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The geometric parameters of a space robot change with the terrible temperature change in orbit, which will cause the end-effector
pose (position and orientation) error of a space robot, and so weakens its operability. With this in consideration, a new geometric
parameter identification method is presented based on a laser-ranger attached to the end-effector. Then, independence of the
geometric parameters is analyzed, and their identification equations are derived. With the derived identification Jacobian matrix,
the optimal identification configurations are chosen according to the observability index O3. Subsequently, through simulation
the geometric parameter identification of a 6-DOF space robot is implemented for these identification configurations, and the
identified parameters are verified in a set of independent reference configurations. The result shows that in spite of distance
measurement alone, pose accuracy of the space robot still has a greater improvement, so the identification method is practical
and valid.

1. Introduction

Repeatability of the robot only represents the ability that the
robot follows the same trajectory or gets to the same desired
poses time after time, so it more indicates compactness of the
robot. Comparatively, pose accuracy of the robot describes
how close the end effector true pose is to desired pose.
Good repeatability is the premise of high accuracy for a
robot. Generally, for such simple tasks as conveying goods,
spraying paint, or welding an automobile, high repeatability
is already enough, because these jobs can be completed
through teaching and playback. However, in some other oc-
casions, for example, the medical robot bores a hole on the
bone for a patient with the aid of X-ray image, or more
typically the space robot guided by hand-eye vision main-
tains a faulty space vehicle, in this case it is necessary to
map the end effector Cartesian coordinates into the joint
coordinates, namely, the joint angles must be evaluated
through inverse kinematics. However, subject to difference
between the nominal geometrical parameters of the robot
links and their true parameters, the calculated joint angles
do not correspond with the desired ones, which cause the

end effector pose errors. At the same time, pose errors may
result from nongeometrical errors, for example, joint and
link deformation, transmission, and temperature.

Consequently, the robot kinematic parameter identifica-
tion must be done to improve the end effector pose accura-
cy before it is used. Virtually, parameter identification is a
software compensation algorithm, because it only seeks for
the true kinematic parameters and does not physically
change the links, joints, and controllers of the robot. It can
be divided into two categories, that is, geometrical parameter
identification and nongeometrical one. Most researchers
concentrate on the former. Veitschegger and wu [1] devel-
oped a method of kinematic calibration and compensation,
and with the least square algorithm calibrated the PUMA 560
experimentally. The experiment results showed that a greater
than 70 times improvement in Cartesian pose errors resulted
from the calibrated versus the nominal manipulator. Stone et
al. [2, 3] modeled kinematics errors using a six-parameter “S-
model” per link, then they introduced three features of the
robot to estimate the 6n S-model parameters. Lukas Beyer
and Wulfsberg [4] developed an ROSY calibration system
with two CCD cameras and a reference sphere that enabled
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pose accuracy to be improved for conventional arms and
parallel robots. Sun and Hollerbach [5] presented an active
robot calibration algorithm using the determinant-based
updating observability index and demonstrated it through
simulation with a 6-DOF PUMA 560 robot. Kang et al. [6]
introduced a new metrology method based on the product-
of-exponential formula and the modified dyad kinematics
to calibrate a modular robot, but there were no calibration
results to be given.

Research on nongeometrical parameter identification has
also made great progress. Chen and Chao [7] presented a six-
parameter error model between two consecutive links in a
general sense and developed a mathematical identification
model composed of nongeometrical parameters, it consid-
ered the second, the third joint, and the link flexibility due
to gravity. Judd and Knasinski [8] analyzed nongeometrical
errors (gear train errors, joint, and link flexibility, etc.) and
proposed an error model that can be identified with a
common least squares procedure. Chunhe Gong et al. [9]
built a comprehensive error model including geometric er-
rors, position-dependent compliance errors, and time-var-
iant thermal errors, and robot accuracy was improved by
an order of magnitude after calibration. Lightcap et al. [10]
applied a 30-parameter flexible geometric model to the Mit-
subishi PA10-6CE robot, considering the flexibility in the
harmonic drive transmission. Drouet et al. [11] decomposed
the measured end-point error into generalized geometric and
elastic errors and realized compensation for dynamic elastic
effects. With a camera attached to the end effector, Radkhah
et al. [12] used an extended forward kinematic model
incorporating both geometric and nongeometric parameters
to identify the KUKA KR 125/2 robot kinematic parameters.

