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The active surveillance of public and private sites is increasingly becoming a very important and critical issue. It is, therefore,
imperative to develop mobile surveillance systems to protect these sites. Modern surveillance systems encompass spatially
distributed mobile and static sensors in order to provide effective monitoring of persistent and transient objects and events in
a given area of interest (AOI). The realization of the potential of mobile surveillance requires the solution of different challenging
problems such as task allocation, mobile sensor deployment, multisensor management, cooperative object detection and tracking,
decentralized data fusion, and interoperability and accessibility of system nodes. This paper proposes a market-based approach
that can be used to handle different problems of mobile surveillance systems. Task allocation and cooperative target tracking are
studied using the proposed approach as two challenging problems of mobile surveillance systems. These challenges are addressed
individually and collectively.

1. Introduction

One of the most active research topics is how to automate
surveillance tasks based on mobile and fixed sensors plat-
forms [1]. Many benefits can be anticipated from the use of
multisensor systems in surveillance applications [2, 3], such
as decreasing task completion time and increasing mission
reliability. Generally, monitoring of public and private sites
is the main application of multisensor surveillance systems.
The primary objectives of the surveillance systems are to
provide the information that makes the system able to
understand and predict the actions and the interactions
of the observed objects in order to carry out different
tasks. Examples of these tasks would include target search,
identification, and tracking. Advanced surveillance systems
encompass spatially distributed mobile and static sensors
in order to provide effective monitoring of persistent and
transient objects and events in a given area of interest (AOI)
[4]. Mobile surveillance systems incorporate self-organized
networks of mobile sensing nodes of different modalities,
data and information fusion nodes, acting nodes, and control
nodes. These self-organized nodes can collaboratively and

continuously sense within the volume of interest, as well as
physically manipulate and interact with it. The main goal of
the surveillance system is to adjust the sensing conditions for
improved visibility, and thereby improve performance [5]. In
such setting, surveillance is a complex problem posing many
challenging problems.

This paper presents a market-based approach to mobile
surveillance systems. The goal is to develop an approach
that efficiently distributes tasks among the mobile sensor
team to achieve the surveillance mission. Such approach will
support the operation of the mobile sensors so that they can
collaboratively perform tasks such as detecting and tracking
moving targets. In order to maximize the effectiveness of
the mobile sensor team collaborating as a group, the action
of every mobile sensor should consider the contribution
of its teammates towards the mission objectives. How to
accomplish this is a complex problem, which is currently an
active area of research [6, 7]. This requires tackling some of
the challenging problems of mobile surveillance that have
not been investigated collectively in the past. These problems
include, but are not limited to, task allocation, mobile sensor
deployment, cooperative object detection and tracking, and
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decentralized data fusion [8]. This paper tackles two of
these problems: task allocation and cooperative detection
and tracking. These problems are tackled individually and
collectively.

A great number of task allocation approaches have been
reported in the literature [9–12]. However, many aspects
have to date been given little attention. Examples of these
aspects are complex task allocation and constrained task
allocation. Complex tasks are those tasks which can be
decomposed into different subtasks. Working with a complex
task is guaranteed to produce a more efficient solution for the
task allocation problem [13]. Thus, complex task allocation
[14] is considered in this paper as a part of the design of the
mobile surveillance framework.

The target-tracking problem [15] is concerned with
estimating the state of a target or targets in some areas of
interest based on some measurements from the stationary
sensors, in most of the cases. However, using stationary
sensors has many constraints which force the use of multiple
mobile sensors dynamically moving over time especially in
surveillance applications. Thus, target detection and tracking
is also tackled in this paper using mobile sensors in the design
of the mobile surveillance framework.

The rest of this paper is organized as follows. Section 2
presents the formulation of mobile surveillance prob-
lems tackled using the proposed market-based framework
described in Section 3. Section 4 summarizes the conducted
experimental results tackling complex task allocation and
target detection and tracking. Finally, conclusion and future
work are summarized in Section 5.

2. Problem Formulation

This section highlights the problem formulation for the
major components of the proposed mobile surveillance
framework as shown in Figure 1 tackling two main
challenges—complex task allocation—and target detection
and tracking.

2.1. Complex Task Allocation. This subsection provides prob-
lem definition for both simple and complex task allocations
and formulation for only complex task allocation.

Definition 1 (simple task allocation). Given a set of mobile
sensors S each looking for one task and a set of tasks T each
requires one sensor. The simple task allocation can be defined
by a function A : T → S, mapping each task to a mobile
sensor in order to be executed. Similarly, ST is the set of all
allocations of tasks T to the team of sensors S.

Definition 2 (complex task allocation). Given a set of mobile
sensors S and a set of tasks T . let G ⊂ T is a group or a
bundle of tasks that is decomposable into other tasks M ∈ G.
The complex task allocation can be defined by a function
B : M → S, mapping each subtask to a mobile sensor to
be responsible of completing it. Equivalently, SM is the set of
all allocations of subtasks M to the team of sensors S.

