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Automated surveillance of large geographic areas and target tracking by a team of autonomous agents is a topic that has received
significant research and development effort. The standard approach is to decompose this problem into two steps. The first step
is target track estimation and the second step is path planning by optimizing directly over target track estimation. This standard
approach works well in many scenarios. However, an improved approach is needed for the scenario when general, nonparametric
estimation is required, and the number of targets is unknown. The focus of this paper is to present a new approach that inherently
handles the task to search for and track an unknown number of targets within a large geographic area. This approach is designed
for the case when the search is performed by a team of autonomous agents and target estimation requires general, nonparametric
methods. There are consequently very few assumptions made. The only assumption made is that a time-changing target track
estimation is available and shared between the agents. This estimation is allowed to be general and nonparametric. Results are
provided that compare the performance of this new approach with the standard approach. From these results it is concluded that
this new approach improves search and tracking when the number of targets is unknown and target track estimation is general

and nonparametric.

1. Introduction

The advancement of computing technology has enabled the
practical development of intelligent autonomous systems.
Intelligent autonomous systems can be used to perform
difficult sensing tasks. One such sensing task is to search for
and track targets over large geographic areas. Much research
has gone into this task resulting in a standard approach. This
standard approach decomposes the problem into two steps.

(1) Target track estimation.

(2) Agent path optimization based on target track esti-
mation.

Significant research has been accomplished for each of these
steps. Target track estimation has largely been solved [1-5]
and this paper proposes no new methods for target track
estimation. Agent path optimization based on target track
estimation has been solved for many scenarios. However, the

general scenario of when the number of targets is unknown
still requires more development.

The standard approach in general works particularly well
when it can be assumed that there is a single target [6-14].
And in many scenarios the standard approach works well
even when there are multiple targets [15, 16]. However,
when there are multiple targets, methods following the
standard approach start requiring limiting assumptions on
the problem. For example, many methods require that the
geographic area be easily scanned so that there are frequent
target detections throughout the geographic area. When this
can be assumed it allows for simpler estimation, such as
Gaussian distributions, and consequently agent paths can
be more readily optimized. However, these methods do not
extend well when the geographic area is too large to scan
quickly. When the geographic area is large, agents frequently
do not detect targets. These no-detection events must be
utilized to estimate the target tracks [6, 10, 12]. General



recursive Bayesian estimation methods are required to ac-
complish estimation for this case. This results in a general,
nonparametric estimate of the target tracks. Yet, because of
this generality, as the number of targets increases it becomes
very difficult to optimize sensor paths over the target track
estimates.

The focus of this paper is then on the problem of
search and tracking an unknown number of possibly multiple
targets in a large geographic area utilizing a team of auto-
nomous, sensing agents. As such, very few assumptions are
placed on the problem. All that is assumed is that time-
changing target track estimates are provided and shared by
the team of autonomous agents [10, 11, 13, 15, 16]. The
target track estimates are completely general and nonpara-
metric and the geographic area is too large to scan quickly.

A solution to this general problem is provided by pro-
posing a new approach to perform autonomous search and
tracking that inherently handles the case of an unknown
number of targets in a general, nonparametric estimation
setting. The performance of this new approach is then com-
pared with the standard approach. The specific method that
will be used for comparison is direct optimization over target
estimation distribution [6, 10, 14].

2. Problem Structure: New Approach

In this paper a new approach is presented to perform auto-
nomous search and tracking over large geographic areas. The
union of such large geographic areas will be referred to as
the surveillance area S in this paper. This new approach is
designed to inherently handle the case of the number of
targets being unknown and target track estimation being
general and non-parametric. Figure 1 provides an overview
of this approach. Notice, instead of the standard two-step
approach there are three steps. These three steps are

(1) target density estimation [17],
(2) partition learning based on target density estimation,

(3) agent path planning based on partitions.

With this decomposition of the problem, separate sub-
problems are defined for each step. Each step will be de-
scribed in the following sections. Two of these steps leverage
existing work by extending existing methods to fit the struc-
ture of the problem presented in this paper. These steps
are target density estimation and agent path planning based
on partitions. The required extensions will be presented in
this paper. Partition learning requires further development.
Consequently most discussion provided in this paper will
focus on the partition learning step.

Also note, these steps are repeated at each time instance.
As the target estimation changes with time, so do the par-
titions and the agent paths.