Space robots lie in microgravity environments and move
slowly, so nongeometrical errors due to joint and link
flexibility will occupy a small proportion, and here they are
omitted. However, subject to extreme temperature under
space environment, the geometric parameters of space robots
will have a great change. The extravehicular temperature
scope in orbit is ±80◦C or so, and the inner temperature
scope of the space robot is −30◦C∼+50◦C under the
condition of temperature control. For a two-meter robotic
arm, its maximum length variation is 2 mm or so. Besides,
there is a temperature difference between the lighted surface
of the space robot and the shady surface, which will cause
deformation of the space robot. So, a space robot calibrated
on the ground must be recalibrated on orbit to improve its
pose accuracy. Sometimes, the space robot will carry a laser-
ranger attached to its end-effector to detect the manipulated
objects [13, 14], using it the paper will discuss geometric
parameter identification of the on-orbit space robot, and give
the simulation results.

2. Kinematic Model of the Space Robot

2.1. Outline of Identification Scheme. As shown in Figure 1,
the space robot is fixed on the +Z surface (pointing to the
center of the earth) of the satellite, and its end-effector carries
a laser-ranger that is used to measure the distance from the
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Figure 1: Sketch of parameter identification scheme of the space
robot.

starting point of the laser beam to the measured declining
plane. Because the equation of the plane with respect to
the base coordinate frame is known and the starting point
and the equation of the laser beam (line) with respect to
the tool frame can be calibrated beforehand, so the distance
can also be estimated according to the kinematic model.
However, the model is inaccurate because of the geometric
parameter errors of the space robot, so there exists the
difference between the measured distance and that calculated
with the nominal kinematic parameters, which is used
to identify the geometric parameters of the space robot.
Some other parameter identification methods [15–17] using
a laser-ranger generally measured the distance from the
robot end-point to a known object point, however, it was
difficult to determine whether the laser beam just passed
through the object point in practice. In the literature [15],
the position-sensitive detector (PSD) was adopted, which
increased complexity of parameter identification. Here, the
known declining plane is chosen as the object measured by
the laser-ranger, which simplifies the measurement scheme.
In the literature [17], the laser spot was measured by a cam-
era, which introduced measurement noise of the camera.

2.2. Kinematic Model. Commonly, with the D-H parameter
method, the relative translation and rotation from the robot
link frame i − 1 to the frame i can be described by a homo-
geneous transformation matrix i−1Ai as

i−1Ai =

⎡
⎢⎢⎢⎣

Cθi −CαiSθi SαiSθ i aiCθi
Sθi CαiCθi −Sαi cos θi aiSθi
0 Sαi Cαi di
0 0 0 1

⎤
⎥⎥⎥⎦, (1)

where, Cθi denotes cos(θi), Sθi represents sin(θi), and the rest
may be deduced by analogy. i−1Ai includes four kinematic
parameters, namely θi, di, ai, and αi. However, when a small
angle variation creates between two consecutive parallel axes
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or near parallel axes, with the D-H method, it will lead to
a large variation of the parameter di, in other words, in this
case the axial offset di is very sensitive to the twist αi. In view

of this, the matrix i−1Ai is post-multiplied the matrix i−1Ai

by an additional rotational matrix Rot(y,βi) [18], namely the
matrix i−1Ai can be changed as

i−1Ai ← i−1Ai · Rot
(
y,βi

) =

⎛
⎜⎜⎜⎝

CθiCβi − SθiSαiSβi −SθiCαi CθiSβi + SθiSαiSβi aiCθi
SθiCβi + CθiSαiSβi CθiCαi SθiSβi − CθiSαiCβi aiSθi

−CαiSβi Sαi CαiCβi di
0 0 0 1

⎞
⎟⎟⎟⎠, (2)
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Figure 2: Representation of the coordinate frames of the space
robot with D-H convention.

where

Rot
(
y,βi

) =

⎡
⎢⎢⎢⎣

Cβi 0 Sβi 0
0 1 0 0
−Sβi 0 Cβi 0

0 0 0 1

⎤
⎥⎥⎥⎦. (3)

Supposed that 0A1 represents the transformation matrix
from the base coordinate frame to the frame 1, in terms of
Figure 2, the transformation matrix TN from the base coor-
dinate frame to the tool frame can be obtained from the well
known loop closure equation:

TN = 0An = 0A1
1A2 · · · 5A6. (4)

Further, the matrix TN can be divided into the following sub-
matrix:

TN =
(

RN pN

0 1

)
, (5)

where RN ∈ R3 × 3 is an orientation matrix of the tool
frame with respect to the base frame, pN ∈ R3 denotes the
translational vector.