For both simple and complex task allocation, the goal is
to assign sensors to tasks so as to maximize overall expected
performance, taking into account the priorities of the tasks
and the skill ratings of the sensors. Appropriate functions
are needed to map possible task outcomes into revenue
values and to map possible schemes for performing the task
into cost values. Generally, mobile sensors receive revenue
and incur costs for accomplishing a specific team task. A
mobile sensor can also receive revenue from another sensor
in exchange for goods or services.

The problem of task allocation can be formulated in
many ways. Given our surveillance application domain, it can
be formulated as follows.

(1) AOI: two-dimensional, bounded area of interest.

(2) S: a team of mobile sensors si, i = 1, 2, . . . ,n. It is
assumed that each sensor carries sensors (such as
cameras, sonar, and laser range finders).

(3) T : a set of tasks t j , j = 1, 2, . . . ,m.

(4) U : a set of sensors utilities, ui j is the utility of sensor i
to execute task j.

For single sensor task, the problem is to find the optimal
allocation of sensors to tasks, which will be a set of sensors
and tasks pair [16]:

(s1, t1), (s2, t2), . . . , (sk, tk) for 1 ≤ k ≥ m. (1)

For the general case, the problem is to find the optimal
allocation of a set of tasks to a subset of sensors, which will
be responsible for accomplishing it [13]:

A : T −→ S. (2)

Each mobile sensor s ∈ S can express its ability to execute
a task t ∈ T , or a bundle of tasks G ⊆ T through bids bs(t) or
bs(G). The cost of a bundle of tasks can be simply computed
as the sum of costs of the individual tasks:

bs(G) =
f∑

k=1

bs(tk){tk ∈ G}, (3)

where f is the number of tasks of the bundle G. The group’s
assignment determines the bundle G ⊆ T of tasks that
each mobile sensor s ∈ S receives. These bundles can be
characterized as follows:

β =
{

(G1,G2, . . . ,Gw) | Gk1

⋂
Gk2 = ϕ,

⋃
Gw = T

}
. (4)

The global objective function can vary depending on
the requirements of the system or the preferences of the
designer. The most common global objective is to minimize
the sum of the team member costs, which can be described
mathematically as follows:

C(A) =
n∑

s=1

bs(Gs), (5)

where C(A) is the total required cost for executing the
allocation A, and Gs is the bundle of tasks that is won by
sensor s.
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Figure 1: Market-based framework for mobile surveillance systems.

Though the mobile sensor team members may have
well-defined cost or utility functions, these functions still
rely on having accurate models of the world state and may
require computationally expensive operations. When there
are multiple goal locations like in surveillance application,
determining the cost to perform even one task can require
solving multiple path planning problems. Thus, an instance
of the traveling salesman problem (TSP) [17, 18] might be
used. In this work, we are using a shortest sequence planning
algorithm (SSP) [19] in order to find the minimum cost
path for each mobile sensor given the tasks’ locations. In this
algorithm, an agent is tasked with visiting a set of points and
the goal is to find in which order it should visit these points
with minimum traveling distance without going back to its
original place, thus accomplishing the required tasks with
near optimal system performance.

2.2. Target Detection and Tracking. This section provides
the general formulation of target detection and tracking
problem. With some variations, the same notation and
terminology for target tracking as those introduced in [20]
is used in this paper. Consider the following.

(1) AOI: a two-dimensional, bounded obstacle free area
of interest.

(2) O: a set of n moving targets, oj , j = 1, 2, . . . ,n. The
position of oj at time tt will be denoted by oj(tt).
Targets cannot leave the area of interest, that is, for
all tt oj(tt) ∈ AOI.

(3) S: a team of m mobile sensors. It is assumed that each
sensor carries sensors (laser range finders) to be able
to detect the targets.

(4) SC(si, tt): the sensor coverage, which is the subset of
AOI observable by mobile sensor si at time tt. This

region varies as the sensor si moves inside AOI, but
its shape is supposed not to vary. In this paper, an
omnidirectional sensing shape for each mobile sensor
is assumed.

(5) OM(tt) : m×n observation matrix. A sensor si is said
to be observing a target when the target is within si ’s
sensing range:

OM(t) = omij(tt) =
{

1 if sensor i is observing target j,

0 otherwise.
(6)

The goal is to develop an algorithm that maximizes the
average coverage AC which can be defined as:

AC =
te∑

tt=1

n∑

j=1

g
(
OM(tt), j

)

te
, (7)

where

g
(
OM(tt), j

) =
{

1 if ∃i such that omij(tt) = 1,

0 otherwise.
(8)

In other words, the problem requires maximizing the
number of targets that are observed by the mobile sensors.
te is the execution time of the algorithm. It is assumed that

⋃

si∈S
SC(si, tt) 	 AOI for any tt. (9)

Average energy saving over time AE is also used as an
evaluation metric:

AE =
te∑

i=1

st

n
∗ 1

te
∗ 100, (10)
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where st is the number of asleep trackers, n is the total
number of the trackers, and te is the execution time of the
algorithm.

The energy saving can be measured by considering the
number of busy and asleep trackers over time.

