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This paper proposes a kinematic model and an inertial localization system architecture for a riser inspecting robot. The robot
scrolls outside the catenary riser, used for underwater petroleum exploration, and is designed to perform several nondestructive
tests. It can also be used to reconstruct the riser profile. Here, a realistic simulation model of robot kinematics and its environment
is proposed, using different sources of data: oil platform characteristics, riser static configuration, sea currents and waves, vortex-
induced vibrations, and instrumentation model. A dynamic finite element model of the riser generates a nominal riser profile.
When the robot kinematic model virtually scrolls the simulated riser profile, a robot kinematic pattern is calculated. This pattern
feeds error models of a strapdown inertial measurement unit (IMU) and of a depth sensor. A Kalman filter fuses the simulated
accelerometers data with simulated external measurements. Along the riser vertical part, the estimated localization error between
the simulated nominal and Kalman filter reconstructed robot paths was about 2 m. When the robot model approaches the seabed
it assumes a more horizontal trajectory and the localization error increases significantly.

1. Introduction

One of the key elements of deep-water petroleum explora-
tion is the production riser. Risers are the ducts that trans-
port petroleum, water or gases from the exploitation well up
to the production platform. Either rigid or flexible types of
risers may be used in the oil field. Both types are submitted
to a broad spectrum of failure causes [1]: mechanical loads,
aging, corrosion, erosion, temperature effects, installation
or fabrication nonconformities, and so forth. Therefore, the
availability of inspection tools to assess riser integrity status
in situ is highly desirable. Such procedures are performed
mainly by visual inspection with remotely operated vehicles
(ROVs) [2] or autonomous underwater vehicles (AUVs) [3].
In some cases, sensors are installed directly on fixed points
of the riser surface to measure strain and riser motion [4].
Other types of nondestructive testing (NDT) techniques can

be used, such as magnetic, radiographic, or ultrasound meth-
ods [5]. In these cases, however, the operational constraints
for using human operators are a major problem. A few
papers address robotic devices specifically designed for un-
derwater riser inspection. Psarros and his collaborators [6]
proposed a robot that moves along the riser by using a
mechanism composed of two parts. One part stays attached
to the riser body, and the other part moves towards the riser’s
side, in a cyclical manner.

A major technical problem in robotic underwater inspec-
tion is the navigation and/or localization of the robot in
a highly dynamic sea environment. Navigation is especially
critical for AUVs and somewhat critical for ROVs. Lee at al.
[7] addressed this problem by using several sensors fused by
a multirate Extended Kalman Filter (EKF). The sensors set
included a strapdown inertial platform, a Doppler velocity
log (DVL), magnetic compass, and a depth sensor. However,



2 Journal of Robotics

they had sonar transducers installed in an underwater refer-
ence station and in the remote vehicle. Jouffroy and Opder-
becke [8] addressed the problem of measuring the horizontal
position of a ROV by using a gyro-Doppler together with
an ultrashort baseline (USBL) acoustic positioning system.
Diffusion-based observers were used to process a trajectory
segment, instead of a typical point-by-point localization.
He et al. [9] proposed an approach based on an invariance
extended Kalman filter (IEKF) to address the problems of
using sonar in shallow waters. In the case when the robot
is mechanically linked to the inspected structure, the key
problem is to localize precisely where it is at every instant
of time. Such localization coordinates are associated to NDTs
data and the flaws position can be precisely determined.

Recently, our group designed and built a prototype of a
robotic device specifically designed to perform nondestruc-
tive testing (NDT) in production risers [10]. The robot has
neutral floatability and embraces the riser by moving along
its outside (Figure 1), using a pair of thrusters for propulsion
as well as polymeric wheels to guarantee sliding and correct
alignment with the riser surface. In Figure 2 it is possible
to observe how the robot attaches the riser by opening and
closing its motorized arms. This operation is assisted by a
human diver. It communicates with the operator’s computer
by means of an umbilical cable that transmits power, images
and control commands. The dimensions of the robot and
additional parameters used along the work are shown in
Table 2. This robot will be able to perform several NDT
procedures, such as ultrasound, imaging, and mechanical
vibration measurements.

This paper proposes a kinematic model of the robot per-
forming a riser profile cast mission, in a realistic simulated
environment. Initially, a riser dynamic profile is estimated
using a finite element model of the riser subjected to sea and
ship motions. The nominal robot kinematic path (including
position, velocity and acceleration), as it scrolls by the riser,
is contaminated with experimental errors, simulated by IMU
and depth sensor models. The simulated sensor data is used
by a Kalman filter to estimate the original robot path. This
path is a good estimate of the actual riser profile, if robot
mission time is small, compared to platform motion.

The obtained profile can be used as an imposed displace-
ment data for some structural analysis software based on
finite elements techniques, that allows stress to be calculated.
In addition, the localization algorithm can be used to
associate each NDT measurement with its riser geometrical
coordinate. These two aspects are intimately connected, and
the localization algorithm can be used either to cast the
profile, for fast robot runs, or localize the NDTs.