3. Step 1: Target Density Estimation

The first step in the problem decomposition is target density
estimation [18]. Recall that the first step of the standard
approach is target track estimation. Target track estimation is
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FIGURE 1: Problem structure of new approach for autonomous
search and tracking. The problem is decomposed into three steps.
Each of these steps is performed at each instance in time. As the
target estimation changes with time, so do the partitions and the
agent paths.
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FIGURE 2: Depiction of capturing the complexity of the high-
dimensional target track estimation space and mapping it to the
surveillance area. This forms the target density distribution.

not identical to target density estimation. In order to under-
stand the difference, consider a search and tracking appli-
cation that estimates the position of N targets utilizing the
standard approach. The first step of the standard approach
is target track estimation. Assume that target positions are
within some region S of the plane (R?). Call this region the
surveillance area. The estimation space is then N X S. The
dimension of this space is potentially very high. In order to
estimate the position of the targets a probability distribution
is determined which is defined over this high-dimensional
space. The second step of the standard approach is then agent
path planning by optimizating over this high-dimensional
space. However, from the perspective of agent path planning
it would be beneficial to optimize paths over the significantly
lower dimensional space S, instead of N x S. This is the
purpose of the target density distribution.

The target density distribution captures the complexity
of the high-dimensional target track estimation space and
maps it to the single planar space of the surveillance area.
This process is depicted in Figure 2. This figure shows
multiple single-target distributions combining to form a
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single target density distribution. A sample target density dis-
tribution, defined over a planar surveillance area, is provided
in Figure 3. In this figure the target density distribution is
represented by contour lines. Red lines have high density and
blue lines have low density. The details of this distribution’s
shape are not important. What is important is to note
that a target density distribution captures the complexity of
combining the high-dimensional target track estimation.
The space of the target density distribution is the sur-
veillance area S. Now consider some subspace A C S of
the surveillance area. The target density can be defined as a
distribution f(x) that is defined over the surveillance area as

EN, = J;EACstx)dﬂ(x), (1)

where Ny is the number of targets in the subspace A and p(x)
denotes that measure on which the integral is performed.
For example, if the space is discretized then the integral
represents a summation.

Notice that the target density distribution provides the
estimated number of targets within regions of the surveil-
lance area. The expected total number of targets in the sur-
veillance area is then

Emzjéﬂmwuy 2)

The target density distribution can be computed from
target track estimation. For example, consider the case when
the positions of N targets are estimated independently. Target
track estimation then provides a set of target distributions
{P(X"),...,P(XN)}. The target density distribution can be
computed as f(x) = >; P(x'). Consequently there is no need
to develop new methods for estimating the target density
distribution. Instead, the vast body of target track estimation
work can be leveraged.

However, it is not necessary to obtain the target density
distribution from target track estimation. Instead, it can be
estimated directly from sensor observations. One approach
[5] that accomplishes this utilizes random set theory [19] to
obtain an approximate target density distribution.

4. Step 2: Partition Learning

Recall that the information contained in a target density
distribution can be very complex. This is because it combines
the information of all target track estimates and maps them
onto the surveillance area. To aid in distributing agents across
the surveillance area, the complexity of the target density
distribution can be used to partition the surveillance area
into disjoint regions. For example, recall the sample target
density distribution depicted in Figure 3. One possible set
of partitioned regions is depicted in Figure 4. Note that in
this figure the target density distribution is represented
by contour lines and the boundaries of the partitions are
represented by thick, straight lines. The particular choice
of partitions displayed is of little significance. What is
significant is to note that the partitions are determined based
on the information content provided by the target density
distribution.
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FIGURE 3: Sample target density distribution, represented by con-
tour lines, defined over a surveillance area. The details of this dis-
tribution’s shape are not important. What is important is to note
that a target density distribution captures the complexity of the
high-dimensional target track estimation space.
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FIGURE 4: Example partitioning of the surveillance area based on
a target density distribution. The target density distribution is
represented by contour lines. The boundaries of the partitions are
represented by thick, straight lines. The space of this plot represents
the surveillance area over which the target density distribution is
defined. The particular choice of partitions displayed is of little
significance. What is significant is to note that the partitions are
determined based on the information content provided by the
target density distribution.

Instead of partitioning the surveillance area into arbitrary
regions the approach taken in this paper is to partition the
surveillance area into regions that correspond to

(1) a null target partition,

(2) an exploration partition,

(3) aset of search and tracking partitions.



FIGURE 5: The path planning modes that may exist when surveil-
lance is performed by region-based planning.

By partitioning the surveillance area into these types of
regions it gives agent path planning algorithms the flexibility
to switch between modes of surveillance exploration, target
search, and target tracking. These modes are depicted in
Figure 5. In order to compute each of these partitions a
different classifier is designed. These partition classifiers
along with corresponding modes will be described further
below.

The combination of these partition classifiers constructs
the overall partition learning classifier. The structure of this
classifier is presented in Figure 6. The general steps are to
classify (1) the null target partition, (2) the exploration
partition, and (3) a set of search and tracking partitions.