Moreover, it is assumed that the maximum speed of the
targets is smaller than the maximum speed of the sensors, in
order to give the sensors the ability to reach the targets. If
the targets could always move faster, then they could always
evade the sensors and the problem becomes insoluble for the
mobile sensor team. Finally, it is assumed that the sensors
have a communication mechanism, which allows them to
send and receive messages in a broadcast mode.

3. Proposed Market-Based Approach to Mobile
Surveillance Systems

Market-based approaches have received significant attention
and are growing very fast in the last few decades especially in
multiagent domains [7, 21]. These approaches are considered
as hybrid approaches that combine the centralized and
distributed strategies (i.e., market-based approaches have
elements that are centralized and distributed). The decision
to use auctions in this paper comes from the existence of
several desirable properties of auction approaches [22, 23]
such as efficiency, robustness, and scalability.

3.1. Single-Shot and Combinatorial Auctioning. So far, re-
searchers have studied single-item auctions at which items
are auctioned off one at a time [24]. However, if there are
strong synergies between the items of the bidders, highly
suboptimal team solutions can be resulted from single-item
auctions [25]. Two items are said to exhibit positive or
negative synergy for a bidder if the combined bid of this
bidder on these two items is larger or smaller than the sum
of its individual bids on each item separately.

An example of that is shown in Figure 2. There is positive
synergy between AOI-1 and station AOI-2 for the mobile
sensor S1 because they are close to each other. The mobile
sensor S1 can reach AOI-2 with a short distance (5 m) after it
has reached AOI-1 (5 m). So, the sum of the single bids of S1

on AOI-1 and AOI-2 (12 = 5 + 7) is more than the combined
bid of S1 on both areas (10 = 5 + 5). On the other hand,
there is a negative synergy between station 1 and AOI-1 for
S1 because they are on opposite sides of the S1, and hence the
mobile sensor S1 can therefore reach either one of the areas
only with a long travel distance after it has reached the other
one.

Generally speaking, combinatorial auctions attempt to
overcome the disadvantages of single-item auctions by
allowing bidders to bid on bundles of items [13, 25]. If a
bidder wins a bundle, they win all the items in that bundle.

3.2. Auction Design. The task allocation approach proposed
in this paper imitates the auction process of buying and
selling services through bidding. Sellers or auctioneers are
responsible of processing the bids sent by buyers or bidders
and determining the winning bidder. In this subsection, a
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Figure 2: Single-shot and combinatorial auctioning.

brief idea about how to design the auction process will be
based on maximizing a utility function.

3.2.1. Utility Function. Utility is the quality or state of being
useful. For task allocation problem, utility is a satisfaction
(value of profit) derived by a mobile sensor s from accom-
plishing a task t.

Given a mobile sensor s and a task t, if s is capable of
executing t, utility can be defined [13] on some standardized
scales as

u = p(t)− d(t), (11)

where p(t) is the total payment it receives after executing the
task t, and d(t) is the total distance it travels to reach the
task. The priorities of tasks to be executed should be taken
into account while designing the task allocation framework.
Our objective is to find the optimal assignment of tasks T to
sensors S in order to minimize cost and thus maximize the
overall utility. Consequently, system performance is ideally
optimized. Thus, the goal is to assign sensors to tasks so as
to maximize the cost as we assume that there is no payment
received after executing the task.

3.2.2. Search Tree. Most of task allocation approaches treated
tasks as atomic units [23, 26–28]. Thus, allowing only static
description for each task and so the only degree of freedom
is determining to which sensor the task will be assigned.
While this description is fine in case of simple tasks, it is not
with complex tasks. Given the bid submitted, search over all
possible allocations can be used as a winner determination
strategy. In this case, a search tree can be used as a better
description for the tasks. In this tree, mobile sensor team
members are permitted to bid on nodes representing varying
levels of task abstraction, thereby enabling hierarchical
planning, task allocation, and optimization among the team
members.

In our work, the complex tasks to be allocated are
structured as an ordered tree. The nodes (elements of the
tree) that are immediately greater than a node are called
its children, while the node that is immediately less is its
parent (if it exists). Any node less is an ancestor and any
node greater is a descendant. A node with no ancestors is
a root. The partial ordering represents distance from the
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Figure 3: Surveillance scenario.

root, and the well-ordering requirement prohibits any loops
or splits below a node (that is, each node has at most one
parent, and therefore at most one grand-parent, and so on).
In other words, if xFz, then there is exactly one yFz such
that xFy and there is nothing between x and y. Perhaps the
best way to illustrate the mechanics of the task tree is through
a simple example. Figure 3 shows a surveillance scenario,
which represents a shopping mall in the city of Waterloo,
Ontario, Canada. The mission is to monitor a set of areas
of interest (AOIs) such Zellers, Old Navy, the Bay, Zehrs,
Winners, and Sports Check. For the small areas (like Old
Navy, Winners, and Sports Check), only one or two vantage
points are enough to achieve the monitoring task, while three
points are required to visit for the large areas (like Zellers, the
Bay, and Zehrs).