Reproducing the expected environmental conditions, to
test the proposed approach, in a laboratory experiment is
essentially impracticable. Field tests, by his turn, should
require a expensive positioning system such as a 3D sonar,
which does not operate at the required frequency resolution,
due to the presence of vortex induced vibrations (VIVs).
Therefore, a simulation of the riser application, together with
simulated sensors, was used to assess the performance of the
localization algorithm.

Figure 1: Robot prototype.

Actually, a particular environmental and riser configu-
ration scenario is being addressed in this paper. However,
the approach is likely to be applicable to similar situations.
Other devices that move along subsea pipe systems, such as
flowlines, jumpers, and umbilicals, could employ some of the
main ideas presented in this paper. No additional localization
devices, such as sonar beacons, are needed.

The localization problem formulation used a standard
Kalman filter as a sensor fusion algorithm based on a simple
kinematic model of a strapdown IMU fused with a depth
sensor. More sophisticated sensor fusion algorithms or state-
space models for the system (e.g., dynamical models) could
also be tested in future implementations, but the problem
formulation would be probably quite similar.

2. Riser Simulation Conditions

The particular sea and ship motion conditions selected for
running the simulations corresponded to a severe condition,
relatively similar to that typically found in Campos Basin,
in the southeast of South America coast. Actually, they were
designed to be worse than the most severe scenario in which
a robot is expected to operate (Table 1). Additionally, under
milder sea conditions, the localization performance should
be expectable to be better than shown here.

Data from a flexible free-hanging riser installed in a
PETROBRAS (Brazilian State oil company) Turret Floating
Production Storage Offloading (FPSO) oil platform, which
is currently in operation in the Campos Basin, was used as
the inputs for the riser simulation software FLEXCOM. This
is a finite elements software customized for nonlinear static
and dynamic analysis of offshore systems, used worldwide
by the petroleum industry from the last 20 years, and
validated against experimental tests and other finite elements
packages [11, 12]. The software allows riser responses to be
simulated with several kinds of platform characteristics, sea
current profiles, hydrodynamic loads, regular and irregular
waves, and so forth. Two situations were studied: static and
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Figure 2: Transversal view of the robot frame showing how it attaches the riser, by opening and closing its motorized arms. The polymeric
free wheels that effectively touch the riser surface are also shown.

Table 1: Parameters used in the simulations.

Parameter Value

Robot length 1133 mm

Robot max. outside diameter 800 mm

Robot mass 73 kg

Riser outer diameter 295.5 mm

Riser inner diameter 203.5 mm

Riser length 1530 m

Riser internal pressure 60 bar

Outer riser drag coefficient (Cd) 1.2

Water depth 1180 m

Seabed axial friction 0.35

Seabed transversal friction 0.9

Seabed vertical stiffness 104.3 N/m2

Wave height 5 m

Wave period 10 seconds

FPSO length 330 m

dynamic. In the static analysis, only the equilibrium configu-
ration of the riser is considered, without motions other than
from the robot itself. Three positions of the platform with
relation to the wheel head were considered: standard and
with a ship offset of 150 m in the directions near and far.
For the dynamic analysis, sea conditions with regular waves,
reaching the ship 45◦ obliquely, were used to generate the
riser motion profiles.

To estimate numerically the localization system perfor-
mance and calculate the associated displacement errors, the
arrangement shown in Figure 3 was used. By simulating
the kinematic model (Section 4), a physical profile of Euler
angles, inertial accelerations, and depth was calculated.
These simulated variables are then contaminated by noise,
using the IMU and depth sensor instrumentation error
models (Section 5), providing realistic sensor outputs. The
trajectory run by the robot is estimated by a sensor fusion
algorithm (Kalman filter), using such noisy sensor data
(Section 6). Finally, both physical and estimated riser shapes

are compared, to estimate the localization error along the run
(Sections 7 and 8).

3. Architecture of the Localization System

The proposed localization system, that will be simulated
numerically here, is shown in Figure 4. An IMU measures
three accelerations, angular velocities, and Euler angles from
the robot as it scrolls along the riser. Accelerations are
measured in the local reference frame (see definition in
Section 4). Using the Euler angles, the accelerations are
transformed to the global reference system, using the classic
strapdown inertial navigation approach [13]. The simulated
measurements from the IMU are fused by the Kalman Filter
(KF) with the processed simulated external measurements
from the depth sensor. Its output is an estimated state vector,
that includes robot position, in the global reference frame.