Before describing the details of these steps, the compu-
tational flow of the overall classifier can be understood by
considering a set I' and how it changes as it moves through
the classifier. Let T be the set of all points in the surveillance
area. As such, the target density distribution is defined over
I'. The flow of the classifier can then be understood as

(1) the null target partition Sy is classified and removed
fromI' (T — I'\ Shun) in block (1) of Figure 6,

(2) T is now a subset of the surveillance area. Within T,
the exploration partition Seyplore is classified and then
removed from I' (I' < T\ Sexplore) in block (2) of
Figure 6,

(3) T now consists of only the subset of the surveillance
area that will be partitioned into search and tracking
partitions. In block (3) of Figure 6 an ordered set of
search and tracking partitions are classified within I'.

Each of these partition learning classifier steps will now be
discussed in more detail.

4.1. Partitioning Step 1: Null Target Partition. Over time
some regions will be repeatedly observed. Much of the ob-
served regions will never have targets detected. Dependent
on anticipated possible target mobility, it may be concluded
that no targets exist in these areas. It is necessary to maintain
a partition that classifies regions in which no targets exist.
These regions form the null target partition.

The first step of partition learning is to classify this null
target partition. The importance of this partition is seen
by considering two scenarios. The first is when there is no
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FI1GURE 6: Cascade of classifiers that partition the surveillance area
into (1) a null target partition, (2) an exploration partition, and (3)
a set of search and tracking partitions. Note that at each instance
of time that the target density distribution changes, this classifier
is processed on the new target density distribution. In this sense
partitions change with time.

target in the surveillance area. At some point in time the
conclusion should be reached that there is no target. The
second scenario is when there is a vast exploration partition.
As regions become fully observed, but no targets have been
detected, these observed regions should cease to be explored.

The method of classification for this step of partition
learning will now be described. To do this the features used

for classification will be described first. Then the classifier
will be described.

4.1.1. Features. Low values for target density are what define
the null target partition. The only feature required to classify
this partition is then simply values of the target density
distribution. The target density distribution was defined
previously in (1).

4.1.2. Classifier. Recall that T represents the set over which
the classifier operates. As such, T' is initially the entire
surveillance area (I' — S). The first step (block (1) of
Figure 6) of partition learning is to determine the null target
partition S,y and remove it from T (I' < T \ Syuy). This
step of the classifier is visualized in Figure 7 for a simple one-
dimensional target density distribution.

To determine which points in I' belong to the null target
partition, a target nullity threshold €,y is required. This
threshold specifies the value of target density below which it
is assumed no targets exist. With this target nullity threshold
given, all points in the surveillance area that correspond to
regions of essentially no targets can then be defined by

Shull := {x es: f(x) < €nu11}. (3)

The set of points in Sy, then form the null target partition.
This set of points is removed from I' and the classifier
continues by classifying the exploration partition.
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FIGURE 7: Visualization of a simple target density distribution with
corresponding null target partition noted.

4.2. Partitioning Step 2: Exploration Partition. The second
step of partition learning is to classify the exploration
partition. The exploration partition consists of areas within
the surveillance area that have low-to-no information bias.
For example, a region over which there is defined a uniform
probability distribution would be included in the exploration
partition. Because there is no bias in information, an explo-
ration-oriented mode of path planning may be preferred for
these regions [20, 21]. To allow this exploration-oriented
mode of path planning, these types of regions are classified
into a separate partition.

The method of classification for this step of partition
learning will now be described. To do this the features used
for classification will be described first. Then the classifier
will be described.

4.2.1. Features. In order to classify points in I' into the explo-
ration partition, two features are required. These features are

(1) local uncertainty,

(2) target density.

Local uncertainty is used to determine regions of locally uni-
form value. Initially it may appear that only local uncertainty
is required to define the exploration partition completely.
However, there is a subtle aspect that requires the addition
of target density in order to completely capture the entire
exploration partition.

This subtle aspect can be understood by considering
the case when the entire surveillance area is initially uni-
formly distributed. An agent makes imperfect no-detection
observations. As such, some regions will have low-target
density (regions that have been observed well), completely
unobserved regions will have an unchanged uniform value,
and others will have value somewhere in between the low
value and the unchanged uniform value (due to poor
observation in these areas). These in-between-valued areas
will not have locally uniform value, yet will still belong to the
exploration partition. This case suggests that target density,
in addition to local uncertainty, is required to catch the
complete exploration partition.

Before defining local uncertainty a definition for local
area is required. The local area S,(xp) = S of some point

Xo € S in the surveillance area (where S is the space of the
surveillance area) is defined as

Si(xp) :={xe€S:d(x,x0) <1}, (4)

where d(x, xy) is some measure of distance.