The AND/OR task tree is constructed by decomposing
the surveillance mission as complex task into two subtasks
(scan large areas and scan small areas) as illustrated in
Figure 4. Accomplishing the requested mission requires
achieving both scan large and small areas. In other words,
these two subtasks are related to each other by the logical
operator AND, which means that both tasks are required
to be executed. The subtask (scan large areas) is in turn
decomposed to other simpler tasks such as scan AOI-1, AOI-
5, and AOI-6. The simple tasks can be executed by one
of two plans, which contain the most primitive tasks. For
example, to scan AOI-1, Plan-1 or Plan-2 can be chosen.
These two alternative covering plans are computed based on
the minimum traveling distance and the second minimum
traveling distance. Plan-1 contains a list of primitive tasks
(Goto V13, Goto V12, Goto V11) that must be executed
sequentially. Similarly, Plan-2 contains same primitive task
but with different order.

This decomposition is done initially by an operator
or by the selected initial auctioneer. Once the task tree

is constructed and the decomposition is complete, the
auctioneer holds a task tree auction, distributing tasks among
the team and allowing other robots to use their own plans
when appropriate. The auctions then proceed in rounds in
which each mobile sensor holds a task tree auction (if it has
any tasks) in a round-robin fashion.

3.3. Winner Determination Strategies. The winner determi-
nation strategy addresses how to optimally find the set of
bids that maximize the bidder’s revenue. In combinatorial
auction, winner determination is NP-hard problem [29]
as searching for all possible allocations of items to mobile
sensors is computationally intractable and no approach will
work in polynomial time.

Winner determination strategy is highly affected by the
type of description of tasks to be allocated. As mentioned
previously, the complex tasks to be allocated are represented
as an ordered tree. A breadth-first search algorithm is
used to find the task allocation solution from this task
tree structure. Two organizational paradigms, namely, cen-
tralized and hierarchical allocation are used during the
allocation process. These paradigms determine the roles, the
relationships, and the structures, which govern the auction
process. In centralized auctioning, an auctioneer holds a
series of auctions in rounds to allocate the surveillance tasks
to the mobile sensors in order to maximize the system utility.
On the other hand, in hierarchical auctioning, the tasks
are allocated initially to the mobile sensors via a central
auctioneer. Each mobile sensor can hold auctions in rounds
for the tasks it wins in the initial auction.

3.4. Fixed Tree Task Allocation. Consider a team of mobile
sensors assembled to perform a particular task. Consider
further that each mobile sensor is capable of executing one
task at once, and each task can be accomplished by one
sensor. The task information is continuously available to
the mobile sensors team. Thus, the proposed approach in
this case can be framed as iterated instances of ST-SR-IA
(Single-Task Single-Robot Instantaneous Assignment). The
goal of the team is to perform the task efficiently while
minimizing costs. In the context of fixed task tree allocation,
a set of constrains dictates that the whole auction mechanism
is based only on one task tree, which is proposed by the
operator or the auctioneer. The proposed algorithm allows
using only one auctioneer from the start to the end of
auctioning, and so considered as a centralized task allocation.
It also allows changing the auctioneer during auctioning
while considering only the plan of the original operator.
In this case, our proposed mechanism can be seen as a
hierarchal task allocation mechanism. Another constraint
dictates that at most one node can be sold to each bidder
per auction. This is because upon awarding one node to a
bidder, the bid prices on other nodes become invalid due
to the fact that bid prices are conditioned on the current
commitments of each participant. This is can be done by
modeling each mobile sensor as self-interested agent which
aims to minimize its individual cost and so maximize the
whole team performance by following a greedy algorithm.
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Figure 4: AND/OR task tree.

Each mobile sensor is either cooperating with other members
of the team to achieve an outcome greater than that possible
by each member alone or competing with other members to
the required task at the lowest possible cost, thus eliminating
waste and inefficiency. A system such as this can be highly
seen in the economy and so many desirable characteristics
from the market mechanisms might be used.

3.5. Dynamic Tree Task Allocation. The proposed fixed task
tree allocation described in the previous section could be
seen as an instance of decompose-then-allocate approach.
The main drawback of this approach is that the cost of the
final plan cannot be fully considered because the complex
task is decomposed by the auctioneer without knowledge of
the eventual task allocation. Also, backtracking is not allowed
in this approach, and so any costly mistakes in the auctioneer
decompositions cannot be rectified. Generally, the allocate-
then-decompose method tries to avoid the drawbacks of the
decompose-then-allocate method. However, there are still
some disadvantages. Motivated by the drawbacks of both
methods, we are proposing dynamic tree allocation to allow
backtracking in order to recover the bad plans made by the
auctioneers. The algorithm allows auctioning on all levels of
abstraction of the mission task implemented by the task tree
from the top to the bottom. Each mobile sensor evaluates its
ability to execute the required task based on its plan not on
the plan of auctioneer. Our proposed dynamic algorithm is
either executed by allowing only one auctioneer (centralized
allocation) or allowing different auctioneers (hierarchical
allocation).

3.6. Proposed Market-Based Target Tracking Methodology.
The main objective of this section is to give a detailed

description of the developed methodology for tracking
multiple objects, which will be incorporated into the
proposed mobile surveillance framework.

The proposed mobile surveillance framework requires
knowledge of the current targets’ positions as well as their
future positions, in order to be able to determine the sensor
assignments and states. In this context, the overall problem
of tracking can be summarized as follows.