4. Generation of Static and
Dynamic Sensor Profiles

A simulated profile of inertial sensor physical excitation was
obtained. First, the nominal or static riser geometry was
obtained from the FEM (finite element model) analysis. The
global reference system (XG, YG, ZG) was positioned in the
turret center, such that X axis points to an arbitrary direction
(e.g., north), Z points up, and Y is orthogonal to both
(Figure 5). This reference frame is attached to the FPSO,
being thus a slowly moving frame. However, due to the very
low frequency of the FPSO movement compared to robot
mission time span, the global reference frame was considered
as being inertial.

The local reference system (Xl, Yl, Zl) is localized in the
geometric center of the riser section that coincides with the
position, relative to robot height, where the inertial sensor
is expected to be installed, and moves together with the
robot. The center of the local reference system was defined,
relatively to the global reference system, using the same nodes
of the FEM mesh, which coordinates in the global reference
system are PGi = (x(i), y(i), z(i)), i = 1, . . . ,N (N is number
of nodes in the mesh and the superscript G express the
reference system). Each Zl vector is found from a unit vector
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Table 2: Identified parameters for the IMU sensor model1.

Variable τr(Rxx(s)) τr(Allan(s)) Low cut (Hz) High cut (Hz) σbias σbw

Roll◦ 629 20∗ 5 20 0.1635 0.0072

Pitch◦ 578 20∗ 6 20 0.1553 0.0072

Yaw◦ 1403 20∗ 5 12 0.2144 0.0095

AccX g 0.644∗ 10 0.3 3 5.2768e − 4 0.0041

AccY g 0.581∗ 10 0.25 3 0.0011 0.0037

AccZ g 0.645∗ 10 0.3 3 6.4654e − 4 0.0033

AngRateX◦/s 0.767∗ 15 — — 0.0076 0.0076

AngRateY◦/s 0.754∗ 20 — — 0.0074 0.0074

AngRateZ◦/s 0.745∗ 10 — — 0.0057 0.0057
1Rxx means that used time constant is from autocorrelation, andAllan from Allan variance plot. Low cut and high cut correspond to the cutting-off frequencies
of the low-pass and high-pass filter used to calculate σbias and σbw, respectively. σbw and σbias have the same unities of their respective measurement variables.
∗Used in the simulations.

Nodes and coordinates of FEM model output

Trajectory generation

Platform data, sea condition
Riser characteristics, geometry etc.

Profile generation

Nominal
trajectory

Analysis of results
Estimated trajectory

Instrumentation
model

Output

FLEXCOM

Localization algorithm

Kalman filter

Simulated accel. output

Simulated attitude output

Sensor accel. and attitude at the installation point

Input parameters

Figure 3: Overview of the system simulation analysis. A dynamic riser profile is generated through an FEM analysis. Using robot’s
kinematical and instrumentation model, the expected sensor readings are used to reconstruct the riser profile by the localization algorithm,
which is compared to the original profile from FEM output.

Du that connects node i to node i + 1 of the FEM mesh. The
negative sign for defining Zl in (2) is due to the fact that Du

points down:

D =
[
x(i + 1)− x(i) y(i + 1)− y(i) z(i + 1)− z(i)

]
,

Du = D
‖D‖ ,

(1)

Zl = −Du. (2)

In the sequence, a particular Yl was chosen (along with
its orthogonal counterpart Xl), such that it could represent
one plausible mission trajectory. In the present version of
the model, the robot communicates with the operator in
the platform through an umbilical cable, and only a small

amount of spin can be allowed, to prevent the cable from
curling along the riser. Therefore, Yl is simultaneously
orthogonal to a point sufficiently far in the X direction and
to −Zl. The Xl vector was orthogonal to both Zl and Yl.
For each local reference system i, a directors cosine matrix
(DCM) was defined as follows:

DCM =

⎡
⎢⎢⎢⎣

X1x Y1x Z1x

X1y Y1y Z1z

X1z Y1z Z1z

⎤
⎥⎥⎥⎦, (3)

where Xl = (X1x,X1y ,X1z)
T is the unit vector that defines Xl,

and similarly Yl and Zl.
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Figure 4: Architecture of the proposed localization system architecture. The robot scrolling along the riser generates a set of kinematic
variables that is measured by the IMU. The accelerations are transformed to the global reference system, using IMU attitude outputs, and
considered as the inputs of the KF. To compensate the drift caused by integrated sensor noise, the KF fuses the IMU with depth sensor data,
that is, an absolute measurement. Before entering in the KF, the external measurements are processed by the method described in Section 6,
using IMU attitude data.

Euler angles ψ, θ, and φ were defined between the XG

and Xl, YG and Yl, ZG and Zl axis, respectively. In every step,
these angles were derived from the DCM matrix, by using
the formulas presented by [14]. The resulting transformation
matrix from local to global reference system RG1 = RxRyRz
was posteriorly verified to be the same as DCM, in order
to determine if singularities were present. A fixed point
PS = (0, 0.5, 0) expressed in the local reference frame
corresponds to the robot body point where the IMU will be
possibly installed. This point was arbitrarily chosen within
a reasonable Y distance from the riser section center, where
the origin of the local reference frame is positioned. The
coordinates of PS, expressed in the global coordinate frame,
were assumed as the sensor displacement profile.