The configuration of the space robot is shown in Figure 2,
the tool frame O6 −X6Y6Z6 of the space robot can be chosen

arbitrarily. Here, we might as well choose the laser-ranger
coordinate frame fixed to the end-effector as the tool frame,
namely, the starting point of the laser beam is located in the
origin O6 and the positive direction of the Z6 axis acts as the
emission direction of the laser beam, which helps to simplify
identification process and decrease the complexity of robot
identification.

3. Identification Model of
the Geometric Parameters

3.1. Independent Parameters of the Identification Model. A
complete kinematic model consists of a certain number
of the independent parameters. If the model exceeds the
scope, they will be relative. Therefore, extra increment of the
number of the parameters is insignificant to improvement
of pose accuracy. Everett et al. [19] gave the following
calculative formula:

C = 4R + 2P + 6, (6)

where, C denotes the number of independent parameters
(also constrained equations), R is the number of the re-
volved joints, and P is the number of the translational
joints. Besides, Figure 6 of (6) represents 6 constraints that
determine the pose of the tool frame with respect to the
link 5 frame O5 − X5Y5Z5. According to the above equation,
the space robot shown in Figure 2 totally has 30 indepen-
dent geometric parameters. However, different from a laser
tracker to measure a 6-dimension pose of the robot, the laser-
ranger only measures the distance from the origin of the
laserranger coordinate frame to the objective point. Obvi-
ously, an arbitrary equal-distance rotation of the end-effector
around the target point creates no significance to output
of the laserranger, in other words, in the spherical surface
whose spherical center is the target point, and its radius is
the measured distance, however, the tool coordinate frame
moves, the measured distance is same, and it means that
the orientation of the end-effector cannot be constrained.
In addition, a distance equation only constrains one of the
three coordinates for a point, while the other two coordinates
are free. Namely, compared with the laser tracker, the laser-
ranger loses five constraints, and maximally there are 25
identifiable parameters for the space robot.

3.2. Identification Equation. According to (5) and the above
laser-ranger coordinate frame, it is easy to know that
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the starting point ps of the laser beam with respect to the base
coordinate frame is equivalent to the translational vector pn.

Similarly, the laser beam unit vector bl relative to the base
coordinate frame is expressed as

bl = RN

⎡
⎢⎣

0
0
1

⎤
⎥⎦. (7)

It is assumed that the measured plane equation in the
base coordinate frame is

nl · p + f = 0, (8)

where nl(nlx,nly ,nlz) is the unit normal vector of the mea-
sured plane, its positive direction can be chosen arbitrarily,
here, nlz is given a positive value. p denotes the coordinate
vector (px, py , pz) of the arbitrary point in the plane, and
f is a known scalar. Supposed that the laser beam vector bl

intersects the measured plane at the point p j , then according
to the relation of the vectors, p j can be written as

p j = ps + hbl, (9)

where h denotes the distance from the starting point ps of the
laser beam to the intersectant point p j . As We know, p j . Also
meets (8), then by substituting (9) into (8) h can be expressed
as

h = −nl · ps + f

nl · bl
. (10)

The distance h in (10) is an estimated value based on the
nominal geometric parameters of the space robot and the
nominal plane equation. As stated previously, these geo-
metric parameters on space orbit generally deviate from
the nominal ones. The geometric errors in the link i are.
respectively, written as Δθi, Δdi, Δai, Δαi, and Δβi. Here, it
is assumed that they are small amount, so a linear model can
be developed for simplicity. If the true parameters of the link
i are, respectively, given as θri , dri , ari , α

r
i , and βri , there are the

following relations:

θri = θi + Δθi dri = di + Δdi,

ari = ai + Δai · · ·αri = αi + Δαi, βri = βi + Δβi.
(11)

Differentiate (10), then

Δh = hr − h

≈ ∂h

∂θ1
Δθ1 +

∂h

∂d1
Δd1 +

∂h

∂a1
Δa1 +

∂h

∂α1
Δα1

+
∂h

∂β1
Δβ1 + · · · +

∂h

∂θ6
Δθ6 +

∂h

∂d6
Δd6 +

∂h

∂a6
Δa6

+
∂h

∂α6
Δα6 +

∂h

∂β6
Δβ6 +

∂h

∂nly
Δnly +

∂h

∂nlz
Δnlz,

(12)

where, hr denotes the actual distance. Attentively, the above
listed geometric parameters of the space robot amount to