(1) Detecting every target within a given scene.

(2) Distinguishing and categorizing objects as obstacles
or objects of interest.

(3) Find the centre of gravity of targets within the
scene using a hybrid subtractive-K-means clustering
technique.

(4) Tracking the centre of gravity of the targets within the
scene using Extended Kohonen Maps.

(5) Tracking the exit targets by the best suitable trackers
using a cueing/handoff market-based approach.

Ideally, sensor team members would be able to passively
detect nearby sensors and targets to ascertain their cur-
rent positions. Many machine vision algorithms have been
developed for this type of position calculation. Although
vision systems have a very good resolution, they do not
provide accurate distance information [30]. Also, vision-
based systems frequently suffer from occlusion and sudden
changes in illumination [31]. On the other hand, other
types of sensors, such as laser range sensors [30–32], are
able to obtain accurate distance and geometric information
about the objects in their sensing range. Moreover, laser
range sensors do not have the problems of occlusion, and
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sudden changes in illumination, as with vision systems. The
laser range sensors have attracted more attention in the
field of detection and tracking [32, 33]. Thus, in this paper,
we propose a detection algorithm that uses laser scanners
to detect moving targets and objects. The outputs of the
proposed algorithm are the positions of the targets and
objects. Each sensor communicates the positions of targets
and other objects within its sensing range to its sensor team
members.

3.6.1. Target Clustering. In order to make our approach
dependent on the distribution of the targets rather than
the density of targets as in [20, 34], we chose to cluster
the targets in the environment and then track the clusters’
centers instead of tracking each target separately. Clustering
the targets makes our approach energy efficient one because
not all the trackers will be active at all the time. Out
of the numerous available clustering techniques, two were
selected: subtractive clustering and K-means [35] clustering
techniques. The reason behind using K-means clustering
technique is its high level of accuracy [36]. However, K-
means clustering technique has the problem of selecting
the initial locations of clusters and the number of clusters,
which will affect the speed of convergence and the accuracy
of the algorithm. So, we propose using the subtractive
clustering technique to find the initial number and locations
of the clusters’ centers to be fed into the K-mean clustering
technique in order to find the final exact locations of clusters’
centers.

3.6.2. EKM-Based Tracking Algorithm. After clustering the
detected targets which lie within the tracker sensing range.
The center of gravity of the detected targets is reached by
adopting a representation of the sensory input vector: up =
(θ,d), where θ and d are the angle difference and distance
between the tracker and the target, respectively. Each tracker
uses an Extended Kohonen Map (EKM) [37] in order to
reach the target. The Extended Kohonen Map is an extension
of Kohonen Map [38] and is considered as one of the most
famous unsupervised learning neural network. Extending
the Kohonen Map, which is done by adding fan-in input
weights to its input layer gives the map the ability to learn
by supervised learning. However, this is not always the case;
unsupervised learning could still be used. Each neuron in the
EKM has a sensory weight vectorwi = (θi,di). Figure 5 shows
the supervised learning process in the Extended Kohonen
Map.

As shown, suppose we have trained an EKM on a set of
examples 〈x; y〉, where x is a point in the input data space X
and y is a point in the output data space Y . The input pattern
x is presented to the network input layer to retrieve the
corresponding output value, which will be an approximation
to y. This is accomplished in the usual way, namely, by letting
the fan-in weight vectors wr compete on x, and by taking
the fan-out weight vector zne of the winner ne (which has
the closet fan-in weights to x) as the network output value.
As mentioned above, ne is awarded the right to learn the
input pattern x by moving closer to it. Also, the fan-out zne

wold
ne

wnew
ne

x
X

Y

ne

Grid

zold
ne

znew
ne

y

Figure 5: Supervised Extended Kohonen Map learning.

is awarded the right to learn the output pattern y by moving
closer to it:

znew
ne = zold

ne + α
(
y − zold

ne

)
, (12)

where zold
ne is the fan-out weights of the winner ne before

learning, znew
ne is the fan-out weights of the winner ne after

learning, and α is the learning rate.
Unsupervised EKM has the problem of selecting the

initial neurons’ weights. Selecting the initial weights will
affect the accuracy and speed of mapping from the space
of sensory data to the space of motor commands for
tracking purposes. So, in this paper, we propose to use the
supervised EKM parameters (fan-in and fan-out) as the
initial parameters of unsupervised EKM in order to increase
the accuracy and speed of convergence of unsupervised Map.
Thus, unsupervised EKM is used to get the function of
mapping from space of sensory data to space of motor
commands for tracking purposes.

3.6.3. Cueing/Handoff Market-Based Methodology. The mo-
bile sensors used in this paper are assumed to be equipped
with high-bandwidth communications and an array of
sensors and actuators, which give the sensors the ability
to achieve cooperative behavior at the group level. A
cueing/handoff market-based method like the one in [6] is
used to guarantee that there is only one mobile sensor that
will respond to the help call coming from the sensor that
detects a target about to exit its sensing range (or in its
predictive tracking range). The mobile sensor that detects an
exiting target will do the task of an auctioneer (i.e., every
tracker can do the function of the auctioneer). This makes
our algorithm more robust than methods that use only one
coordinator because there is no central point of failure in
this case. Using a cueing/handoff market-based algorithm
will guarantee that the most suitable sensor will track the
exit target. In other words, there is no need to explore the
environment or to check the answered help calls as in [20].
This makes the proposed method a more energy-efficient one
than the method in [20]. The cueing/handoff market-based
method proceeds as follows.

