗ �

Z∗u∗ + ε∗ where u
∗

ε
∗

⎡⎢⎣ ⎤⎥⎦ ∼ N
0
0􏼢 􏼣,
Σu ⊗ I(b) 0

0 Σ⊗ I(n)
􏼢 􏼣􏼠 􏼡.

)en, L(V, δ∗|y∗, W) � (− np/2)log(2π) − (1/2)log|V|−

(1/2)(y∗ − W∗δ∗)′V− 1y∗ − W∗δ∗. To maximize the likeli-

hood, (zL/zδ∗) � W
∗′V− 1y∗ − W

∗′V− 1W∗δ
∧ ∗

and set the
partial derivative equal to 0, which gives

W
∗′V− 1y∗ − W

∗′V− 1W∗δ
∧ ∗

� 0. Solving for δ
∧ ∗

, makes

δ
∧ ∗

� (W
∗′V− 1W∗)− 1W

∗′V− 1y∗. )en, find the second
partial derivative and take its expected value to obtain the
information matrix, (z2L/z(δ∗)′zδ

∗) � − W
∗′V− 1W∗.

Next, Var− 1(δ
∧ ∗

) � E(W
∗′V− 1W∗). However, in general, we

cannot find the expected value explicitly until the model is
known since W∗ includes fixed and random variables. But,
for Example 2 above the information matrix is simplified
to [30].

x(1) y(1)

x(2)

x(3)

γ11 = 8

y(2)

y(1) = γ11x(1) + γ31x(3) + Zu(1) + ε(1) = 8x(1) + 3x(3) + Zu(1) + ε(1)

y(2) = b12y(1) + γ22x(2) + Zu(2) + ε(2) = 5y(1) + 2x(2) + Zu(2) + ε(2)

γ31 = 3

γ22 = 2

b12 = 5

Figure 5: )e identified path model for Example 2.

Table 6: A 3SLS causal structure D-optimal design with three binary factors and random blocks where each block size is equal to four.

Block 1 Block 2 Block 3 Block 4
x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

1 1 1 1 1 1 − 1 1 − 1 − 1 − 1 − 1
− 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 1 − 1 1 1
1 − 1 − 1 − 1 1 − 1 1 − 1 1 1 − 1 1
− 1 1 1 1 − 1 1 1 1 − 1 1 1 − 1

Table 7: An orthogonal design for three binary treatment factors and four blocks of size four.

Block 1 Block 2 Block 3 Block 4
x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

− 1 1 1 1 − 1 − 1 − 1 1 − 1 − 1 − 1 − 1
1 − 1 1 − 1 − 1 1 1 − 1 − 1 − 1 1 1
1 1 − 1 1 1 1 − 1 − 1 1 1 − 1 1
− 1 − 1 − 1 − 1 1 − 1 1 1 1 1 1 − 1
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Based on the information matrix above, a FIML D-
optimal design for Example 2 is equivalent to the design in
Table 6. )e determinant of the information matrix is
5,280,295.4. Neither the orthogonal design nor the uniform
design was as efficient as the new D-optimal design. )e
determinants of the information matrices were 4,845,883.1
and 36,622 for the orthogonal design and uniform design,
respectively. )us, the D-optimal design was approximately
2.1% more D-efficient than the orthogonal design and 71.1%
more D-efficient than the uniform design. )ese results are
similar to the D-optimal design for Section 1.2 where both
the 3SLS and the FIML estimates had the same D-optimal
design.

5. Discussion

Optimal design theory and its applications are generally
limited to univariate designs. However, most natural phe-
nomena include multiple endogenous variables which are
related in complicated ways. )ere are two weaknesses
concerning univariate designs. First, univariate designs are

incapable of addressing more than one endogenous variable
that could be affected by different exogenous variables. )e
second weakness is that univariate designs ignore the en-
dogenous parameters. Our new approach overcomes both
weaknesses. )e D-optimality criteria were developed for
both the 3SLS and FIML estimates for a causal structure and
for a causal structure with random blocks. In addition, our
approach is broadly applicable since it generalizes to any
linear causal model with both fixed and random effects, and
with any type of nesting and factorial structure.