4.1. Sea Current Effect. A linear current profile Vcur from
the maximum sea current velocity (Vcurmax) at sea level to
0 at seabed [15] was considered as being aligned with the
riser catenary plane. Vcurmax was assumed as 1.68 m/s, from
Campos Basin data:

Vcur(i) = RZcat

⎡
⎢⎢⎢⎢⎢⎣

0

Vcurmax(z(N − 1)− z(i))
z(N − 1)− z(1)

0

⎤
⎥⎥⎥⎥⎥⎦

i = 1, . . . ,N ,

(4)

where RZcat is the rotation matrix associated with the
catenary angle in the XGYG plane, given by the following
expression:

φcat = arctan

(
x(N)− x(1)
y(N)− y(1)

)
,

RZcat =

⎡
⎢⎢⎢⎣

cos
(
φcat

)
sin
(
φcat

)
0

− sin
(
φcat

)
cos
(
φcat

)
0

0 0 1

⎤
⎥⎥⎥⎦.

(5)

The robot can move freely along the riser in the Zl

direction, but it was constrained in the other directions
because it embraced the riser on the outside. If no water
current was present, the nominal robot velocity propelled
by a pair of thrusters should be ‖Vr‖ in the direction of Zl.
However, due to the presence of the current, the absolute
velocity of the robot was found by considering the sea
current velocity component that is projected over the robot’s
trajectory, which can change the robot’s progression velocity:

Vr abs = −Vr + Vcur · Zl, (6)

where Vr abs is the absolute velocity and · the dot product.
From a preliminary study, ‖Vr‖ was estimated as 1 m/s.
Figure 6 illustrates robot Zl velocity in the particular sea
current and thrusters conditions adopted in this paper.

The effect of the longitudinal sheer between the robot
and the riser due to the transversal current was not taken into
account. This current component was expected essentially to
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Figure 5: Side and upper views of the FPSO and riser configuration. Global (XG, YG, ZG) and local (Xl, Yl, Zl) reference systems position
and orientation are shown. The FPSO and riser catenary plane are considered as being aligned with the sea current, forming an angle φcat

with the XG direction in XGYG plane.

increase the normal force that the robot applied to the outer
surface of the riser. Because the riser was tightly fitted among
the robot’s rigid free wells to avoid longitudinal and torsional
slipping, the increase in the shear force of the wheels that
could decelerate the robot was considered to be negligible.

Since all the elements of the FEM mesh have approx-
imately the same length, the time steps are no longer
uniformly distributed with such variable velocity profile. The
resulting variable time array was calculated by:

tvar(i) = ‖D(i)‖
‖Vr‖ , i = 1, . . . ,N. (7)

This nonuniform time array was inconvenient for future
calculations of velocity and acceleration profiles, and a new
set of (x(i), y(i), z(i)) was found by spline interpolation using
a uniform time array with the same limits of tvar. In the

sequence, the local reference systems (Xl, Yl, Zl), the DCM
matrix and the Euler angles were recalculated using this
new set of coordinates, which were sampled by a uniform
time array. All profiles were resampled at 5 Hz by spline
interpolation, such that the high frequency riser motions
could be followed (next subsection). The total mission time
was Tm = 1526 s, and a total of M = Tm(s) × 5(Hz) = 7630
points were generated.

4.2. Riser Motion Effect. The dynamic FEM analysis allows
finding, along the time, the altered geometry of the riser,
with respect to the nominal static profile. The finite elements
model had 170 beam elements with flexion, axial, and
torsional deformations. Each element had a nominal length
of 10 m. Dynamic FEM analysis provided the XG, YG, and
ZG coordinates of only ten nodes with respect to time at
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Figure 6: Velocity of the robot in Zl direction considering a linear
sea current profile.

fs = 20 Hz sampling rate. The analysis was run for a 100
second time span, but the first 50 seconds were disregarded
to avoid the transient effect of the FEM solution. The second
half of the time window was then replicated to reach the
total mission time. Thus, the offset, phase, and amplitude
parameters were preserved. This adjustment provided a
matrix of ten lines (one for each node) and Tm× fs columns,
which was resampled by successive spline interpolations. The
first interpolation reduced the number of columns to M, the
second expanded the lines up to the original FEM mesh (171
nodes) and the third resampled the lines again up to M.
Therefore, threeM×M perturbation matrices Perx, Pery , and
Perz were obtained, one for each coordinate Xl, Yl, and Zl. In
these matrices, each row was a particular riser deviation from
the nominal profile and each column was a time step. The
three components of a displacement vector d(i) were defined
for each node i:

d(i) =
[

Perx(i, i) Perx(i, i) Perx(i, i)
]

, i = 1, . . . ,M.
(8)

