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This paper proposes a general method for robots to learn motions and corresponding semantic knowledge simultaneously. A
modified ISOMAP algorithm is used to convert the sampled 6D vectors of joint angles into 2D trajectories, and the required
movements for writing numbers are learned from this modified ISOMAP-based model. Using this algorithm, the knowledge
models are established. Learned motion and knowledge models are stored in a 2D latent space. Gaussian Process (GP) method
is used to model and represent these models. Practical experiments are carried out on a humanoid robot, named ISAC, to learn
the semantic representations of numbers and the movements of writing numbers through imitation and to verify the effectiveness
of this framework. This framework is applied into training a humanoid robot, named ISAC. At the learning stage, ISAC not
only learns the dynamics of the movement required to write the numbers, but also learns the semantic meaning of the numbers
which are related to the writing movements from the same data set. Given speech commands, ISAC recognizes the words and
generated corresponding motion trajectories to write the numbers. This imitation learning method is implemented on a cognitive
architecture to provide robust cognitive information processing.

1. Introduction

Robots are expected to generate human-like behaviors in
dynamic environments [1, 2]. However, it is very difficult
for robots to develop skills or behaviors totally from scratch
without any initial knowledge. As stated in Sloman’s paper,
robots should learn both altricial and precocial behaviors
after their “birth” [3]. Therefore, it is reasonable that robots
have some basic and simple initial knowledge with motion
primitives [4], or some basic and simple initial skills to
explore the world to develop new knowledge and skills to
survive or complete tasks. Upon these initial knowledge and
skills, humans can teach robots more complex behaviors or
skills to complete much more complex tasks.

Imitation learning (also called learning from demonstra-
tion, programming by demonstration) is now considered
as a powerful tool for transferring skills between robots
(especially humanoid robots) [5]. Unlike the traditional
teaching-executing mode, where robots simply record the
trajectory programmed by human operators and move the
angles and end effector along the trajectory, since 1970s,

the researchers had tried to train robots to learn simple
motion patterns [6]. In 1980s, Atkeson trained a robot to
learn how to balance an inverted pendulum in an upright
position through practice [7]. From then, many methods in
imitation learning have been proposed in various areas [8].
In 2000s, researchers found biological evidence and models
of imitation learning in animals [9]. Gradually, imitation
learning has been divided into two parts [10]. one is to train
robots to learn the dynamics of movements [11] and the
other is to train robots to learn the primitives in a behavior
sequence [12].

The motivation of this paper is to find a method that
robots can learn motion models and semantic knowledge
simultaneously in the current popular imitation learning
framework. In the experiment part, a humanoid robot,
named ISAC, is trained to learn writing numbers from a
human teacher.

The rest of this paper is organized as follows. Section 2
introduces the current related work; Section 3 explains the
system framework and the algorithms used in this frame-
work; Section 4 explains the implementation on a cognitive
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architecture; Section 5 explains the experiment setup and the
experimental results; Section 6 discusses the experimental
results and the future work; Section 7 concludes the work in
this paper.

2. Related Work and Motivation

2.1. Motion Learning. Demonstrations of motions are given
by human teachers or other robots and a robot student tries
to record the demonstrations. There are many different kinds
of methods for demonstrating the motions: learning from
observation [13], from joystick operation [14], by manually
moving the arm of a robot [10], and from the sensor on the
human body [15, 16].

Sometimes the dimension of the recorded data is reduced
by projecting the data from a high-dimensional data space
to a low-dimensional data space, named latent space. Corre-
spondingly, the data needs to be reconstructed from the low-
dimensional data space to the high-dimensional data space.
The “dimension reduction” and the “reconstruction” are
not always required in current imitation learning research.
In some situations where the dynamics of the demon-
strations need to be analyzed or several inner correlations
need to be analyzed, the “Dimension Reduction” and the
“Reconstruction” can be applied. Many dimension reduction
methods are proposed to extract the features of the data such
as principal component analysis [17], factor analysis [18],
ISOMAP [19], local linear embedding [20], and MDS [21].
A typical example of using dimension reduction technology
is [10], in which Calinon and Billard proposed a method
to utilize the dimension reduction methods to establish a
strong coupling relationship between the data in the latent
space and the data space, and use the data distribution in
the latent space to ensure the generated behavior has similar
inner dynamics and constraints to the demonstrations.

The learned motion models are stored in the memory
(database) of robots, where robots store the learned knowl-
edge or skills. Linear Global Model (LGM) [22], Gaussian
Process (GP) [23], Locally Weighted Regression (LWR)
[24], Locally Weighted Projection Regression (LWPR) [25],
Principal Curve (PC), Gaussian mixture model [26], and
Artificial Neural Network (ANN) [27] are used for represent-
ing the models in the memory.

2.2. Semantic Knowledge Learning. Robots need to under-
stand the learned motions, and it means that robots need
to relate these motion models to corresponding semantic
knowledge. This is normally done by labeling the motion
models with a semantic name or with a semantic description
of related tasks.