Our results show that the D-optimal designs were the
same for both FIML and 3SLS estimates. )e reader may
wonder why they should care about 3SLS D-optimal
design since FIML estimators have traditionally been used
in structural equation modeling since 3SLS estimators are
not based on optimization. However, 3SLS information
matrices are mathematically easier to obtain than FIML
information matrices. )e interest here is in optimal
design, not estimation. Since there was no difference
between the FIML and 3SLS D-optimal designs for both
examples and, in general, since the FIML and 3SLS in-
formation matrices are asymptotically equivalent [33], we

Table 8: A uniform design for 16 runs with 3 factors and an experimental cube of [− 1, 1]3.

# 1 2 3 x1 x2 x3

1 1 12 7 − 1 7/15 − 3/15
2 5 9 1 − 7/15 1/15 − 1
3 3 4 4 − 11/15 − 9/15 − 9/15
4 11 2 2 5/15 − 13/15 − 13/15
5 4 14 15 − 9/15 11/15 13/15
6 13 7 6 9/15 − 3/15 − 5/15
7 2 6 12 − 13/15 − 5/15 7/15
8 14 13 3 11/15 9/15 − 11/15
9 15 3 14 13/15 − 11/15 11/15
10 10 11 13 3/15 5/15 9/15
11 16 10 9 1 3/15 1/15
12 8 8 16 − 1/15 − 1/15 1
13 9 5 8 1/15 − 7/15 − 1/15
14 7 16 5 − 3/15 1 − 7/15
15 6 1 10 − 5/15 − 1 3/15
16 12 15 11 7/15 13/15 5/15

Table 9: Asymptotic information matrix for Example 2 based on the orthogonal design.

c11 c22 c31 b12

c11 16 0 0 0
c22 0 16 0 0
c31 0 0 16 0
b12 0 0 0 1,168

Table 10: Asymptotic information matrix for Example 2 based on the 3SLS D-optimal design.

c11 c22 c31 b12

c11 16 0 4 0
c22 0 16 0 0
c31 4 0 16 0
b12 0 0 0 1,360
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use the 3SLS information matrix both for its simplicity in
obtaining a D-optimal design and to ease hesitancy for
scientists to utilize the more complicated FIML infor-
mation matrix.

In the example of the completely randomized causal
structure, the new D-optimal design increased the infor-
mation matrix determinant by at least 17% over the uni-
variate optimal design. Because of this increase, the
univariate optimal design was only 94% as D-efficient as the
new D-optimal design. )e information matrix of a causal
structure depends on parameter values that are unknown.
)is raises the concern of whether or not the D-optimal
design is robust. Based on the simulation results from Ex-
ample 1, the D-optimal design is robust because it did not
change when the parameter values changed.

)e fact that the information matrix of a causal structure
depends on unknown parameter values is not unique to
causal structureD-optimal designs. )e same issue arises for
D-optimal designs for random effects, or the covariance
parameters, in a split-plot or a blocked design as well where
the values of the parameters are needed to obtain the D-
optimal design. )e results in our research are consistent
with those of Goos and Vandebroek [14, 15] and Goos and
Jones [13] where the optimal design did not change when
replacing the true parameters for an estimate.

Similarly, for a causal structure model with random
blocks, the endogenous parameters had a significant impact
on the D-optimal design. In the univariate mixed model,
orthogonal designs are universally optimal [14, 41].
However, it is not optimal for a causal structure model with
random blocks. As shown in Example 2, the newD-optimal
design increased the determinant of the information matrix
by at least 9%, meaning that the orthogonal design was less
efficient than the new D-optimal design. )e orthogonal

design was consistently about 97.8% and 97.9% as D-effi-
cient as the new 3SLS and FIML D-optimal designs,
respectively.

While it may be a disadvantage that D-optimal designs
require an assumed model structure, the results show that
the uniform design, which focuses on distributing the design
points uniformly over the experimental domain, is not
optimal. )e uniform design was about 27.2% as D-efficient
as the new 3SLS D-optimal design and 28.9% as D-efficient
as the new FIML D-optimal design. In both cases, the
uniform designs consistently lost more than 70% of the
information in contrast to the new D-optimal design. Such a
large loss of information will result in inflating the variance
and has serious consequences on inferential statistics and the
power of the statistical tests.