This vector was decomposed into its normal dn and
tangential dt parts. Because the robot was free to move
along the riser, only the normal component of d vector was
effectively transmitted to the robot:

dt = (d ·Du)Du,

dn = d− dt.
(9)

Therefore, the new coordinates x, y, and z (in the local
reference frame) of the riser path were given by the following

sequence of P1
i new points, i = 1,

P1
i new = P1

i nominal + dn. (10)

4.3. Vortex-Induced Vibration (VIV) Effect. The sea cur-
rent passing through a circular cylinder produces vortex-
shedding in the wake, which causes the structure to vibrate.
This complex fluid-structure interaction is called Vortex
Induced Vibration (VIV), and it occurs predominantly on
the cross-flow direction [16]. Simulating this effect is an
arduous numerical problem. In this paper, we used exper-
imental data obtained from a scale-model available at the
Open-Source VIV Data Repository of the Center for Ocean
Engineering at MIT [17]. Cross-flow displacement data that
is available for tests performed in a bare cylinder, 20 mm
diameter and 10 m length, which was donated by ExxonMo-
bil, was used in our simulations. Several fluid velocities and
both linearly sheared and linear flow conditions may be used.
We chose a strong condition of regular flow, of approximately
1 m/s, which provided greater displacements compared to
the sheared flow for the same nominal velocity.

To adapt the experimental data to the riser that was
being analyzed, the displacement was scaled by the test riser
diameter and multiplied by the actual riser diameter. The
frequency of shedding ( fst) in cylinders with cross-flow is
given by the following:

fst = StU
D

, (11)

where St is the Strouhal number, U is the fluid velocity, and
D is the cylinder diameter. Keeping St fixed, the ratio of fst

between the experiment and the riser was 14.78. This factor
was used to scale the time vector, such that the frequency
vector of the data spectrum, which was used to simulate
riser VIV, was divided by this quantity. The set of ten points
along the cylinder where displacements were measured was
associated with the closest nodes of the FEM model. A
window of data, without transient effects, was replicated ten
times until the total mission time was achieved, similar to the
previous section, and the same interpolation procedure was
applied. Finally, the displacement caused by VIV was rotated
to become perpendicular to the catenary plane and added to
(10).

Figure 7 shows the RMS profiles of the riser displace-
ments in the XG, YG, and ZG directions as a function of the
normalized riser length. The figure also shows the RMS of
VIV perpendicular to the catenary plane. The number 0 is
for the wheel head, and 1 corresponds to the turret.

4.4. Sensor Velocity and Acceleration Profiles. To simulate
IMU output, the expected physical acceleration at the sensor
installation point must be found. This acceleration was used
to feed the sensor model to find realistic sensor signals. The
acceleration at point PS expressed in the global reference
frame was given by the following well-known kinematic
equation:

aPSG =

⎡
⎢⎢⎢⎣

ẍ

ÿ

z̈

⎤
⎥⎥⎥⎦ + α × PS + ω × ω × PS. (12)

The local acceleration aPSl and Coriolis terms are zero
because the sensor is fixed in the robot body. α is the angular
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Figure 7: RMS of riser motion in Xl, Yl, and Zl directions and VIV perpendicular to the catenary plane.

acceleration and ω is the angular velocity. Angular velocity
expressed in the global reference frame was calculated by the
methods used in [14, 18]:

ω = Rz Ry

⎡
⎢⎢⎢⎣

ψ̇

0

0

⎤
⎥⎥⎥⎦ + Rz

⎡
⎢⎢⎢⎣

0

θ̇

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

0

φ̇

⎤
⎥⎥⎥⎦. (13)

To solve (12) and (13), the time derivatives of displace-
ment and rotation ẋ, ẍ, ẏ, ψ̇, and so forth were found by
finite differences and considering all variables in the global
reference system.

5. Instrumentation Model

A low-cost microstrain 3DMGX-1 IMU was the project
choice. This is a compact and integrated device, suitable for
a high-depth submarine application, where the electronic
case must be as slender as possible, for mechanical structural
reasons. It delivers 3D accelerations, angular velocities, and
attitude/orientation matrix in a single-serial channel. The
error characteristics of each output were modeled as a wide-
band noise plus a first order moving bias Markov process
[19]:

Y = (1 + SFE)U + OFS + b +wbw,
(14)

where

Y : simulated corrupted sensor output,

U : simulated clean physical signal,

SFE: Scale Factor Error,

OFS: Offset Error,

b: moving bias, 1st order Markov process,

wbw: wide-band sensor noise.

The wide-band sensor noise was defined as wbw = σbwν,
ν = N[0, 1] (white noise, zero mean). σ2

bw is the wide-
band noise variance. Scale factor error, 0.5% by sensor
specifications, was considered as follows:

SFE = 0.005× sgn(U(−1, 1)), (15)

such that U(−1, 1) is a uniform random variable in [−1, 1]
and sgn is the signum function. This equation introduces a
random error limited to 0.5% in the sensor output signal
amplitude, when substituted in (14).