2.3. Generation. Given a similar and slightly different sit-
uation (where robots need to complete a same type of
task with different parameters), a command, or an outside
trigger (signal, image, etc.), required actions are planned
and required motion models are retrieved by searching
their corresponding behavior names in the “labeled behavior
models.”

If needed, the parameters of the motions are modified
to adapt to the similar but slightly different situation. The
generated behaviors are described as actions with specified
parameters. Dynamic Movement Primitives (DMPs) [16] are
widely for generating motions which have similar dynamics
to the demonstrations and can achieve various targets.
Calinon et al. proposed a method to minimize the weighted
distance between the generated motions and the learned
motions both in the latent space and in the original data
space [10]. Peters used reinforcement learning [28] methods
for robots to adapt the parameters of motion models to
generate similar motions in similar but slightly different
situations [29]. Theodorou applied optimal control [30]
in reinforcement learning environment for robots to learn
the motion models of demonstrations and generate similar
motions using DMP [31, 32].

If the data is stored in a latent space, the generated
trajectories of motions need to be projected from the latent
space to the original data space, for example, joint space.

2.4. Motivation. Robots need to learn the motions of the
behaviors and the semantic meaning of the behaviors at two
stages as described in former sections. One of the learning
stages is still like a programming process, in which the
behavior names are assigned to the motion models manually
by human teachers.

An important problem is that robots can learn the
motions of the demonstrations and use the learned motions
in a similar but slightly different situation, but how can
robots use such learned knowledge in other area besides
executing movements, for example, recognition, seman-
tic understanding, reasoning, and planning, Especially in
writing, the learned movements should relate to semantic
meanings of the letters, numbers or symbols, and robots
may use the learned movements to find their higher level
semantic meanings. When we see someone demonstrate how
to a character, we can have direct thought about the meaning
of that character in our brain, and when we have the method
of writing a character in our brain, we can evaluate the results
with a real character. A game which may be familiar with
most of us is that someone writes letters on our back using
fingers and we try to guess what he/she is writing. Obviously,
we, humans, can use the sensing information on the back
to construct the trajectory of the movement of the finger in
our brain, and try to compare it with our learned knowledge
about the letters. In this paper, the robot uses encoders to
sense the movement of the joints in the joint space and tries
to match the sensed movement of the joints with the learned
knowledge about the numbers. Then, human teachers do not
need to teach the robot that what the number is and the robot
can automatically relate the learned movements of writing
letters to the corresponding letters.

3. System Design

In this paper, we proposed a general framework, using which
robots can complete two learning stages mentioned above
simultaneously, which is shown in Figure 1.
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Figure 1: Proposed framework for imitation learning.

From Figure 1, the contribution of this proposed frame-
work is that the information for both motion models and
the knowledge models is both from one single source. The
robot uses the information of the demonstrations to learn
motion models and the knowledge models. In this paper,
ISAC learn how to write numbers and to automatically relate
the motions of writing numbers to their semantic knowledge
models.

3.1. Demonstration. Demonstrations are given by human
teachers. In this paper, demonstrations are shown by man-
ually moving the right arm of ISAC.

The recorded data is θs = {θv, t}, which is an N × 7
matrix. θv records the angles of six joints on the right arm
of ISAC, and t is the temporal information.

3.2. Feature Extraction. For most situations, robots need
to learn two features: motions and semantic meaning. The
extracted information is stored in corresponding models.

3.2.1. Motion Models Learning. As mentioned in the intro-
duction section, there are many methods to represent the
data of motions. In this paper, we use a modified ISOMAP
algorithm [33] to project the 6-dimensional data space to a
2-dimensional space. The movements of the writings are in a
3-dimensional Cartesian space which is driven by 6 joints.
However, the features of the writings are 2-dimensional
because the characters are written on a 2-dimensional plane.
So it is reasonable to use the features on a 2-dimensional
plane for other use. The additional motivations of using this
modified ISOMAP algorithm is to visualize the sampled data
on 2-dimensional plane for researchers to find the features
of motions easily, and to make the trajectory on the 2-
dimensional plane does not have overlapped parts inside
itself or have intersections inside itself. Using this algorithm,
the spatial and temporal characteristic of the sample data can
be visualized on a 2-dimensional plane.

We want to mention that dimension reduction is not
necessary for all applications. In this paper, the dimension
reduction is convenient for extracting the features and using
the features in recognition.

The algorithm of the original ISOMAP algorithm is
specified as follows.

(1) Sample the points on the demonstration trajectory:

θs = {θv, t}. (1)

(2) Compute the geodesic distance matrix DMs:

DGs
(
i, j
) =

⎧
⎨

⎩

∥
∥
∥θvi − θv j

∥
∥
∥, if

∥
∥
∥θvi − θv j

∥
∥
∥ ≤ d

0, otherwise

DMs
(
i, j
) = min

(
DGs

(
i, j
)
,DGs(i, k) + DGs

(
k, j

))
,

k = 1, 2, . . . ,N ,

(2)

DMs is iteratively calculated until the values of the ele-
ments are converged.