(1) Help cueing: the mobile sensor that needs help
(detects an exiting target) broadcasts a help call to its
teammate. One sensor can issue multiple help calls
according to the number of targets about to be lost.
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Figure 6: Cueing/handoff market-based algorithm.

Each help call includes the position of the target to be
lost.

(2) Bid submission: after each sensor receives the help
call, they send their bids to the auctioneer (the
sensor that issued the help call). The bids include the
distances of the bidders to the target.

(3) Close of auction: the auctioneer processes the bids,
determines the winner, and notifies the bidders with
a message which indicates who is the winner.

(4) Task handoff: the winner will proceed by orienting
itself to face the target and move with its maximum
speed to put the target inside its sensing range.

The existence of the auctioneer does not mean that the
proposed system is completely centralized. The system is still
distributed and the function of the auctioneer is only to start
the action of tracking. Once started, the tracker will do its
task on its own, without any dependency on the auctioneer.
Furthermore, there is no single point of failure because the
auctioneer changes in the system according to the sensor that
requests help (i.e., the sensor that requests help will be the
auctioneer). The process of the cueing/handoff market-based
algorithm shown in Figure 6 can be summarized as follows.

The cooperative tracking capability of a team of mobile
sensors, each fitted with Extended Kohonen Maps, is utilized
to maximize the coverage of multiple mobile targets. The
main goal is to develop an energy-efficient cooperative
tracking strategy. To achieve this goal, a minimum number
of mobile sensors is used to track the moving targets in the
environment.

4. Results and Discussion

As mentioned previously in this paper, two main phases
should be considered in order to accomplish the surveillance
mission: task allocation and target detection and target
tracking. In this section, the simulations and results of these
phases are presented in detail.

4.1. Complex Task Allocation Simulations and Results. In
order to evaluate the proposed approach, we consider an area
surveillance application where the goal is to monitor some
areas in a public place with a team of mobile sensors, each
equipped with a vision system, and laser ranger sensor. To
tackle this application, it is assumed that for each area, a
set of surveillance points (vantage points) is selected from
which the mobile sensors can view the interior of the area.
The architecture under study achieves the surveillance task
while keeping in mind the minimization of the total traveling
distance of the whole team. Sensors frequently use the SSP
algorithm when bidding, and when reordering schedules
after trades or task completion.

This subsection describes a surveillance simulations and
results for an indoor scenario. An example of this is the use of
a team of mobile sensors to survey an indoor environment,
such as malls or airports. For that, the proposed algorithms
and simulations are applied on Waterloo airport in the city
of Waterloo, ON, Canada. The Waterloo airport consists of
six main areas, and so the goal of the proposed system is to
track targets within these areas, such as people, in order to
secure the airport. In order to accomplish this, the airport
areas (areas of interest (AOIs)) should first be allocated to
the available mobile sensors. Each mobile sensor will scan
the allocated area, if any, looking for targets to track. Not all
sensors will have areas to scan. In other words, the proposed
task allocation approach may allocate more than one area to
one mobile sensor in order to minimize the traveling cost.
As the number of areas of interest in this scenario is fixed
(six areas), the presented simulations in this section assumes
a fixed number of areas with varying the number of mobile
sensors required to achieve the surveillance mission.

The average cost is computed by calculating the cost
of executing the mission task using 50 runs and then
taking the average. In terms of this average cost, the results
in Figures 7 and 8 show that both fixed and dynamic
tree allocations (centralized and hierarchical) consistently
outperform the other algorithms. It is also seen that the
dynamic tree allocation outperforms fixed tree allocation,
which was expected as the replanning ability is added to the
sensors in the dynamic tree allocation.

On average, the hierarchical task tree algorithm is better
than the centralized task tree algorithm besides its good
feature of relying on different auctioneers compared to one
auctioneer in the centralized algorithm. This is because
the hierarchical auctioning allows more auction rounds to
happen and so the mobile sensors may find themselves in
better positions to win more tasks than their old positions
if it is found beneficial to the whole system. Thus, the
hierarchical auctioning increases the possibility of improving
the system performance than the centralized auctioning.

In order to assess the scalability of proposed task
allocation algorithms, an outdoor scenario is considered. An
example of this scenario is a battlefield in which it is required
to know where the enemy is. In order to address this, the
mobile sensors team divides the battlefield into various areas.
A set of surveillance points is selected from which the mobile
sensors can view the interior of each area. To simplify this
scenario, an example of an outdoor scenario was run with six
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Figure 7: Comparison of the average cost for centralized allocation
mechanism.