32, but it does not mean that all these parameters can be
identified, only for convenience. Equation(12) considers the
influence of variation of the plane equation. Because nl

is a unit vector, the two of its three components are in-
dependent. Here we choose nly and nlz as the parameters to
be identified. Attentively, the parameter f is unidentifiable,
because − f /nlz represents the intercept that the plane
intersects the coordinate Z0 axis, and obviously it is associate
with the parameter d1. Of course, the above explanation
assumes that the measured plane is not parallel to the Z0

axis. Besides, the roughness of the plane will also weaken
accuracy of the measurement, a good choice is that it is
classified as measurement noise. The number of the iden-
tification equation must be greater than that of the identified
geometric parameters. Obviously, only (12) is not enough.
Simply, the more identification configurations are chosen to
obtain the more identification equations. Through combin-
ing these equations the following formula can be given:

Δh = GΔe, (13)

where Δh is the distance error vector, Δh = [Δh1Δh2

· · ·Δhm], m denotes the mth measurement configura-
tion, Δe is the parameter error vector, Δe = [Δθ1,Δd1,
Δa1,Δα1,Δβ1, . . . ,Δnly ,Δnlz], G is the identification Jaco-
bian matrix. According to (13), through iteration, we can
identify the geometric parameters of the space robot and the
measured plane.

4. Simulation of Parameter Identification

4.1. Optimal Experimental Design. The different measure-
ment configurations have a certain impact on identification
results. So, the selection of the measurement configurations
is also important. At present, there are several proposed
observability indexes to evaluate a set of measurement con-
figurations. Since E-optimality is the best criterion to
minimize the uncertainty of the end-effector pose of a robot
and the variance of the parameters [20], it is used as the
observability index of the optimal experimental design. Its
objective function is to maximize the minimum singular
value of the identification Jacobian matrix, and it can be
written as

O3 = max σmin(G). (14)

According to (14), when there are many sets of measurement
configurations to be chosen, the set whose minimum singu-
lar value is maximal is the optimal experimental design.

4.2. Measurement Noise. There are usually some errors in
the distance values measured by the laser-ranger, which will
create disadvantageous effects on the geometric parameter
identification of the space robot. In order to simulate the
real case, measurement noise should be added to the error
model so as to calibrate the space robot more exactly. Here, it
is assumed that distance measurement noise follows a normal
distribution with zero mean and standard deviation 0.2 mm.

For the same configuration, the more distance measure-
ments will be taken to reduce disturbance of the stochastic
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Table 1: Nominal D-H parameters of the space robot.

Link
Number

θn/rad αn/rad an/m dn/m Δβn/rad

1 π/2 −π/2 0 0.5 —

2 0 0 1 — 0

3 −π/2 π/2 0 0 —

4 0 −π/2 0 −0.8 —

5 π π/2 0 0 —

6 0 0 −0.12 0.4 0

Table 2: Pre-assumed geometrical Parameter Errors.

Link
Number

Δθn/mrad Δαn/mrad Δan/mm Δdn/mm Δβn/mrad

1 −7.23 −3.22 0.23 0.73 —

2 0.52 0.13 1.94 — 1.45

3 0.56 −2.23 0.11 0.34 —

4 0.36 1.92 0.18 1.35 —

5 −5.52 −4.83 0.27 0.29 —

6 −0.34 0.62 0.47 0.85 −3.36

measurement noise, then the average of these measurements
is provided as the measurand. On the other hand, the more
redundant measurement configurations are used to identify
the geometric parameters of the space robot, which has also
an effect on filtering measurement noise.

4.3. Simulation Approach. According to the description
above, the simulation approach of parameter identification
of the space robot can be summarized as shown in Figure 3.
Because the identification method is verified through simu-
lation, a distance value calculated with the preassumed true
parameters and the above-mentioned measurement noise
will be used as a measurement value, and it is equal to the
sum of the real value plus measurement noise. Besides, here,
the estimated distance denotes the distance calculated with
the nominal geometrical parameters.

4.4. Initial Condition. The nominal D-H parameters of the
space robot are shown in Table 1 and its preassumed geo-
metrical parameter errors are shown in Table 2.