In the original ISOMAP algorithm, ‖θvi − θv j‖ is defined
as an Euclidean spatial distance between two points: θvi
and θv j . In our modified ISOMAP algorithm, ‖θvi − θv j‖
is defined as a temporal distance between two points: θvi
and θv j . θv is used to record the angles of the six joints:
θv = θv1, θv2, . . . , θvN .

(3) Compute the inner products,

τ(DMs) = −1
2
HSH , (3)

where Si j = DMsi j
2, and H = δi j − (1/N) (δi j =

1, when i = j, δi j = 0, when i /= j).

(4) Compute the new coordinates of the sampled points
in the latent space X:

xi =
(√

λs1αs1,
√
λs2αs2

)T
, (4)

where λ1 and λ2 are the two largest eigenvalues of
τ(DM) with two corresponding eigenvectors: α1 and
α2.

The modified ISOMAP method, which reflects both the
temporal and spatial relationship between sampled data
points on a two-dimensional plane, is used to train robots
to learn the motions of writing the letters on a two-
Dimensional plane [33].
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The original ISOMAP is an extension of the MDS, which
constructs the distance matrix by connecting the sampled
points through the neighbors. The original ISOMAP is
used to describe the distance between the sampled neighbor
points. In order to find the temporal information of the sam-
pled trajectory, in our algorithm the neighbors are strictly
defined as temporal neighbors. The spatial relationships
are not defined but calculated by this modified ISOMAP
algorithm. The modification is designed in

DGt
(
i, j
) =

⎧
⎨

⎩

∥
∥∥θvi − θv j

∥
∥∥, if

∣
∣∣ti − t j

∣
∣∣ ≤ s,

0, otherwise,
(5)

where s is the temporal threshold value. In (1), d is the spatial
threshold value.

Using this method, DGt and the corresponding τ(DMt)
are calculated. The sampled points in the latent space are

represented as yi = (
√
λt1αt1,

√
λt2αt2)

T
, where λt1 and λt2 are

the two largest eigenvalues of τ(DMt) with two corresponding
eigenvectors: αt1 and αt2.

Jenkins and Matarić proposed spatial-temporal ISOMAP
algorithm in 2004 [34]. Their method is comprehensive
and defines the types of neighbors in detail. For different
neighbors, the construction of the distance matrix is different
in their method. In our method, we simply add temporal
constraints on the construction of the distance matrix
and strictly assume all the distances should be temporal
related. This kind of method is simple but convenient for
computation. Both Jenkins’s method and our method are
effective for describing the spatial-temporal characteristics of
the sampled data points.

In current imitation learning, behaviors are special
robotic movements in certain task-related situations. This
means we can assume that the sampled data from demon-
strations of one behavior always lie on the same manifold in
the data space. The results of projecting data from the latent
space to the data space must be on the same manifold as
the demonstration. Therefore, it is reasonable to assume that
there exists a relationship between the data in the data space
and the latent space and it can be described as a function:

θvi = f (xi,W), (6)

where xi is a data point in the latent space and θvi is a
corresponding data point in the original data space.

Therefore, f (X ,W) is designed as a generalized linear
regression model:

θvi =WΦ(xi). (7)

Φ(x) is composed of R basis functions:

Φi(x) = exp

(

− (xi − ci)
2

Σi

)

, i = 1, 2, . . . ,R, (8)

where ci is the center of the ith basis function and Σi is
the bandwidth. The centers are uniformly distributed in the
latent space and the bandwidth is designed for the basis
functions to cover the latent space.

W is a (D − 1) ∗ R matrix which projects the data
from the latent space to the data space. However, Bishop has
verified that the number of basis functions must typically
grow exponentially with the dimensionality of the input
space [35]. This means the advantage of dimension reduction
in calculation and storage eventually arrives at a certain
value as the number of the dimensionality increases. In
Section 4, comparisons of results using different number of
basis functions are given.

Assuming the projection matrix W is known, the proba-
bilities of the distributions of the points in data space are

p
(
θi | xi,W ,β

) =
(
β

2

)D

exp

(

−β

2

∥
∥ f (x,W)− θ

∥
∥2

)

. (9)

The log likelihood of the probability of the distribution of
points in data space is the multiplication of the distribution
probability of each point:

L
(
W ,β

) =
N∑

i=1

ln p
(
ti | xi,W ,β

)
. (10)

Maximizing the log likelihood function can be achieved
by differentiating the log likelihood function with respect to
W :

N∑

i=1

(WΦ(xi)− θi)Φ(xi)
T = 0. (11)

Rewrite (11):

W
N∑

i=1

Φ(xi)Φ(xi)
T =

N∑

i=1

θiΦ(xi)
T . (12)

Projection matrix W can be calculated from (11),

W =
N∑

i=1

θiΦ(xi)
T ∗

⎛

⎝
N∑

i=1

Φ(xi)Φ(xi)
T

⎞

⎠

†

, (13)

where (
∑N

i=1 Φ(xi)Φ(xi)
T)
†

is the Moore-Penrosepseudo
inverse matrix of

∑N
i=1 Φ(xi)Φ(xi)

T .