Local uncertainty is defined by first selecting a measure
for uncertainty. In this paper local uncertainty is based on
entropy. As such, local uncertainty is computed by evaluating
the local entropy defined as

H, (xo) ;:J

1
s fr(x,xo)log<M>dy(x), (5)
where f,(x,x9) is the locally normalized target density
function defined by

W
Jrloxm): [es.o) () du(y)” (©)

Note, if local uncertainty were not defined on a locally
normalized target density distribution there would not be
a well-established maximum value for local uncertainty.
A locally normalized density is then required so that the
maximum value for local uncertainty can be referenced dur-
ing classification. This maximum value allows the classifier
to determine if a particular region contains significantly
biased information of target density. To aid in understanding
local uncertainty Figure 8 presents the computation of
local entropy over a surveillance area when the underlying
target density distribution is a simple Gaussian probability
distribution centered in the middle of the surveillance area.
In this figure, local uncertainty is represented by shade value
where white is high value and black is low value.

4.2.2. Classifier. At this point of the classifier I' consists of
a subset of the surveillance area defined by I' := S\ Spun.
In this step (block (2) of Figure 6) of partition learning the
exploration partition Sexplore is classified and removed from
I (T < T\ Sexplore). Define this resulting state of T to be
the search partition (or search set) Ssearch- The process of this
stage of the classifier is visualized in Figure 9 for a simple one-
dimensional target density distribution.

To determine which regions in I' are approximately
locally uniform, a new set Syg, called the high-entropy set,
is computed. The high-entropy set is defined as

SHE 1= {X erl: |Hr(x) - Hmax| < E}; (7)

where H;, (x) is the local entropy feature as defined in (5) and
Hpax is the maximum local entropy possible defined as

Hipax := 10g|Sr|, (8)

where [S,| := [ o du(x). Take, for example, the case when
the target density distribution is discretized on a fixed grid
defined over the surveillance area. Recall the definition of S,
in (4). In (4), note that in order to define S, it is required to
define a measure of distance d(x,xp) between two points x
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FIGURE 8: A sample computation of local uncertainty over a surveil-
lance area when the underlying target density distribution is a
simple Gaussian probability distribution. Local uncertainty is repre-
sented by shade value where white is high-local uncertainty and
black is low-local uncertainty. In this sample, notice that the peak
and the tails of the Gaussian have high-local uncertainty whereas
the regions in between the peak and tails have low uncertainty.

Exploration partition

FIGURE 9: Visualization of a simple target density distribution with
corresponding exploration partition noted.

and x in the surveillance area. For a fixed grid, this distance
is defined as

d(x,x0) := max({[x(1) — xo(1)[, 1x(2) —x(2)I}),  (9)

where the numbers 1 and 2 specify the indices of the points.
Then, according to the definition of S,, the maximum local
entropy is Hmax = log N2, where N is the number of rows/
columns in the square local area S,.

To catch regions for which the subtlety mentioned above
applies another set is computed. This set is called the low-
density set Syy. The definition of this set is simple, however, it
requires explanation. At the beginning of a surveillance task
an initial target density (or prior distribution) is constructed
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that expresses prior belief in possible target locations. At a
minimum this prior consists of two pieces. These pieces are

(1) a prior distribution fyrior(x) of previously known
target positions,

(2) an estimated number of additional targets ENadditional
that may exist in the surveillance area.

The prior target density distribution furior(x) provides a
target density bias based on where targets have most recently
been observed and where they might be now. For example,
Sorior may consist of a summation of Gaussian distributions
with each Gaussian representing the possible location of
a particular target whose position was once known or
whose position is simply guessed. The estimated number of
additional targets ENydditional affects the initial target density
distribution by defining a uniform target density distribution
U(x) such that

ENadditional
Ux)d =———"".
Les ) #(X) fxgs d,“(x) (10)
The resultant prior target density distribution is then
f(x) = fprior(x) + U(x). (11)

Note that some regions of the prior target density
distribution will have a characteristic uniform value U. This
characteristic low-information value can then be used to
define the low-density set. The regions that must be captured
in the low-density set are those regions that have target
density in between the locally uniform density and the null
target threshold. Yet, because I' = S \ Sy at this point of the
classifier, the low-density set can be defined simply as

Sni = {xeF:f(x)< U+E}. (12)

Then, combining the low-density set with the high-entropy
set, the exploration partition is defined as

Sexplore := SHE N SNr1. (13)

Sexplore can then be removed from I'as I’ < T'\ Seyplore. Let this
state of I be called the search partition (or search set) Ssearch-
Ssearch 18 then defined as

Ssearch := S\ {Snull U Sexplore}- (14)

After removing the exploration partition from T the
classifier then continues on to classifying the search and
tracking partitions.