1 2 3 4 5 6 7
0

20

40

60

80

100

120
Hierarchical allocation

Number of mobile sensors

A
ve

ra
ge

 c
os

t

Fixed tree approach
Allocate-then-decompose approach
Decompose-then-allocate approach
Mission allocate-then-decompose approach
Dynamic tree approach

Figure 8: Comparison of the average cost for hierarchical allocation
mechanism.

different cases as shown in Table 1 with 50 runs for each case.
These runs consider different-sized areas, different locations,
and different initial positions for the mobile sensor team. In
this type of scenarios, the mobile sensors are permitted to
move from one vantage point to another passing into the
areas of interest.

The proposed fixed and dynamic tree allocation
algorithms are compared with a higher level allocate-
then-decompose [13], allocate-then-decompose [16], and
decompose-then-allocate [13] algorithms. In terms of this
average cost, the results in Figures 9 and 10 show that
both fixed and dynamic tree allocations (centralized and
hierarchical) consistently outperform the other algorithms,
especially for the complex cases such as cases 4, 5, and 6. It
can also be seen that the dynamic tree allocation outperforms

Table 1: Test cases.

Case Number of areas Number of mobile sensors

1 1 2

2 4 2

3 5 3

4 7 5

5 6 6

6 4 7
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Figure 9: Comparison of the average cost for centralized allocation
mechanism for outdoor environment.

fixed tree allocation, which was expected as the replanning
ability is added to the sensors in the dynamic tree allocation.

4.2. Target Tracking Simulation and Results. As mentioned
above, the target tracking algorithm for an individual target
is decoupled from the cooperative tracking algorithm for a
multitracking system. So, the simulation results for single
target tracking system, as a basis layer of the cooperative
multitarget system, are presented first. The target tracking
algorithm design depends on targets, sensors, and environ-
ments. The simulation results of two types of trackers are
presented—supervised and unsupervised Extended Koho-
nen Maps. The tracking performance is judged by both
accuracy of tracking and speed of convergence. Also, the
simulation results for a cooperative multitarget tracking
system are presented.

4.2.1. Tracking Using Supervised Learning EKM. When track-
ing using supervised learning EKM, the EKM is trained on
the forward mode, namely, on a transformation from the
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Figure 10: Comparison of the average cost for hierarchical
allocation mechanism for outdoor environment.

space of motor commands to the space of visual perceptions.
Now the trained network is used in backward mode to
compute the inverse function, which transforms a visual
perception into a motor command. The task is to guide
the mobile sensor to a target location placed at arbitrary
angle θ and distance dis in the workspace. The angle
and distance data are provided by the laser range sensor
attached to the tracker. To be more specific, θ is now
defined as the angle between the sensor’s heading direction
and the vector connecting the sensor axle mid-point and
the target, while dis is the Euclidean distance between the
sensor axle mid-point and the target location. The observed
θ and dis values are supplied to the EKM in backward
mode to retrieve a velocity pair (sr , sl). For this particular
application, the competition on the pattern (θ, dis) has been
designed to consider its components in sequence. First, θ is
processed. Thus, the competition is restricted to the weight
vector component of the neuron, which stores the angle
information. As the result of this preliminary step, a subset
of grid neurons which match θ equally well is selected.
Second, dis is processed, but only on neurons selected at the
previous step. The competition is restricted to the weight
vector component of the neuron which stores the distance
information. The overall competition process leads to the
selection of a velocity pair for the mobile sensor, namely,
the fan-in weight vector of the winning neuron. In the
simulations introduced next, 30× 30 neurons are used in the
structure of the Extended Kohonen Map.

Figure 11 shows tracking a moving target using super-
vised learning EKM. The small circle and square are the
initial positions of the target and the tracker, respectively. The
indicated arrows show the direction of movement of both,
the target and the tracker. As seen from the trajectories of the

Target

Tracker

Figure 11: Single target tracking using supervised learning EKM.

target and the tracker, the supervised learning EKM does not
provide a good tracking performance in terms of accuracy
and tracking speed.

4.3. Tracking Using Unsupervised Learning EKM. In this case,
the same structure for the extended Kohonen map is used
but without any idea about the correct parameters of it
(i.e., the fan-in and fan-out weights). Random parameters
can be assumed initially, which will be changed during
unsupervised learning. Selecting the initial parameters is very
challenging, because it will affect the speed of convergence
and the accuracy of the tracking algorithm. In this paper,
the parameters of the Extended Kohonen Map are initially
selected from the supervised learning stage (mentioned
above). After that, a single target tracking algorithm is used
to adjust these parameters, while the mobile sensor is trying
to track the target (online training). At each training cycle,
the weights of the winning neuron and its neighbors are
modified to be closer to the sensory data (which are the
angle and distance from the tracker). The input weights
of the Extended Kohonen Map are updated towards the
actual displacement of the tracker and the output weights
are also updated. Thus, there will be a map between the
actual displacement of the tracker and its motor commands.
After the extended Kohonen Map self-organization has
converged, the neurons will stabilize in a state such that the
input weights represent the displacements traveled by the
tracker and the output weights represent the corresponding
motor commands that produce these displacements. For any
winning neuron ne, given the sensory input xp = wne, the
neuron will produce motor commands yp which yields a
desired displacement v = wne. For sensory input xp /=wne

but close to wne, the motor commands output produced
by the winning neuron will still yield the corresponding
displacement. Therefore, the more neurons in the Extended
Kohonen Map structure, the finer and smoother the motion
of the tracker.