The sampled trajectory is projected from a 6-dimensional
data space to a 2-dimensional space using the original
ISOMAP algorithm and a modified ISOMAP algorithm in
“feature extraction” block.

In the latent space, we have data points set X , which
is a two-dimensional space. As stated in previous sections,
in “dimension reduction,” the temporal information is only
used to calculate the neighborhood graph. But in the
“behavior planning” stage, the temporal information should
be combined into the model and set as the enquiry point.

Data points in the latent space follow (14):

xi = f (ti), i = 1, 2, . . . ,N. (14)

Using Gaussian process [22], we can get a kernel method-
based model of the demonstration in the latent space. The
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points on the two-dimensional plane are described as xi =
{x′i, x′′i}, and one GP model is used in one dimension
in the latent space. GP has been widely used [36–39] for
representing the sampled data points because its robustness
and nonparametric characteristics.

Assume the N two-dimensional data points in the two-
dimensional latent space has the following probabilistic
distribution:

p
(−→
z′ |

−→
x′
)
= N

(−→
z′ |

−→
x′ ,β−1I

)
,

p
(−→
z′′|

−→
x′′
)
= N

(−→
z′′|

−→
x′′,β−1I

)
.

(15)

Take the calculation in the first dimension as an example:

p(
−→
z′ ) = N (

−→
z′ | 0,CN ), where the covariance matrix

C(n,m) = k(tn, tm)+β−1δnm, and�z is a vector of target values.

k(tn, tm) is the kernel function. Normally,

k(tn, tm) = θ0 exp
{
−θ1

2
‖tn − tm‖2

}
+ θ2 + θ3tn

Ttm, (16)

and xn is considered as the timing step in the demonstration.

In the “Generation” stage, a new time step tenquiry is
given as an enquiry point and GP is used to calculate the
corresponding data value z′enquiry.

p
({−→

z′ , z′enquiry

})
= N

({−→
z′ , z′enquiry

}
| 0,CN+1

)
. (17)

The covariance matrix is:

CN+1 =
⎛

⎝CN
�k

�kT c

⎞

⎠, (18)

where k = k(tn, tenquiry) for n = 1, 2, . . . ,N .

Using Bayesian method, z′enquiry is calculated using (19)

z′enquiry = �kTCN
−1

−→
z′ . (19)

Using the same method, z′′enquiry can be calculated using
(20):

z′′enquiry = �kTCN
−1 �z′′. (20)

In this part, the input is a data set including the sampled
data points in a 6-dimensional joint space, and the output is
a GP model for the trajectory in the latent space. Given an
enquiry point (normally a timing point), the output of this
model, which is (19) and (20), is a corresponding data point
on the trajectory.

Using the following equation, we can project the data
from the low-dimensional latent space to the original data
space:

θvi =WΦ(xi). (21)

These data points will be used for robot to learn how
to generate the required movement trajectories. In robotic
imitation learning, robots need to fit the recorded movement

trajectory with the model used in a generator [16, 40].
The fitting process is considered as learning a pattern in a
generator.

In our system, we used the Dynamic Movement Prim-
itives (DMP) [11], proposed by Ijspeert, as the pattern
generator.

DMP is configured as

τż = αz
(
βz
(
g − y

)− z
)
,

τ ẏ = z + f .
(22)

g is the goal state, z is the internal state, f , an RFWR model,
is calculated to record the dynamic of the demonstration and
to guarantee convergence of the new generated trajectories, y
is the position generated by the DMP differential equations,
and ẏ is the generated velocity correspondingly. αz, βz, and τ
are the constants in this equation.

The fitting (or learning) is to train robots to learn the
model:

f =
∑N

i=1 Ψiwiv
∑N

i=1 Ψi

. (23)

and v satisfies the following equation:

τv̇ = αz
(
βz
(
g − x

)− v
)
,

ẋ = v.
(24)

Ψi is a receptive basis function, which is distributed in the
space:

Ψi = exp

(
1

−2hi
2 (x − ci)

2

)

. (25)

ci is the center of the basis function, which is distributed in
the space, and hi is the bandwidth.

The target is to use the sampled points as x and use
iterative learning method for robots to adapt the parameters
wi. After the learning, the parameters are fixed and do not
need to change at the generation stage:

Δi
(n+1) = exp

(
−1

2

(
x(n+1) − ci

)T
D
(
x(n+1) − ci

))
,

wi
(n+1) = λwi

(n) + Δi
(n+1),

(26)

The subscript (n+ 1) denotes that this is the (n+ 1) iteration,
x(n+1) is the data point used to update the model at the (n+1)
iteration, and Δi

(n+1) is computed as the weighted distance
between the data point x(n+1) and the center of the basis
function, which is used to update the weight wi.