The moving bias was found by integrating the following
finite difference equation with the Euler method:

bn+1 = bn + Δt((−1/τr)bn + σsensor biasν),

σsensor bias =
√√√2 fsσ2

bias

τr
,

(16)

where

Δt: sampling period (s),

fs: sampling frequency (Hz),

σ2
sensor bias: bias input noise variance,

σ2
bias: random walk variance,

τr : time constant (s).
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Figure 8: Comparative results for real and simulated IMU sensor error for Pitch angle. (a) Window of the time series (degrees). (b) Allan
variance plot (degrees). (c) FFT of time series (degrees2).

5.1. Determination of Sensor Parameters. An experiment was
performed to collect the error characteristics by keeping
the sensor stationary in laboratory while recording signals.
Total acquisition time was 4 h 21 min, with a 75 Hz sampling
frequency, after the internal temperature was stabilized. The
first determined parameter was the time constant τr . Two
techniques were employed: the Allan variance plot [20] and
the autocorrelation function [19]. Both techniques gave dif-
ferent results (see Table 2). According to the likeness between
the real and the simulated signals, one of the two time-
constant techniques was selected. For the attitude sensor,
τr determined by Allan variance was chosen, whereas for
acceleration and angular velocity, autocorrelation provided
the best results.

Except for angular velocity (AngRate), the experiment
time series was low-pass filtered before calculating σbias,
to better characterize the low-frequency component of the
error. For σbw, the high-frequency part was used. The cut-
off frequencies were chosen by trial and error, and the
agreement between the simulated and original error signals
was observed for each case. Time series, Allan variance plot
[21] and fast Fourier transform (FFT) were used to test
the agreement between original and simulated error signals.
In the case of attitude simulation, the Euler angles were
discretized in the interval comprising −180.0328◦ to 180◦,
with steps of 0.1◦, corresponding to sensor resolution. For

acceleration, the resolution of the sensor was 0.2 mg, and the
angular velocity was 0.01◦/s. However, amplitude discretiza-
tion was not implemented. Figure 8 shows the results for
Pitch angle and Figure 9 shows the results for acceleration
in the Xl direction. For other angles, directions and angular
velocities, the results were similar.

The water pressure-based depth sensor specified for
this robot was the Digiquartz 8CB4000-I Depth Sensor
(Paroscientific, Inc., Redmond, WA), provided a 0.01%
accuracy and a resolution of 10−8 m. In the simulations, we
considered that the depth measures were corrupted by the
addition of a Gaussian noise with σ = 0.2 meters, according
to the estimates made by Jalving [22].

6. Localization Algorithm

The localization problem consisted of estimating a set of
states, which included robot position, by reading accelera-
tions as inputs and considering the depth sensor signals as
the external measurements. Since a strapdown navigation
scheme is used, the localization algorithm assumes that the
accelerations measured in the local frame are transformed
into the global frame, by using the rotation matrices
calculated from Euler angles measured by the IMU. It is
also assumed that if a DC-acceleration sensible accelerometer
is being used, the vertical acceleration was compensated
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Figure 9: Comparative results for real and simulated IMU sensor error for Xl acceleration, in g (Earth acceleration of gravity at sea level).
(a) Window of the time series (g). (b) Allan variance plot (g). (c) FFT of time series (g2).

for gravity. The problem state equations are formulated as
[23, 24]:

Xk+1 = AXk + BUk + Cwk,

Zk = HXk + vk.
(17)

The state vectors and matrices are given by the following:

Xk =
[
Px Py Pz Vx Vy Vz δax δay δaz

]T
k

,

Uk =
[
ax ay az

]T
k

,

wk =
[
w1 w2 w3 w4 w5 w6 w7 w8 w9

]T
k

,

vk =
[
ν1 ν2 ν3

]T
k
.

(18)

A[9×9] is an identity matrix, such that the terms (1,4),
(2,5), and (3,6) are equal to T ; (4,7), (5,8), and (6,9) assumes
the value −T ; (1,7), (2,8), and (3,9) elements are −1/2T2.
B[9×3] is a matrix of zeros except for the terms (1,1), (2,2),
and (3,3) that are equal to 1/2T2; (4,1), (5,2), and (6,3)
elements are T .

H[3×9] is a matrix of zeros, with the exception of the (i,i)
terms equal to 1. In such expressions, k is the sample number,

X is the state vector, U the input vector, w is the process
noise, P is the position, V is the velocity, a is acceleration,
δa is the acceleration error, T is sampling period, Z is the
external measurements vector, v is the sensor noise, and σ2

is the variance of each associated variable. The observability
matrix of this system had a full-rank, that is, 9.

An estimate X̂k of the state vector is found by a Kalman
filter.