In view of the space robot working on orbit lighted by
the sun, the above length errors Δan and Δdn are given
a positive number in relation to their lengths, while the
angle errors Δαn, Δβn, and Δθn are given based on a nor-
mal distribution with zero mean and standard deviation
3.49 mrad. Attentively, the geometric parameters marked
“—” in Table 2 are unidentifiable, so the identifiable param-
eters of the space robot amount to 25.

Besides, the measured plane equation is chosen as

y + 4.6z − 0.69 = 0. (15)

Attentively, as shown in Figure 1, the equation cannot be
given such the form as z + f = 0, or it will make three

geometric parameters of the space robot unidentifiable, that
is, θ1, a1, d3. Obviously, if the measured plane is perpen-
dicular to the Z0 axis, the three parameters will make no
difference to the measured distance, which will weaken
completeness of the identified geometric model. Because the
measured plane expressed by (15) is parallel to the X0 axis,
for simplicity, here we only give the coefficient 4.6 an error, it
is 0.005.

4.5. Simulation Result. Subsequently, the above geometric
parameter identification algorithm will be verified through
simulation. Here, we have chosen 101 measurement config-
urations in all where the space robot is nonsingular. Then,
the two cases will be simulated, namely, 50 configurations
10 repetitions (the first case) and 100 configurations 10
repetitions (the second case), x repetitions denote the
number of repeated measurements for a same measurement
configuration. As stated in the Section 4.1, according to the
optimal experimental design criterion, we will calculate C100

101

minimum singular values of G for the first case, similarly for
the second case, it is C50

101 ones which are a huge number,
and the task is difficult to come true. In fact, with the
observability index O3, we calculate a part of the minimum
singular values for the first case and all of them for the second
case in simulation. According to the calculation results, the
observability indexes of the above two cases are equal to 0.048
and 0.180, respectively.

Besides, a set of independent validation configurations
(20 configurations) distributing in the whole workspace of
the space robot are selected to evaluate the identification
effect. In nature, parameter identification is a fit for the meas-
ured data in the measurement configurations, so the extra
validation configurations are necessary.

Figure 4 represents the distance errors in the measure-
ment configurations, respectively, with the nominal parame-
ters, the identified parameters for the first and second cases.
It is easy to find that, after parameter identification, the
maximum distance error in the measurement configurations
decreases to less than 0.4 mm for the first case and to less
than 0.2 mm for the second case, compared with more than
40 mm prior to parameter identification, so the parameter
identification is a very good fit for the distance measurement
values. At the same time, the maximum distance error with
the identified parameters for the second case is less than
that for the first case, which reflects the importance of more
identification configurations. Of course, after identification,
there still exist some fractional residual distance errors,
which mainly come from measurement noise.

The position errors in the measurement configurations
with the nominal, and the identified parameters for the
first and second cases, are depicted in Figure 5, and the
orientation errors are in Figure 6. Correspondingly, the
position errors in the validation configuration are depicted
in Figure 7, and the orientation errors are in Figure 8. In
general, after parameter identification, pose accuracy of
the space robot has a great improvement, for example,
the position errors in the identification configuration are
reduced from more than 15 mm to less than 1.5 mm for the
second case and the orientation errors from 15 mrad or so
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the point pj with the real geometric parameters

Figure 3: Simulation flowchart of parameter identification.

to 1.6 mrad or so, especially in the validation configurations,
it can be found that the position errors are reduced from
20 mm or so to less than 2 mm and the orientation errors
from 20 mrad or to less than 2.5 mrad. Besides, we noticed
a law, namely, the pose errors in the identification config-
uration are fewer than those in the validation configuration,
and the more the number of the identification configurations
is, the higher the pose accuracy after identification is. In
nature, parameter identification is a fit for measurement
data in the identification configurations. However, it is an
extrapolation in the validation configuration. So, the results

in the identification configuration are better than those in
the validation configurations. The observability index O3 in
the more identification configurations is greater than that in
the fewer identification configurations, so the identification
results in the more identification configurations are better.

Tables 3 and 4, respectively, give the identified geometric
parameter errors for the first and second case. In the two
tables, the identified coefficient errors of the plane equation
are not listed, and they are, respectively, 0.00243 and 0.00386
for the first and second case. Under the disturbance of mea-
surement noise, these identified geometric parameter errors
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Figure 4: Distance errors prior to and after parameter identification.
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Figure 5: Position errors in the 101 identification configurations with the nominal, and the identified parameters for the first and second
cases.

are inconsistent with the preassumed ones, but the identified
parameter errors for the second case more approach them
than those for the first case, which reflects that more mea-
surement configurations can filter measurement noise better.
If measurement noise is not added to the simulation, the
identified parameters can match the preassumed parameters
perfectly, which has been verified in the simulation.