3.2.2. Semantic Knowledge Learning. Recording and writing
the characters are not enough for robots to interact with
humans and robots should understand the semantic mean-
ing of the motions and correlate the motion models and the
semantic knowledge models automatically.

The general algorithm is shown in Figure 2.
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The extracted feature of the demonstration is used
to compare with the templates. The classification results
automatically assign the semantic meaning of the template
to the corresponding models. The learned motions should
have relationship with its semantic-related templates. For
example, the motions of writing characters should have
relationships to the shapes or topologies of characters, and
so on.

In this paper, ISAC is trained to write numbers and to
learn the semantic meaning of the numbers automatically.
As stated below, the demonstration is writing, the templates
should be the shapes or topologies of the numbers. Corre-
spondingly, in this part, the original ISOMAP method, which
reflects the spatial topology of sampled data points, is used
to train robots to learn semantic meaning of the motions. In
order to reflect the overall spatial topology of the sampled
data points, all of the neighbor points are considered as
temporal neighbors. For simplicity, the modified ISOMAP
algorithm can also be applied in this modeling part while the
threshold value of temporal distance s is set as the size of the
sampled data points.

Using the original ISOMAP algorithm, the demonstra-
tion of the motions of writing letters is projected onto a two-
dimensional plane with corresponding projection matrices.
The recorded trajectories in the latent space are normalized
in the same scale. In this paper, the range of the x-axis is
[0, 1] and the range of the y-axis is also [0, 1]. The reason for
normalization is obvious because the given demonstration
by human teachers could have different scaling. In order to
compare the demonstrations with the commands shown at
the generation stage, these processed demonstrations should
be normalized.

The technology of establishing models of the recorded
trajectories writing numbers and recognizing the numbers
based on the templates are not the concentrations of this
paper; readers may be interested in other literatures to
find many advanced word segmentation and recognition
methods.

In this paper, an Optical Character Recognition (OCR)
software tool, TesseractOCR (developed by Hewlett-Packard
and currently maintained by Google), is used for ISAC
to recognize comparing the knowledge model with the
characters in the database. In practical application, the results
of recognizing a single number are not good by using
Tesseract-OCR. Therefore, the picture of a knowledge model

is resized to normal size of a letter and placed behind a
sentence “This is.” Then the recognition is “This is ∗∗.” By
abandoning “This is,” ISAC obtains the semantic knowledge
of this recognized picture.

After recognition, the motion models are automated-
assigned a semantic meaning and a corresponding template
based on the recognition results.

The labeled motion models are stored in the “labeled
behavior model” block.

In “Behavior Modeling” block, the projection matrices
are calculated using a typical learning algorithm. The trajec-
tories in the latent space and their corresponding projection
matrices are stored in “Behavior Models” block. Given a
command, ISAC parses the commands or recognizes the
commands and converts them into actions in the “command
analysis” block and retrieves the behavior models from
the “Behavior Models” block. The “reconstruction” block
projects the trajectory from the latent space to the joint space
to generate new behaviors.

3.3. Generation. In the generation stage, the command is
sent to robots and robots need to analyze the command and
convert the command into actions with specified parameters.
Then the required motion model is obtained by searching
the semantic names of the actions with specified parameters.
If the motion models are stored in the latent space, a
reconstruction is needed to project the motion model from
the latent space to the original data space; otherwise, the
motion models will be used directly. At last, robots need to
execute the motions to complete tasks.

3.3.1. Command Analysis. For most situations of imitation
learning, robots are given a task-related situation. The
starting states and the goal states are given in this situation
and robots need to use learned behaviors to complete the task
(achieving the goal state). In this paper, the speech command
is used for robots to understand the task.

Using speech, robots needs to listen to the command
from a human operator, recognize the required information,
and convert the information into actions with specified
parameters [41]:

Action
(
parameter

)
+ Action

(
parameter

)

+ · · · + Action
(
parameter

)
.

(27)
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Figure 3 displays the general method of analyzing the
command.

Robots break down the commands into different parts
by finding matching words in the lexicons using certain
grammar rules. Subjects, actions, objects, targets, and envi-
ronments are predefined in the lexicons. Using certain rules,
the commands are converted into actions as shown in (7).
This is a typical natural language processing method. Readers
may refer to the book written by [42].

For the example of writing numbers, the lexicon design is

Subject: ISAC

Action: Write

Object: Zero, One, Two, Three, Four, Five, Six, Seven,
Eight, Nine, and Ten.

The grammar design is Action+Object.

Receiving a command from a human teacher, ISAC
extracts the “object” information from the commands
and retrieves the corresponding behavior model from the
“Labeled Behavior Models” block by searching the required
“Object” in the behavior names. The implementation is
using the Microsoft speech recognition library.