Prediction:

X̂−
k = AX̂−

k−1 + BUk,

P−k = AP−k−1A
T +Q.

(19)

Update:

Kk = P−k H
T(HP−k H

T + R)
−1

,

X̂k = X̂−
k + Kk

(
Zk −HX̂−

k

)
,

Pk = (I − KkH)P−k ,

(20)

where P is the state estimate error covariance matrix, R is
the sensor noise covariance matrix, Q is the process noise
matrix, and K is the Kalman gain. This is a standard, simple
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and generic implementation of a Kalman filter estimator.
More sophisticated approaches could be tested as well,
although the results obtained with the standard KF were
satisfactory for the intended application, as will be addressed
in Section 7. Unlike the kinematic models that are usually
used for land robots [25] or those built to operate over flat
surfaces [26], the state-space model used here to formulate
the KF does not use any a priori information of the
vehicle characteristics. Nor the dynamical characteristics of
the sensors are included in this KF formulation. Thus, in
principle, the localization algorithm proposed here could be
applied for similar applications with different instrumen-
tation, robot, and environmental characteristics. However,
some tuning work on the covariance matrices should likely
to be necessary.

6.1. Processing of the External Measurements for the KF. Here,
we focus the analysis on the key aspect of this particular
localization problem, which is determining the external

measurements vector Zk = [OG
kx O

G
ky O

G
kz]

T
. OG

kx, and so
forth, are the coordinates of the robot position in the global
reference frame as measured by an independent absolute
sensor. The sensor, that is, in practice, available to perform
such measurements is the depth sensor, which can only mea-
sure the ZG coordinate. The attempts to use this measure-
ment exclusively in the Update phase of the KF gave non-
drifting estimates in the vertical direction, as expectable, but
not in the horizontal one.

We proposed the following method to estimate the
complete Zk vector using data from Zk−1, OG

kz (depth
sensor signal), and the Euler angles measured by the IMU.
Considering Figure 10, the vector joining Zk to Zk−1, in the
local reference frame centered in Zk, is given by [0 0 L]T .
This vector lies in Zl direction of the local reference frame
1k, with modulus L, and coinciding with the instantaneous
riser path. In the global reference frame, Zk−1 can be found
as:

RG1k = RzRyRx
(
ψ, θ,φ

) =

⎡
⎢⎢⎢⎣

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎥⎥⎥⎦, (21)

Zk−1 = Zk − RG1kZ1k
k−1 = Zk −

[
R13L R23L R33L

]T
. (22)

Thus,

(Zk − Zk−1) =
[
R13L R23L R33L

]T
. (23)

The same difference calculated in (23) can be expressed
by a vector of global coordinate differences:

(Zk − Zk−1) =
[
ΔX ΔY ΔZ

]T
. (24)

Since R33 and ΔZ are known, by comparing (23) and
(24), it is possible to find L as:

L = ΔZ

R33
. (25)

L
Xl

Zl

Z k−1 Yl

Yl

Xl

Zl

Z k

Figure 10: Position external measurements Zk−1 and Zk and the
corresponding local reference frames (Xl, Yl, Zl). L is the scalar
displacement between the two positions.

Substituting L in (23), the KF external measurements
vector Zk is found. Alternatively, the displacement L could
be measured by an odometer. However, in this case, special
constructive care should be taken into account to prevent
slippage. In any case, this approach assumes a previous obser-
vation in the Correction phase of the KF. However, KF theory
assumes conditional independence among the observations.
Therefore, only suboptimal estimation performance is likely
to be expected.

7. Simulation Results

7.1. Static Results. In the static case no riser motion is present.
The standard position was used as the basis to generate the
dynamic analysis and is an intermediary neutral configura-
tion between the near (ship displaces towards wheel head)
and the far (the opposite direction) positions. Figure 11
shows the robot trajectory and attitude, represented by the
successive local reference frames, for the neutral position. In
Figure 12, the associated localization errors are shown, as a
function of distance from the seabed (using a grid of 1.680
points, or 1.44 Hz). The absolute errors associated with the
neutral, far, and near configurations are shown in Figure 13,
in a semilog scale. To study the impact in the localization
error of the grid refinement grade, an additional error curve
was generated, for the neutral configuration, with a 7,630
points (5 Hz) grid, the same used for the dynamic analysis.

Figure 12 shows that the greatest source of error occurs
in the XG direction, while in the deepness coordinate ZG,
the error is low. In addition, the total error increased as
the robot tilted horizontally. This trend was expected due to
the relative loss of accuracy of the depth sensor to estimate
the L parameter when using (21)–(25). When the depth
measure difference ΔZ between the two samples is small,
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Figure 12: Localization error (in global coordinates) for the static
neutral case as a function of the distance from the seabed.
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Figure 13: Total localization error (in global coordinates) as a
function of distance from the seabed, for neutral, near and far
configurations with the mesh of 1.680 points (1.44 Hz). The neutral
configuration error for the mesh with 7.630 points (5 Hz) is also
shown.

a decrease in signal to Gaussian noise ratio is observed. From
an application point of view, the robot should not work too
close to the point where the riser periodically touches the
seabed, the touch down point (TDP). This safety margin
is established as being of 50 m. At this point, the expected
positioning error for the static case was approximately 10 m.
The error was slightly higher in the far case (Figure 13),
where the riser was more horizontal than in the near
condition. By increasing the sampling frequency (Figure 12),
the error was likely to decrease in most of the path, but when
the robot approximates to the TDP, the localization system
fails.