4.3. Partitioning Step 3: Search and Tracking Partitions. The
third step of partition learning is to classify a set of search
and tracking partitions. Both search and tracking partitions
are classified by the same classifier.

In terms of information content, the opposite type of
region to the exploration partition is a tracking partition.
Tracking partitions are small spatially and are partitions in
which there is strong bias of target density and high certainty.
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These are partitions in which targets have been detected
consistently. Consequently, tracking partitions define loca-
tions of known targets. These partitions must continue to be
tracked according to the mobility of the tracked targets. The
search strategy then becomes that of keeping observance of
the known position of the targets. For example, the points
of maximum density within tracking partitions are kept in
observance. The search strategy for tracking partitions is
then the most constraining on agent motion. For example,
if an agent is a fixed-wing aircraft it will have to fly orbit-like
paths encircling the known position of the target [14, 22-25].

Similar to tracking partitions are search partitions. The
similarity that the search partitions have with the tracking
partitions is that both consist of an information set that
provides a bias to aid in optimizing search plans. However,
search partitions are different from tracking partitions in that
the information content is not very certain. Consequently,
not much can be said about exactly where a target may be
located. However, there is bias over which parts of the regions
have high possibility of target existence. It then becomes
the duty of a search plan to optimize paths based on the
information content in order to yield a new distribution
with higher certainty. The search strategy then becomes to
maximize some type of information gain, and a searcher’s
paths are guided to improve the information content in order
to ultimately observe a target [6-8, 12, 26, 27].

The method of classification for this step of partition
learning will now be described. To do this the features used
for classification will be described first. Then the classifier
will be described.

4.3.1. Features. In order to classify points in I into search and
tracking partitions, two features are required. These features
are

(1) normalized position within the surveillance area,

(2) local expected number of targets.

Normalized position is computed for some point x € S by
dividing by the size of the surveillance area S. Local expected
number of targets comes readily from the target density
distribution. To understand this, recall the definition of the
target density distribution. From this definition it is apparent
that the expected number of targets within some region A is
just the integration of the target density distribution over that
region. Recalling the definition of local area, local expected
number of targets is then computed by integrating the target
density distribution over the local area as

L (xo) : ENSr(X())

(15)

d .
JxES,(xo) f(x) ﬂ(x)

To aid understanding of local expected number of targets,
Figure 10 presents a sample computation over a surveillance
area when the target density distribution is a simple Gaussian
probability distribution. In this figure the value of local
expected number of targets is represented by shade value,
white being high and black being low. From this figure it can
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FIGURE 10: A sample computation of local expected number of
targets I, over a surveillance area when the underlying target density
distribution is a simple Gaussian probability distribution. Notice
that local expected number of targets acts as a smoothing filter over
the target density distribution.
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FIGUrRe 11: Visualization of how points in the target density
distribution feature space are convexly partitioned. In this example
three partitions are classified. The resulting three partitions are
represented by circles, stars, and rectangles.

be observed that local expected number of targets acts as a
smoothing filter over the target density distribution.

4.3.2. Classifier. At this point in partition learning (block 3
in Figure 6) the set on which classification operates is I' =
Sscarch = S\ {Snull U Sexplore}- I' then consists of regions in
the surveillance area with some level of biased information
of possible target locations. In this step of partition learning
I is partitioned into a set of search and tracking partitions.
This step cannot be performed by a simple set computation
as was done for the previous two steps of partition learning.
Instead, points in I' are clustered according to the target
density feature space. In order to help visualize the action
that occurs at this stage of the classifier, observe Figure 11.
This figure shows how a set of points in the target density
distribution feature space are convexly partitioned.

There are many convex clustering methods [28] that
would work for this level of the classifier. The approach
taken in this paper is to perform classification by utilizing



both K-means and Gaussian Mixture Model EM [28]. K-
means is used to initialize search and tracking partitioning
at the beginning of the surveillance task. Gaussian Mixture
Model EM is then used at subsequent steps in time, where
the Gaussian Mixture Model EM is seeded with previous
partition means [17]. Both K-means and Gaussian Mixture
Model EM operate in the target density distribution feature
space consisting of normalized position within the surveil-
lance area and local expected number of targets.

In order to perform this classification, the number of
partitions to classify must be initialized. The initial number
of partitions is determined from the total expected number
of targets in the surveillance area

Ninitial = Ceﬂ(ENs)

ceil(LES f(x)dpt(x)) .

After performing K-means or Gaussian Mixture Model
EM to convexly partition I' = Sgearch into a set of search and
tracking partitions, these partitions are then ordered. The
partitions are ordered so that tracking partitions appear first
and uncertain searching partitions appear last. This enables
path planning algorithms to prioritize the various search and
tracking partitions. To accomplish this ordering the partition
density pp, of each partition P; is computed. Partition density
is defined as

(16)

pr” fxeP,v dp(x) ’

At this point in this step of partition learning an ordered
set of search and tracking partitions have been classified.
Some of these partitions may correspond to regions with
many densely located targets. It may be beneficial to allocate
more searching resource to these types of partitions. Accord-
ingly, these partitions are further subpartitioned.