3.3.2. Reconstruction and Execution. If the motion models
are stored in the latent space, using (6), the models can be
projected from the latent space to the original data space.

In this paper, a GP-based model is used to describe the
motion models in the latent space. Therefore, the (6) is
rewritten as:

θ =WΦ(z), (28)

where z is the data point obtained from the GP model given
an enquiry point.

Then the required data in the joint space is obtained and
robots move the actuator following the generated trajectory.

Using (28), required trajectories could be computed as
θd.

Using forward kinematics, positions and orientations can
be computed as

Xd = Forward Kinematics (θd). (29)

The target of generating a similar motion trajectory
to complete a task is to minimize the error between the
demonstrated trajectory and the generated trajectory.

We define the quadratic cost at each timing step is:

Lk =
(
Xdk − Xgk

)T
Wk

(
Xdk − Xgk

)
(30)

Xd is a desired trajectory (a demonstrated trajectory in
this paper), Xg is a generated trajectory, and k is the timing
step.

L represents the weighted error between the demon-
strated trajectory and the generated trajectory at timing step
k. The target is to minimize the overall cost:

Φ(N) +
N−1∑

k=1

Lk. (31)

while Φ(N) is the terminal cost, which is normally defined
as:

Φ(N) =
(
XdN − XgN

)T
WN

(
XdN − XgN

)
. (32)

For simplicity, in our algorithm, Wk and WN are defined
as a unity diagonal matrix.

The control process is an integration of sensing and
planning. In this paper, we do not focus on the low
level actuator control. Because the regulators on ISAC are
commercial devices just like “black-boxes”, we assume that a
regulator can automatically adjust control output to achieve
the control goals when a required reference input is given.

The initial position and orientation are computed by:

X0 = Forward Kinematics (θ0). (33)

At timing step k, θsk−1 is the sensed joint angles at timing
step k−1 and assume the θgk is planned based on the current
sensing information:

Xgk − Xgk−1 = J ∗
(
θgk − θsk−1

)
, (34)

where Xgk−1 is computed by:

Xgk−1 = Forward Kinematics (θsk−1), (35)

and J is the Jacobian matrix.

The target is to minimize

Lk =
(
Xdk − Xgk

)T
Wk

(
Xdk − Xgk

)
. (36)

Rewrite (36):

Lk =
(
Xdk − J

(
θgk − θsk−1

)
+ Xgk−1

)T

×
(
Xdk − J

(
θgk − θsk−1

)
+ Xgk−1

)
.

(37)

Minimize this cost function by differentiating Lk with
respect to θgk and set the derivative to zero, we get

θgk = 1
2

(
Xdk − Xgk−1 + Jθsk−1

)T

− 1
2
JT
(
Xdk − Xgk−1 + Jθsk−1

)
.

(38)

At each timing step, θgk is given to the regulator as refe-
rence input for low-level actuator control.
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Figure 4: ISAC cognitive architecture.

3.4. Implementation. This framework is implemented on a
cognitive architecture, named ISAC cognitive architecture,
developed by the Center for Intelligent Systems of Vanderbilt
University [43–45].

Figure 4 displays the system design of the ISAC cognitive
Architecture.

3.4.1. Perceptual Agents (PA). The PA obtains the sensory
information from environment. Normally, encoders on the
joints of the robot, cameras on the head of the robot, and
the force feedback sensor on the wrist of the robot are
implemented in this agent.

3.4.2. Short-Term Memory (STM). The obtained informa-
tion is sent to and stored in the STM. The Sensory Ego Sphere
(SES) is implemented in the STM, which performs spatio-
termporal coincidence detection, mediates the salience of
each percept, and facilitates perceptual binding.

3.4.3. Working Memory System (WMS). The WMS stores
the task-related information in chunks. This component is
especially important in the generation stage.

3.4.4. Central Executive Agent (CEA). The CEA provides
central processing, decision making, and control policy
generating for different task goals which is stored in the

Deliberative

Reactive

Reactive

Figure 5: Work loops.

Goals Agent (GA). In hierarchy architecture, this component
accesses all of the sensed information and makes decision for
tasks.

3.4.5. Goal Agent (GA). Correspondingly, the GA stores the
motivations or goals of tasks in situations.

3.4.6. Long-Term Memory (LTM). The LTM stores the mem-
ory especially the knowledge for long term use. Procedural,
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Figure 6: Learning stage in ISAC cognitive architecture.
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Figure 7: Work loop of the learning stage.

semantic, and episodic knowledge are stored in this compo-
nent. In imitation learning, the learned skill or knowledge
is stored as procedural and episodic knowledge using a
mathematical model.

3.4.7. Internal Rehearsal System (IRS). The IRS evaluates the
results of the decisions made from the CEA through internal
rehearsal.