)e designs that were produced using the new criteria
show that endogenous parameters have an important effect
on D-optimal designs. )e results further show the im-
portance of taking advantage of prior knowledge of the
interrelationships of endogenous and exogenous parameters
to develop a D-optimal design using the algorithms and
methodology developed here. An application for the use of
our algorithms could be in research similar to the heart study
by Mi and colleagues [42] who examined the complex in-
terrelationships among physiological, genetic, and envi-
ronmental factors and their interaction effects on coronary
heart disease (CHD), as shown in Figure 6. )e data in that
study were collected and analysis was performed based on
the data alone; there was no pre-planned design. To obtain
the most precise estimates to describe the system, causal
structure D-optimal design can be used to determine rep-
lication of the levels of each factor such as how many men
and women to include in the study, howmany of the subjects
should be smokers, how many should be obese, or how to

Age

Sex

BMI

Cigarettes/day

Alcohol Oz/wk

SERPINE1

SERPINE1
*BMI

APOE

APOE*
Cigarettes/day

TC/HDL-C

CHD

BG

Hypertension0.099***

0.160***

0.005* 0.393*0.718***0.078***

–0.911**–1.072***

–0.525*

0.078***

0.028*

0.066***–0.038***
0.009***

0.280***

0.018***

0.436***

0.023*

2.587***

Figure 6: Path estimates of SEM of gene-by-environment interaction in the development of CHD from annals of human genetics byMi et al.
[42].
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determine an optimal sample of volunteers based on bud-
getary constraints.

Another practical use of our algorithms and method-
ology comes from the field of agriculture through research
conducted by Campbell and colleagues [43], and Dhungana
and colleagues [44] where the objective was to understand
how gene-environment interactions (GEI) influence inter-
related and complex traits such as grain yield.)is subject of
future work would help to answer questions like which
genotypes should be chosen for the study and what is the
combination of those genotypes to obtain optimal estimates.
As a multi-stage experiment which took place over a period
of three years, our methods could have been implemented to
use the preliminary results from the first year of the study to
answer those questions if the model was pre-determined.

5.1. Limitations. )e fact that the algorithm requires the
model to be predetermined is a challenge because in most
natural phenomena the interrelationships in a system could
be complex. In univariate designs, the challenge is reduced
because there is only one endogenous variable that is directly
affected by an exogenous variable. However, in structural
equation modeling, not all exogenous variables affect en-
dogenous variables directly and the interrelationship among
the endogenous variables needs to be predetermined, as well.
An additional challenge to obtain a D-optimal design
through our algorithm is that some of the estimates of the
endogenous parameters are required before an experiment is
conducted, which is unknown prior to the experiment.
Addressing these limitations is also the subject of future
work by using a prior distribution and a Bayesian approach
to allow for the uncertainty of the unknown endogenous and
exogenous parameters. Finally, how our technique works
with other designs such as A-optimal, C-optimal, or E-
optimal designs is yet to be explored.

Appendix

A. Derivation of the FIML Information Matrix

For the structural equation model in the form YB + XΓ +

E � 0 where the rows of E are independently and
normally distributed with vector mean zero and a p × p

variance matrix Σ, the log likelihood function can be given
by log L � Constant + n log|B| + (n/2)log|Σ− 1| − (1/2)tr

[(YB + XΓ)′(YB + XΓ)Σ− 1]. First, to obtain the FIML es-
timators, we find the partial derivatives and set them to
zero as follows:

z log L

zB

⟶ n B
∧′

􏼒 􏼓
− 1

− Y′(YB
∧

+ XΓ
∧
)Σ
∧ − 1

� 0,

(A.1)

z log L

zΓ

⟶ − X′(YB
∧

+ XΓ
∧
)Σ
∧ − 1

� 0.