In order to determine if some partition P; should be sub-
partitioned its expected number of targets ENp, is computed.
ENp, is easily computed from the target density distribution

f(x)as

(17)

ENp, = Lep. Fdu). (18)

If ENp, > 1 then it is expected that there is more than one
target within P;. In order to track all of these possible
targets multiple agents may be required. To account for the
possible need of multiple agents, any P; with ENp, > 1 is
subpartitioned into ceil(ENp,) new partitions. And this is
where the classifier ends. The end result is one null target par-
tition, one exploration partition, and a set of ordered search
and tracking partitions.

5. Step 3: Path Planning over Partitions

The final step of the approach presented in this paper for
autonomous search and tracking is path planning. This path
planning is performed over the set of partitions. In order to
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FiGUre 12: Structure of path planning decomposed into task
allocation over partitions and path planning by optimizing directly
over the target density distribution.

plan paths over partitions, path planning is decomposed into
two steps as depicted in Figure 12. These steps are

(1) partition task allocation,

(2) target density distribution based path optimization.

In the first step partitions are allocated to the team of
agents [29, 30]. In the second step agent paths are determined
within allocated partitions by optimizing directly over
partition level target density distributions [6-8, 10, 14].

By decomposing path planning in this manner the vast
amount of work that has been developed for vehicle routing
(for partition task allocation) and receding horizon path
optimization (for target density-distribution-based path
optimization) can be leveraged. Now, all that is required is
extensions of existing methods where necessary. As such, this
section refers the reader to the body of work that is leveraged
and then presents any required extensions.

5.1. Path Planning Step 1: Partition Task Allocation. The
partitions generated by the classifier define areas over which
subsets of the target density distribution can be extracted.
This suggests the application of some kind of task allocation
algorithm that takes each of the partitioned search areas as
tasks with varying level of certainty or priority. The exact
method of task allocation is beyond the scope of this paper
since it has been well developed by researchers already.
Refer specifically to [29, 30] for methods that directly apply.
For task allocation algorithms that have been developed
for projects at the Center for Collaborative Control of
Unmanned Vehicles refer to [29].

5.2. Path Planning Step 2: Distribution-Based Optimization.
Optimizing a path over a target density distribution is almost
identical to optimizing a path over a probability distribution.
Fortunately, much work has been done to develop path
optimization over probability distributions [6-8, 10, 14].
These existing methods are leveraged in this paper. The
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general approach of these methods is to define a function
for measuring the utility of a path based on an underlying
probability distribution. Then, this utility function is used to
optimize paths through the surveillance area. These methods
are extended by defining a utility function based on target
density distributions. Defining this utility function is the
focus of this section.

In order to define a path’s utility the utility of a point
in the surveillance area must be defined. However, before
defining the utility of a point, an agent’s sensor observation
coverage fc(x,Xo), about a point x; in the surveillance
area, must be determined. fc(x,xp) essentially specifies how
applicable some point x in the surveillance area is to a
particular agent when the agent is located at x¢. For example,
consider the case of a fixed sensor. This sensor is free to rotate
in order to observe its surroundings. However, it cannot see
beyond r meters. Consequently, any point farther away than
r meters is of little significance to this sensor.

An agent’s observation coverage is determined by the
properties of the agent’s sensor. For example, if an agent
can make observations perfectly within a radius r, then the
observation coverage is an indicator function defined by

1, if [|x — xoll <1,

felx, xo) = { (19)

0, otherwise.

However, in general, the observation coverage is determined
by the sensor’s capable field of view as well as the resolution
of observable points within the field of view and the
probability of missed detection [31]. In order to further
visualize possible sensor observation coverages, consider two
cases.

(1) An agent can view it’s surroundings perfectly within
25 meters. Beyond that, the agent’s view linearly
degrades until it cannot make any observation at 70
meters.

(2) An agent cannot view anything near it until a distance
of 45 meters away. After that, observations quickly
become perfect but then start to fade around 65
meters. By 90 meters, observations are no longer
possible.

The first of these cases is similar to what is true for many
sensing agents [32]. They are designed such that their obser-
vations improve with proximity. Figure 13 depicts this sensor
coverage. In this figure the quality of a point’s coverage by the
agent’s sensor is represented by a shaded value where white is
high utility and black is low utility.