3.4.8. Work Loops. Using this architecture, we can develop
three work loops: reactive, routine, and deliberative.

Reactive Loop is inside the perception-action agent. The
perceptual agent collects the sensory information from the
environment. Using the first-order agent, necessary actions
are taken by the actuator agent to affect the environment
and the robotic body. This control loop is used for robots
to process the emergency or unexpected change in the
environment.

The Routine Loop is within the the Perception-Action
Agent, filtering and focusing Agent, the STM, and the WMS.
This loop completes routine tasks which are well defined in

the WMS. The robot obtains the task-related information
from the WMS and sends this information to the actuators
through Filtering and Focusing Agent. Actuators are driven
by the received information to complete tasks. The Routine
Loop also involves the Reactive Loop to avoid the unexpected
changes in the environment.

The Deliberative Loop is used for robots to learn new
behaviors or skills through modeling, knowledge coupling,
and so forth, and to complete new tasks or select behaviors
to complete tasks using reasoning, decision making, and so
forth. The CEA is the central component in this loop. It
retrieves the stored knowledge from the LTM, receives the
environmental information from the STM and the WMS,
and uses the IRS to evaluate current situation to make
decisions or establish models for the sensed information.
When the decision is made, the task-related information is
sent to the WMS and the system will use the Routine Loop
to complete the task. The Deliberative Loop involves the
Reactive Loop and the Routine Loop. Our system is largely
based on the Deliberative Loop.

Figure 5 displays the relationships among the tree work
loops.
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3.4.9. Learning Stage. At the learning stage as shown in
Figure 6, ISAC collects the information from the encoders
using the PA and sends the sensory information to the CEA.
The CEA obtains the original ISOMAP algorithm and the
modified ISOMAP algorithm from the LTM and calculates
the motion models and the knowledge models. Using the
RMS, ISAC establishes the labeled behavior models upon the
prelearned semantic knowledge and stores the models in the
LTM.

The work loop could be displayed as in Figure 7.

3.4.10. Generation Stage. At the Generation Stage as shown
in Figure 8, given a speech command, ISAC collects the
speech information using the PA, and sends the speech
information to the CEA through the STM. By analyzing
the speech command, the CEA generates the corresponding
actions with specified parameters. The required behavior
model is obtained from the LTM through searching the
RMS. Upon the obtained behavior model, the CEA plans
the motions according to the goal and sends the motion
information to the WMS. The WMS stores the task-related
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Figure 10: ISAC robot.

Figure 11: Letters for demonstrations.

information and sends the control commands to the AA to
execute the motions.

The work loop could be displayed as in Figure 9.

4. Experimental Results

A humanoid robot, named ISAC, is used to validate out
proposed system (as shown in Figure 10). ISAC is a sta-
tionary pneumatic driven humanoid robot, which has seven
Degrees-of-Freedom (DOFs) on each of its arm (including
a freedom (open and close) for the end effector). In this
system, we only used the right of ISAC to demonstrate the
movement trajectories of writing and to write the required
numbers. The pen is always grasped using the end-effector,
and we only use six DOFs of the right arm of ISAC.
Two cameras mounted on the robot are used for ISAC to
observe the environment, and we developed an OpenCV-
based program to capture and process the images obtained
from the cameras. A personal computer, with a 1 GHz CPU,
is used to control the arm of ISAC, a personal computer, with
a 2.4 GHz CPU, is used to process the images, and a laptop,
with a 2.4 GHz CPU, is used to store the semantic knowledge
models and the movement trajectory models.

ISAC is shown how to write letters by manually moving
its right arm as shown in Figure 12. Figure 11 displays the
letters used in the demonstrations. The topologies of the
movements of writing letters in the Cartesian space are also
the same as shapes of the letters.

The collected data is projected onto a 2-dimensional
plane using the original ISOMAP algorithm and the mod-
ified ISOMAP algorithm. Figure 13 displays the obtained
model using the original ISOMAP algorithm, and Figure 14

Figure 12: Demonstrations.

Figure 13: Dimension reduction results of the original ISOMAP
algorithm.

displays the obtained model using the modified ISOMAP
algorithm.

In practical application, in order to use the dimension
reduction results in the recognition part, the image on the
2-dimensional plane has been dilated.

In Figure 13 the dimension reduction results display the
shapes and topologies of the distributions of the sampled
joint angles from the demonstrations in the latent space.
From this figure, the shapes and the topologies of the data
distributions are similar to the real letters on the paper
and the movement of the end-effector for writing letters in
the Cartesian space. It is necessary to emphasize here that
without using the kinematics model which calculates the
position of the end-effector in the Cartesian space using the
joint angles, the dimension reduction results can still get
approximate descriptions of the letters on the paper.

In Figure 14, the motion models are represented in the
latent space. These models are obtained using the modified
ISOMAP algorithm. From the experimental results, we can
find two features of the models using this algorithm. (1)
Each trajectory does not overlap with itself; (2) each trajec-
tory, which is generated automatically using the modified
ISOMAP, always starts from one side and ends at another
side. The second feature is guaranteed by the definition of the
neighbors in the algorithm. Intuitively, because neighbors are
defined as temporal neighbors, the temporal distance of the
first point and the last point is the largest in the distance
matrix. Therefore, the algorithm always put the starting
point and the ending point at two opposite sides of the graph.