Figure 12 shows tracking a moving target using unsu-
pervised learning EKM. The input-outputs weights of the
unsupervised EKM are initialized using the final weights
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Tracker

Target

Figure 12: Single target tracking using unsupervised learning EKM.

(after learning) of the supervised EKM. The small circle
and square are the initial positions of the target and the
tracker, respectively. The indicated arrows show the direction
of movement of both the target and the tracker. As seen from
the trajectories of the target and the tracker, the unsupervised
learning EKM has provided a good tracking performance
in terms of accuracy and tracking speed compared to the
supervised learning EKM performance shown in Figure 11.

4.4. Cooperative Multitarget Tracking Simulations. The pro-
posed multitarget tracking algorithm is analyzed in various
configurations. The environment was designed to be a 6 m
× 9 m rectangular shape. The sensors were initially deployed
in the environment based on the task allocation algorithm
that assigned a set of mobile sensors to a set of vantage
points as described above. Sensor sensing range was set to be
1.5 m. The cooperative multi target algorithm performance is
judged by two parameters: the average coverage AC (7) over
time and the average energy saving over time AE (11).

The energy saving can be measured by considering the
number of busy and sleeping trackers over time. In order to
do that, three different cases are analyzed. In the first case,
the number of mobile sensors n is equal to the number of
targets m, and in the second and third cases, the number of
sensors is 3/4 and 1/2 the number of targets, respectively. In
each case, extensive simulations have been done by changing
the locations of trackers and targets, the speed of targets
and trackers, the direction of targets and trackers, and the
number of clusters. The average coverage and average energy
saving have been recorded for around 25 trials in each case.
The average coverage and the average energy saving for all the
cases are shown in Figures 13 and 14, respectively. Each point
shows the average coverage or the average energy saving
obtained in 25 simulated runs.

As shown in Figures 13 and 14, the average coverage and
the average energy saving percentage decrease with time. This
was expected because the clustered targets will spread in the
environment over time and which will require more trackers
to track them, which decrease the energy savings. Also, the
average coverage will decrease especially when the number
of targets is more than the number of trackers (n = (3/4)m
and n = (1/2)m).
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The performance of the proposed approach is evaluated
by comparing it with four different approaches with dif-
ferent observation policies: (1) local approach [34], (2) A-
CMOMMT approach [34], (3) B-CMOMMT approach [39],
and (4) modified B-CMOMMT [20]. The local approach
controls the tracker motion by computing the summation
of the attractive forces coming from nearby targets and
the repulsive forces coming from nearby trackers. The A-
CMOMMT approach was studied to determine the effec-
tiveness of weighting the force vectors coming from the
nearby targets. Adding the weights to the force vectors in
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A-CMOMMT causes the trackers to be less attractive to
targets that are already observed by other trackers. The B-
CMOMMT approach is essentially proposed to overcome
some problematic situations that may arise in the A-
CMOMMT approach. More detailed discussions of these
situations can be found in [20, 39]. The most important
difference between A-CMOMMT and B-CMOMMT is that
the force vectors coming from nearby trackers are weighted
as well. The B-CMOMMT approach is improved by intro-
ducing more refined techniques for target loss prediction in
[20]. The comparison results are shown in Figure 15.

Figure 15 summarizes the results of this comparison
with different m/n ratios (every point is the average of
25 simulated runs). These results show nearly equivalent
performance of our proposed algorithm and the improved
B-CMOMMT approach for small m/n ratios, but also the
superior performance of our target tracking approach for
larger m/n ratios. Although, we did not prove that the
simulation results would hold for larger m/n ratios, it is
expected that results similar to what we did will continue for
larger m/n ratios.

More interesting is the detailed comparative performance
of the proposed approach with the improved B-CMOMMT
when m/n equal to one. As shown in Figure 16, the proposed
algorithm provides a good coverage performance compared
to the B-CMOMMT algorithm.

5. Conclusion

A market-based framework for mobile surveillance systems
has been presented in this paper. The proposed framework
capitalizes on the strengths of market economies that enable
mobile sensing agents to collectively execute complex tasks
efficiently and reliably. Task allocation and cooperative
target-tracking have been studied in this paper using the
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Figure 16: Comparison between EKM and CMOMMT average
coverage for n =m.

proposed framework as two challenging problems of mobile
surveillance systems. These challenges are addressed individ-
ually and collectively. The results of the conducted experi-
ments showed that hierarchical dynamic tree task allocation
outperforms all other techniques. Moreover, good coverage
performance and energy saving have been achieved during
target detection and tracking. In the future, we consider
extending the proposed algorithms so that constrained and
tight tasks can be handled. An example for constrained tasks
is two tasks that cannot be done independently as the same
sensor would obviously have to do both of them. Tight tasks
cannot be decomposed into further single sensor tasks. In
this case, a subgroup of mobile sensors could determine their
joint costs and submit joint bids for such type of tasks.
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