The second of these cases may seem odd, but is actually
similar to what was used in an experiment performed with
autonomous aircraft equipped with visual spectrum cameras
[33]. In this experiment, a camera on-board an aircraft was
zoomed in to detect features of a pedestrian. The zoom was
designed so that good resolution would be provided when
the aircraft orbited the pedestrian. Consequently, it was

y (meters)

-60 —40 =20 0 20 40 60

x (meters)

FIGURE 13: A sample sensor observation coverage where the quality
of coverage is represented by shaded value, white being high quality
and black being low quality. This type of coverage is applicable when
a sensor’s observations are improved with close proximity.

y (meters)

-80 —-60 —-40 -20 O 20 40 60 80

x (meters)

FIGURE 14: A sample sensor observation coverage where the quality
of coverage is represented by shaded value, white being high quality
and black being low quality. This type of coverage is applicable when
a sensor makes good observations at some specified distance away.

designed to make good observations at an orbit’s radius away
from the aircraft. Figure 14 depicts this sensor coverage. In
this figure the quality of a point’s coverage by the agent’s
sensor is represented by a shaded value where white is high
utility and black is low utility.



10

The utility of an agent’s point x, in the surveillance area
can then be defined utilizing sensor coverage. First, consider
a zero horizon path. The utility of a point xj is

Volxo) = Les F0) feloe x0)du(x), (20)

where f(x) is the target density distribution. Extending
this to finite horizon planning, define the H-step horizon
observation coverage over the path xo.y = (xo,...,xH) as

folo,xon) :=1— [ (1- fo(x,x)). 1)

t=0:H

The utility of a point x; € S, and consequently the path xo.,
is then defined as

Vu(xp) := max
xi€R(xi-1)
i=1

i=1,...H

[ st somdut, (o)

where R(x) is the set of all points within the reach set of
x [14]. Intuitively, (22) represents the expected number of
targets within the sensor coverage over a H-step path origi-
nating from the point xo. Maximizing (22) then corresponds
to choosing the point x; that yields the maximum expected
number of targets within the observation coverage of a path
originating from xg .

This definition of path utility was based on the entire tar-
get density distribution. In order to optimize paths through
specific partitions the utility must be defined for partition
level target density distributions. Fortunately, this extension
is easily accomplished. First, let the set of partitions defined
over the surveillance area be P = {Py,..., P,}. The partition
level target density distribution fp,(x) for partition P; € P is
then defined as

Fox) i {é‘(x)

ifx e p;,

23
otherwise. (23)

And then replacing f(x) with fp,(x), the partition level utility
of a path starting at xo is then defined as

P;

Vi (x0) := max
Xi€R(xi-1) Jxes
i=1,...H

i=1,..,

fo(0) fe(e xom)dp(x). — (24)

This equation fully specifies partition level target density-
distribution-based path optimization. Further development
and application-specific details can be found in [14, 17].

6. Results

In this paper a new approach for autonomous search and
tracking was presented. This new approach was designed
for the case when the surveillance area is large, the number
of targets is unknown, and target estimation is general and
nonparametric. In this section, results of the performance of
this approach are presented.

The performance of partition learning to aid in agent
path planning was tested by constructing a simulation
environment. In this environment the team of agents con-
sisted of autonomous aircraft equipped with visual spectrum

Journal of Robotics

Number of targets in partitions

0 L L L L L L
5 10 15 20 25 30

Time (2 s intervals)