Through recognition, the knowledge models in Figure 13
are recognized with the pre-learned numbers using the
Tesseract-OCR.

In practical application, the pictures in Figure 13 should
be preprocessed in order to be compatible with the Tesseract-
OCR. There are several steps of preprocessing.
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Figure 14: Motion models in the latent space using the modified ISOMAP algorithm.
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Figure 15: Labeled Behavior Models.

(1) Picture i is rotated 0 degree, the result is picture i 1.

(2) Picture i is rotated 90 degree, the result is picture i 2.

(3) Picture i is rotated 180 degree, the result is picture i 3.

(4) Picture i is rotated 270 degree, the result is picture i 4.

(5) Picture i is flipped horizontally, the result is picture
i 5.

(6) Picture i 5 is rotated 90 degree, the result is picture
i 6.

(7) Picture i 5 is rotated 180 degree, the result is picture
i 7.

(8) Picture i 5 is rotated 270 degree, the result is picture
i 8.

The obtained eight pictures are all recognized using the
Tesseract-OCR. If the recognized result is included in the
predefined white list: {0, 1, . . . , 9}, it is accepted.

If the recognized result is (6) or (9), it needs to be further
processed. Our method is to determine the starting point of

writing (6) or (9). If the starting point is near the edge of the
image, it is (6); otherwise, it is (9).

Upon the recognition results, the labeled behavior mod-
els are established. Figure 15 is an example of the models.

Upon receiving a command from humans, ISAC analyzes
the command and converts the command into the actions
with specified parameters: Write (Six) as shown in Figure 16.
The required motion model is obtained from the labeled
behavior models and ISAC executes the motions.

Figure 17 displays the numbers written by ISAC on the
papers.

5. Discussion

In this paper, we proposed a framework for robots to learn
the motion models and semantic knowledge models simul-
taneously and only one dataset from the demonstrations is
used for both learning stages.

In the current imitation learning frameworks, the motion
learning has been highlighted for robots to learn to complete
some interesting tasks.

Some researchers are working on incorporating concepts
and ideas from cognitive science into robotics research. A
typical application using cognitive architectures to imple-
ment cognitive processes or cognitive control loops for
robotic control and learning [46].

If we consider the whole robotic learning frameworks
as hierarchy architectures, the emergent problem is that
there seems a gap exists between the utilization of cognitive
architecture and the motion learning. As we know, the
reasoning and the planning in the cognitive architecture
are often implemented in a symbolic way and traditional
Artificial Intelligence (AI) methods are used. Therefore, how
to connect the symbolic representation and the mathematical
models-based motion models?

In our paper, a framework is proposed, in which the con-
nection is based on the natural language processing, which
labels the motion models with suitable behavior names and
analyzes the command in the cognitive architecture with the
behavior names. In this paper, we further propose to train
robots to learn the semantic (or symbolic) knowledge by
using the same dataset from the demonstrations automati-
cally, which enhance our proposed framework.
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Write six

Figure 16: Command analysis and generation.

Figure 17: Letters written by ISAC.

As we know, when humans see, listen, and feel the
behaviors from other humans, we can relate what we see,
listen, and feel to our learned procedural, episodic, and
semantic knowledge. The framework proposed in this paper
is inspired from the daily cognitive brain work of humans.

6. Future Study and Conclusion

For the application of “writing,” using the same methods
in this paper (dimension reduction using the original
and modified ISOMAP algorithm and a letter recognition
technology) robots can learn how to write letters and
relate the motion models and knowledge models to their
corresponding semantic knowledge models.

In other areas, for example, “music playing,” robots can
learn how to play music (hitting drums, playing guitar,
and playing piano) and relate the motions required to play
music to their corresponding semantic knowledge models.
The ISOMAP algorithms may not complete such learning
in these areas. However, readers can simply find that the
tempos of hitting drums are in correspondence to the tempos
of moving hands up and down. If the tempos of the sound
of hitting drums can be extracted as the templates and the
tempos of moving hands can be extracted as the knowledge

model, this framework can also be used for robots to learn
the motions of play music and the semantic meaning of these
motions simultaneously and automatically.

The crucial point of the application of this framework is
to find the features of the motions which are in correspon-
dence with the inner features of behavior which is strongly
related to the semantic models.

This paper proposes a framework for robots to learn the
motion models and semantic knowledge models simultane-
ously using one data set from the demonstrations. A modi-
fied ISOMAP algorithm is used for robots to extract semantic
information from the demonstrations. The implementation
is on a cognitive architecture with several extensions of
current algorithms. Semantic analysis of the command is
also implemented in this framework. The experiments are
carried out on a humanoid, and the experimental results
demonstrate the effectiveness of this framework.
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