7.2. Dynamic Results. By including the wave and VIV effects
in the riser nodal displacement profile, the robot trajectory
becomes more complex (Figure 14), as expectable. The
associated localization errors are shown in Figure 15, using
the 5 Hz mesh. Figure 16 shows a zoom in the XGYG plane,
close to TDP, of both the robot trajectory and the external
measurements, calculated with (21)–(25), as well as the
Kalman filter position states estimations. The KF estimated
the trajectory accurately, up to the point where the processed
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Figure 14: Robot attitude profile in the dynamic condition,
including wave and VIV effects. Only 1/150 of the 7.630 grid points
are shown to keep the figure clearer.

external measurements lost accuracy, below 15 m distance to
seabed. The KF estimates essentially followed the external
measurements, in part because the KF Update frequency was
the same as the Prediction. By comparing the errors in both
static and dynamic cases (Figure 17), analogous profiles were
found. It means that the Kalman filter was able to closely
track the robot’s trajectory, even in the dynamic case, and
the loss of algorithm localization performance was mainly
caused, after all, by depth sensor differential signal to noise
ratio.

8. Discussion and Conclusions

The simulations show that the robot trajectory using the
localization algorithm, in the dynamic case, presented a wavy
pattern. The pattern corresponds to the path that is traveled
by the robot, and not the nominal riser profile, as expected.
If an estimate of the riser catenary shape is desired, the
obtained path could be used to fit a smooth profile curve.

In the more vertical part of the riser (above 15 m from
seabed), the average estimated error (standard dev.) was
0.76 (0.47) m (Figure 15). This error can be considered
sufficiently small for localizing the riser in the oil field and
to feed nodal displacement constraints in a structural Finite
Elements tension analysis. This accuracy is also satisfactory
for localizing flaws detected by the NDTs.

The localization algorithm depends strongly on the
external measurements, which are provided by the depth
sensor and the IMU, using (21)–(25). However, close to
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Figure 15: Localization error (in global coordinates) as a function
of the distance from the seabed, for the dynamic condition.

seabed, the simulated robot trajectory tilts towards a more
horizontal attitude, and following the riser section which is
closer to the TDP. In this part of the trajectory, Gaussian
noise from the depth sensor more significantly corrupts
the relative depth measurements. This effect increases when
a period between two successive measurements becomes
shorter. The 5 Hz is the minimum estimated rate necessary
to reproduce VIV and the wave motion data. On the other
hand, the minimum safety distance between the robot
and the seabed coincides with the condition which the
localization algorithm loose accuracy. As a possible extreme
limit, at 15 m from the seabed, the expected error should be
also around 15 m (Figure 15).

In our opinion, the simple and standard KF implemen-
tation that was presented in this study is sufficient to provide
the localization accuracy required for the proposed appli-
cation. In the case of rigid risers and other predominantly
vertical offshore structures, the observed loss of accuracy is
not expected to occur. The kinematic model used to formu-
late the sensor fusion problem was linear, and therefore the
standard KF implementation is appropriate. Other models
could be proposed, incorporating robot, riser or sea dynamic
features. In such cases, using an extended Kalman filter or
a particle filter should be necessary for handling the associ-
ated nonlinearities. In any case, the external measurements
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conditions.

reliability seems to be key aspect for localization accuracy in
this problem.

Using a higher grade low drift IMU instead of a low-cost
one could eliminate the need for external measurements in
a critical region but at the price of increasing payload, cost
and volume. Acoustic positioning systems could be used to

localize the robot in the most horizontal parts of the trajec-
tory. However, these systems work at a very low sampling
frequency (0.1 to 1 Hz) [8] and, at best, they could only prob-
ably cast the external motion envelope of the robot. More
practically, improved accuracy could be achieved in the
section close to the TDP by using an odometer to estimate
L in (25). As such, the mechanical setup of an odometer
should be accomplished very carefully to prevent slippage.
Preinstalled RFID (Radio Frequency Identification) [27]
tags or visual marks along the riser, signaling the actual
length, are possibilities that could be explored. Switching
the depth sensor with other kinds of sensors for external
measurements, close to TDP, could be performed by using
a fuzzy expert system [28]. In future studies, experimental
laboratory and field tests should be performed, using an
acoustic localization system to assess the bounds of the
navigation errors estimated in this work.
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