(A.2)

Because of the invariance properties of the maximum
likelihood (ML) estimators [45], it would simplify the de-
rivative if we derive the likelihood with respect to Σ− 1 in-
stead of Σ. So,

z log L

zΣ− 1

⟶
n

2
Σ
∧

−
1
2
(YB
∧

+ XΓ
∧
)′(YB
∧

+ XΓ
∧
) � 0.

(A.3)

Per Kmail [30], algebraic manipulation of equations
(A.1) and (A.3) gives

B
∧′

􏼒 􏼓
− 1
Γ
∧′

X′(YB
∧

+ XΓ
∧
)Σ
∧ − 1

� 0. (A.4)

Let W � Y X􏼂 􏼃, Y
∧

� − XΓ
∧
B
∧ − 1

, W
∧

� − XΓ
∧
B
∧ − 1

X􏼔 􏼕,

and let C �
B

Γ􏼢 􏼣 and C
∧

� B
∧

Γ
∧⎡⎢⎣ ⎤⎥⎦. Now rewrite (equations

(A.2) and (A.4)) in terms of these new notations. )ese
equations can be written as

B
∧′

􏼒 􏼓
− 1
Γ
∧′

X′(YB
∧

+ XΓ
∧
)Σ
∧ − 1

− X′(YB
∧

+ XΓ
∧
)Σ
∧ − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0

0
􏼢 􏼣. (A.5)

)en, by rewriting the previous equation,

B
∧′

􏼒 􏼓
− 1
Γ
∧′

X′

− X′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(YB
∧

+ XΓ
∧
)Σ
∧ − 1

�
0

0
􏼢 􏼣. (A.6)

Next,

− XΓ
∧
B
∧ − 1

X􏼔 􏼕
′

􏽼√√√√√√􏽻􏽺√√√√√√􏽽

W
∧

Y X􏼂 􏼃
􏽼√√√􏽻􏽺√√√􏽽

W
∧

B
∧

Γ
∧

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

􏽼√􏽻􏽺√􏽽

C
∧

Σ
∧ − 1

� 0.
(A.7)

Finally,

W
∧ ′

WC
∧
Σ
∧ − 1

� 0. (A.8)

)ese are under the same restrictions as (equation (A.2))
and (equation (A.4)), which implies that the only unknown
elements of C

∧
in the left-hand side are equated to zero.

Let c
∧

(j) be the jth column of C
∧
where j � 1, . . . , P. )is

leads us to conclude that the jth element of c
∧

(j) is one since

the diagonal of B consists of 1’s. Also, other elements of c
∧

(j)

are zero by the original model restrictions on B and Γ. Let mj

be the number of unknown elements in c
∧

(j) and let − δ
∧

(j) be

the mj × 1 vectors of these unknowns. In other words, − δ
∧

(j)

represents the unknown coefficients of the jth equation in
the original model. Let the columns of W � Y X􏼂 􏼃 cor-
responding to unknown elements of c

∧
(j) be rearranged as

n × mj matrix called Q(j). Also, let y
(j)

represent the jth

12 Journal of Probability and Statistics



column of Yn×p. )e new notations will allow us to rewrite
(equation (A.8)) without restrictions. Note that

Wc
∧

(j) � y
(j)

− Q(j)δ
∧

(j) since the coefficient of y
(j)

is one,

Q
(j)

has coefficients of − δ
∧

(j), and the rest of columns of W

have coefficients of zero. )us,

WC
∧

� y
(1)

− Q(1)δ(1), y
(2)

− Q(2)δ(2), . . . . . . , y
(p)

− Q(p)δ(p)􏼔 􏼕.