— Direct optimization
~~~~~~ True number of targets
- -~ Partitioning

FIGURE 15: Comparison of sample mean number of targets within
search or tracking partitions over simulation time between state-
of-the-art direct distribution optimization and partition learning
classification path planning approaches.

Number of partitions
w

0 1 1 1 1 1 1
5 10 15 20 25 30

Time (2 s intervals)

— Direct optimization
- -~ Partitioning

Figure 16: Comparison of sample mean number of search and
tracking partitions over simulation time between state-of-the-art
direct distribution optimization and partition learning classifica-
tion path planning approaches.

gimballed camera sensors. The capabilities of these agents
were designed to closely represent behaviors observed in
flight experiments [32, 33]. The camera characteristics were
designed to represent a field of view resulting from a
0.9273 rad view angle. Effects of resolution were included by
limiting the distance of observations to 250 m. The agents
were designed to fly at 25m/s and 100 m altitude with a
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FiGure 17: Comparison of sample mean average search and
tracking partition size over simulation time between state-of-the-
art direct distribution optimization and partition learning classif-
ication path planning approaches.
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5 10 15 20 25 30
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FiGgure 18: Comparison of sample mean average partition size of
partitions containing targets over simulation time between state-
of-the-art direct distribution optimization and partition learning
classification path planning approaches.

maximum turn rate of 0.2 rad/s. The targets were allowed to
move according to a transition model defined by

0
X1 = X101+ r[i?;((e))] (25)
where r and 6 were distributed as
r ~ Gaussian (y,0?),
. (26)
6 ~ Uniform ([0,27)),
with ¢ = 2m in one second and 0> = 10m?. The time

interval of each simulation iteration was 4 seconds. Several
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FiGure 19: Comparison of sample mean exploration partition size
over simulation time between state-of-the-art direct distribution
optimization and partition learning classification path planning

approaches.
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F1Gure 20: Comparison of sample mean number of targets localized
over simulation time between state-of-the-art direct distribution
optimization and partition learning classification path planning
approaches.

simulation samples were performed with various initial
target and agent positions as well as various prior density
distributions.

The performance of partition classification is affected
by the quality and diversity of observations made over the
surveillance area. Partition classification should perform well
according to the observations it receives. To measure this
performance several metrics were used. These metrics are

(1) number of targets in search and tracking partitions,

(2) number of search and tracking partitions,
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(a) (b)

(e) (f)

F1GuURre 21: Sample sequence of partition learning classification path planning for a scenario involving six agents and six targets (the number
of targets was unknown to the agents). Agents are represented by blue/green circles with protruding lines that represent the direction of the
agents. The approximate field of view of each agent is represented by green connected lines. Targets are represented by black/red circles. The
entire surveillance area is partitioned. These partitions are represented by different colors. Follow the sequence from left to right and from
top to bottom. In (a) initial partitions are formed. In (b) tracking partitions appear. By (f) all targets are within tracking partitions.
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(3) average search and tracking partition size,

(4) average size of search and tracking partitions contain-
ing targets,

(5) exploration partition size,

(6) number of targets localized.

It is additionally necessary to provide a comparison in
order to see how well the presented methods perform. Recall
the standard approach for autonomous search and tracking.
The standard approach optimizes agent paths directly over
the distribution. The comparison provided in this section is
then between using partition learning to aid path planning
versus optimizing paths directly over the target distribution.
This standard approach will be referred to as the state-of-the-
art. Note, however, in order to compute some of the metrics
above, it is necessary to run the partition classification
algorithm for both cases. The partition learning classifier was
run for both path planning approaches (that presented in this
paper and the state-of-the-art). Yet, only the path planning
approach presented in this paper utilized the partitions for
path planning purposes.

In this paper, results for the scenario in which there
are six agents and three targets is provided. Additionally, a
sample sequence of partition learning is provided as a visual
aid to understand how these partitions may look for the case
when there are six agents and six targets. This sample se-
quence is found in Figure 21. This figure spans an entire page
so it is provided after all other figures. Additional scenarios
are provided in [17].

The results provided in this section demonstrate the
scenario when there are sufficient resources to perform
surveillance. From these results it is concluded that the
the approach presented in this paper performed well. This
conclusion is determined by observing Figures 15 and 16.
Figure 15 presents the number of targets in search or tracking
partitions over time. Figure 16 presents the number of search
or tracking partitions over time.

From Figures 15 and 16 it is apparent that all targets are
quickly captured within search or tracking partitions and the
number of partitions is bounded. However, the performance
of the two path planning approaches is very different. From
Figure 17, it can be seen that the average partition size does
not decrease for state-of-the-art path planning. However, the
average partition size decreases substantially for partition
learning classification path planning.

A similar result is also true for the average size of
partitions containing targets, plotted in Figure 18. Addition-
ally, according to Figure 19, the exploration size continually
decreases for partition learning classification, but tends to
level off for state-of-the-art path planning. Furthermore,
the state-of-the-art path planning did not perform well to
localize targets in this scenario. In contrast to this, partition
learning classification path planning performed well to
eventually localize all targets. This can be seen in Figure 20.
From the results presented here, it is then apparent that
partition learning classification path planning performs well
to find and localize targets for this scenario, as compared to
state-of-the-art path planning.

13

7. Conclusions

In this paper a new approach for autonomous search and
tracking was presented. This new approach was designed for
the case when the geographic area is large, the number of
targets is unknown, and target track estimation is general
and nonparametric. This is a challenging problem because
very little is assumed. All that was assumed is that some form
of target track estimation is available and shared among the
team of autonomous agents performing the search. This new
approach decomposes the search and tracking problem into
three steps. The first step is target density distribution esti-
mation. The second step is partition learning classification
based on the target density distribution. The third step is
path planning based on the partitions.

The vast body of work available for target track estima-
tion and path planning over probability distributions was
leveraged to provide solutions for the first and third steps. As
such, the main focus of this paper was on partition learning.
In order to determine the performance of this new approach,
it was compared with the standard approach of directly
optimizing paths over target estimation distributions. From
this comparison, it is concluded that the approach presented
in this paper performs well and provides an improved
solution for this very general form of the autonomous search
and tracking problem.
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