Table 5 gives a statistical comparison of position and
orientation errors calculated, respectively, with the nominal
parameters, and the identified parameters for the first and
second cases in the validation configurations. Here, RMS

represents root mean square of pose errors, with respect to
position or orientation error in the x axis, it is written as

RMS pose =
√√√√ 1
m

m∑

i=1

(
prx − px

)2, (16)

where prx denotes the real position or orientation vector in
the x axis, and px is an estimated position or orientation
vector with the nominal or identified parameters in the x
axis. The maximum position error denotes the maximum
absolute position error value in the x, y, and z axes,
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Figure 6: Orientation errors in the 101 identification configurations with the nominal, and the identified parameters for the first and second
cases.
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Figure 7: Position errors in the 20 validation configurations with the nominal, and the identified parameters for the first and second cases.
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Figure 8: Orientation errors in the 20 validation configurations with the nominal, and the identified parameters for the first and second
cases.

Table 3: Identified geometrical parameter errors for the first case.

Link
Number

Δθn/mrad Δαn/mrad Δan/mm Δdn/mm Δβn/mrad

1 −7.8525 −2.4425 −2.1491 0.5724 —

2 1.2119 0.0553 1.6291 — 1.1436

3 0.0949 −1.5013 1.3863 0.2838 —

4 0.2936 2.6439 0.3531 1.2179 —

5 −5.2130 −3.8485 −0.0797 0.2895 —

6 0.5628 0.5207 0.8714 0.7422 −3.7951

and also for orientation errors. According to Table 5, it is
found that improvement of pose accuracy after parameter
identification is significant, and the maximum position error
in the y axis is reduced from 18.6857 mm to 1.4779 mm
and the maximum orientation error from 17.0006 mrad to
1.2271 mrad. Comparatively, the identification results for the
second case are better than those for the first case as a
whole, which shows that increment of the redundant meas-
urement configurations can weaken disadvantageous influ-
ence of measurement noise and enhance identification ef-
fect. If more measurement configurations are added, better
identification results can be expected.

Table 4: Identified geometrical parameter errors for the second
case.

Link
Number

Δθn/mrad Δαn/mrad Δan/mm Δdn/mm Δβn/mrad

1 −7.0607 −2.8193 −0.1191 0.1555 —

2 0.8234 0.2574 1.6439 — 1.4527

3 0.3428 −2.0967 1.0172 −0.5597 —

4 0.5364 2.2958 0.0014 1.4096 —

5 −5.6786 −4.2081 0.3607 0.6214 —

6 1.4004 0.4974 0.4545 0.4274 −3.3556

5. Conclusions

(1) With the laser-ranger carried by the end effector the
paper presents a geometric parameter identification method,
and the 25 independent parameters of the space robot are
identified through simulation. In the process of identifica-
tion, independence of the parameters is discussed to avoid
parameter dependence.

(2) Because space temperature environment also causes
change of the measured plane, its coefficient needs also to be
identified. In view of selection of the optimal measurement
configurations, the observability index is used to evaluate
the combinations of the measurement configurations, which
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Table 5: Comparison of position and orientation errors in the validation configuration.

Error item RMS position
error/mm

RMS orientation
error/mrad

Maximum position
error/mm

Maximum orientation
error/mrad

Nominal parameter
x 2.7612 3.1491 11.7347 16.1688

y 2.5917 3.2196 18.6857 17.0006

z 2.2119 2.3480 8.5899 9.9512

Identified parameter for the first case
x 0.9921 0.7003 4.9654 3.2981

y 1.0148 1.6199 4.6951 7.3035

z 1.0524 0.5910 4.3151 2.7741

Identified parameter for the second
case

x 0.3427 0.2273 1.9067 0.9378

y 0.2974 0.3374 1.4779 1.2271

z 0.3785 0.7671 1.5664 2.3669

reduces the possibility of inferior configurations to be intro-
duced. At the same time, measurement noise of the laser-
ranger is simulated to meet the actual state as much as
possible.

(3) The simulation results show that in spite of distance
measurement alone, the identification technique significant-
ly improves pose accuracy of the space robot, which verifies
the feasibility of the method.
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