(A.9)

By substituting this quantity in to (equation (A.8)), it
becomes

W
∧ ′

􏽘

p

i�k

y
(k)

− Q(k)δ
∧

(k)􏼠 􏼡 σk1
, σk2

, . . . , σkp
􏽨 􏽩 � 0, (A.10)

where σkj is the kjth element of Σ− 1. Consequently, the jth

column of the left-hand side of (equation (A.10)) is equal to

W
∧ ′

􏽐
p

k�1(y
(k)

− Q(k)δ
∧

(k))σkj � 0. Use similar notation as

before and let Q
∧

(j) be the columns of W
∧ ′ that correspond to

unknown elements of the vector c
∧

(j). For that reason,

Q
∧

(j) 􏽐
p

k�1(y
(k)

− Q(k)δ
∧

(k))σkj � 0. is equivalent to the pre-
vious equation. )e full system is obtained by stacking all of
the equations and using a similar technique as the 3SLS. Let,

Q

Q
∧

�

Q
∧

(1) 0 0

0 ⋱ 0

0 0 Q
∧

(p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

y
∗

�

y
(1)

⋮

y
(p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

δ
∧
∗

�

δ
∧

(1)

⋮

δ
∧

(p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G �

σ11I σ12I · · · · · · σ1P
I

σ21I σ22I σ2P
I

⋮ ⋱ ⋮

⋮ ⋱ ⋮

σP1
I σP2

I · · · · · · σPP
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.11)

)en, equation (A.10) simplifies to

Q
∧

′G y
∗

− Qδ
∧
∗

⎛⎜⎝ ⎞⎟⎠ � 0, (A.12)

which implies that,

Q
∧ ′

GQδ
∧
∗

� Q
∧ ′

Gy
∗
.

(A.13)

)e advantage of this notation is that the elements of δ
are unknown, and it is an unrestricted set of equations. )e
restrictions on B and Γ have been resolved by the notation.
However, there is a problem in solving for δ since G is

unknown. In addition, Q
∧

consists of columns of

W
∧

� − XΓ
∧
B
∧ − 1

X􏼔 􏼕, which is unknown because of Γ
∧
and B
∧
.

)erefore, replace these values by initial values and replace.
G by its ML estimate,
Σ
∧
⊗ I � (1/n)(YB

∧
+ XΓ
∧
)′(YB
∧

+ XΓ
∧
)⊗ I. )us, (equation

(A.13)) becomes

Q
∧ ′

G
∧

Qδ
∧
∗

� Q
∧ ′

G
∧

y
∗
.

(A.14)

Let the maximum likelihood estimate of
W � − XBA X􏼂 􏼃 be denoted by W

∧
not by W

∧
. )e estimate

of Q which is the arrangement of W is denoted by Q
∧
. Finally,

the maximum likelihood estimate of δ∗ is δ
∧ ∗

.
Using the results from (A.14), Q

∧ ′
G
∧

Qδ
∧ ∗

� Q
∧ ′

G
∧

y∗.

However, A, B, and G
∧
are unknown. )erefore, an iter-

ative approach needs to be used. Start by the 2SLS esti-
mates which are of O(n− (1/2)) in probability. To obtain

the second estimates, let δ
∧ ∗

(2) � δ
∧ ∗

(1) + dδ
∧ ∗

. Using the first-
order Taylor expansions, let Q(1) and G(1) be the values of

Q and G evaluated at δ
∧ ∗

(1). )en, Q(1)G(1)(Qδ
∧

(1)
∗ − y∗) +

Q(1)G (1) Q dδ
∧ ∗

+ (dQ′ G(1) + Q(1)dG)(Qδ
∧ ∗

(1) − y∗) � 0.
But since dQ′G(1) and Q(1)dG are small in comparison
to Z(1)G(1), we ignore the third term and conclude
that dδ � (Q(1)G(1)Q)− 1Q(1)G(1)(y∗ − Qδ(1)). )erefore,

δ
∧ ∗

(2) � δ
∧ ∗

(1) + dδ
∧ ∗

� δ
∧ ∗

(1) +(Q(1)G(1)Q)− 1Q(1)G(1)y
∗ − δ
∧ ∗

(1) �

(Q(1)G(1)Q)− 1Q(1)G(1)y
∗. Repeating the previous proce-

dure, we can generalize the results for the (r + 1) esti-

mates where δ
∧ ∗

(r+1) � (QrGrQ)− 1QrGry
∗. Kmail [30]

shows the asymptotic variance matrix of the estimates is

the Var(δ
∧

FIML) � (Q′GQ)− 1 + O(n− 1).
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