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This paper presents novel fourth- and sixth-order polynomials to solve the problem of joint-space trajectory generation with a via
point. These new polynomials use a single-polynomial function rather than two-polynomial functions matched at the via point as
in previous methods. The problem of infinite spikes in jerk is also addressed.

1. Introduction

Joint-space trajectory generation is in common usage in
robotics to provide smooth, continuous motion from one set
of 𝑛 joint angles to another, for instance, for moving between
two distinct Cartesian poses for which the inverse pose
solution has yielded two distinct sets of 𝑛 joint angles. The
joint-space trajectory generation occurs at runtime for all 𝑛
joints independently but simultaneously.

There is an entire body of literature devoted to trajectory
generation (aka motion planning and path planning) at the
joint level. Paul and Zhong [1] were among the first to suggest
the use of polynomials for robot trajectory generation. A
common joint-space trajectory generation method (linearly
changing joint velocity using starting and ending parabolic
blends) is identically presented by many authors [2–7].
Despite the widespread popularity of this method, it suffers
from infinite spikes in jerk (the derivative of acceleration)
and requires three separate functions instead of one. An iden-
tical third-order polynomial joint-space trajectory genera-
tion approach is also presented by many authors [2, 4–7].
Further, an identical fifth-order polynomial joint-space tra-
jectory generation approach is presented by many authors
[2, 4, 5, 7]. From these authors’ lists, it may appear that Koivo
was the first to present these methods, when in fact they were
already presented in Craig’s first edition in 1986. Fu et al.
[8] depart from these standard methods, suggesting initial,
intermediate, and final polynomials of order 4-3-4, 3-5-3, or

5 third-order polynomials, for a single jointmotion.These are
by far the most (unnecessarily) complicated methods and are
presented without justification or comparison with simpler
methods. For dealing with a via point in which the robot
need not stop at the via point (such as for obstacle avoidance),
Craig [5] suggests matching two third-order polynomials.

Apparently alone amongst all of the major robotics
textbook authors, Angeles [9, Section 6.5] derives a 4-5-6-
7 seventh-order polynomial to fit two via points and ensure
finite joint jerk at the start and end ofmotion. Angeles [9, Sec-
tion 6.6] also presents approximation of this seventh-order
polynomial with a cubic spline and discusses the associated
errors.

An early version of the current paperwas presented by the
author at a conference [10]. The original contribution of this
paper is a single sixth-order polynomial to provide smooth,
continuous joint motion through a via point. Previous
approaches have matched two third-order polynomials at the
via point. We also present a single fourth-order polynomial
to accomplish the same purpose. However, this case should
not be used since it leads to discontinuous accelerations,
leading to infinite spikes in jerk, which is unacceptable for
reliable, smooth, and long-life robotic systems. This infinite
jerk problem, prevalent in all of the robotics textbooks, has
also been pointed out by Macfarlane and Croft [11], who
present jerk-bounded trajectories and Gosselin and Hadj-
Messaoud [12] and Petrinec and Kovacic [13] who go one step
further to ensure continuous, not just bounded, jerk.
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2. Joint-Space Trajectory Generation
with a via Point

Standard joint-space trajectory generation assumes that two
sets of 𝑛 discrete joint parameters are known (angles for
revolute joints, lengths for prismatic joints), and it is required
to move smoothly in joint-space from one set to the next.
For instance, given required Cartesian poses XS and XF,
inverse pose kinematics calculate the required 𝑛 joint value
sets for achieving each of these; call them ΘS and ΘF.
Note subscript S stands for start (or initial) and subscript F
stands for finish (or final).The standard joint-space trajectory
method thenmoves smoothly fromΘS andΘF for all 𝑛 joints
independently but simultaneously.

Polynomials are natural choices for providing smooth,
continuous motion, with some level of continuous deriva-
tives. In many robotics motion planning problems, the robot
must pass through intermediate point(s) between the start
and finish poses, such as for obstacle avoidance. The joint
rates and accelerations need not go to zero at these so-called
via points, but they must be matched between functions
meeting at the via point(s).

2.1. Two Third-Order Polynomials. Craig [5] suggested the
use of two third-order polynomials meeting at the via point.
Section 2.1 is entirely a summary of Craig’s work (with an
original example by the current author). Two third-order
polynomials will provide smooth motion with continuous
position and velocity and zero velocity at the start and end.
The two third-order polynomials are
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These two polynomials require eight constraints. Four
constraints come from the initial and final time points:
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and the second polynomial to

start at the via angle 𝜃
𝑉
. We also ensure that the velocities and

accelerationsmatch at the via point (they need not go to zero).
This will ensure that the jerk stays finite during this via point

transition between the two polynomials. The four additional
constraints are
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The constraints yield eight linear equations in the eight
unknowns (two third-order polynomials, four unknown
coefficients each). Three of the unknown polynomial coeffi-
cients are found immediately, from the initial and via time
constraints: 𝑎
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5 × 5 matrix/vector equation to solve for the remaining three
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Solve (4) for the remaining five unknowns for use in (12). For
the special case of 𝑡
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2.1.1. Example: TwoThird-Order Polynomials with a via Point.
Use two third-order polynomials for smooth joint-space
trajectory generation, plus motion through a via point, for
one joint. Given 𝜃
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deg units are used throughout this example. These results are
plotted in Figure 1.

Note that the joint angle passes through the via point
𝜃
𝑉

= 180
∘ and keeps going for a brief time; this is because the

velocity is still positive beyond the first 1.5 sec.Themaximum
angle is 𝜃MAX = 183.9

∘, occurring at 𝑡 = 1.68 sec. At 𝜃MAX,
the angular velocity goes to zero (the slope of the angle is
zero at that point since the angle is changing in direction).
Also note that the velocity term in 𝜃

2
(𝑡), the 𝑡 coefficient, is

nonzero since the velocity does not need to go to zero at this
via point. Further, note that the velocity and acceleration have
been successfully matched at the 1.5 sec via point transition as
required. Note that the jerk is not matched at the transition
(the slopes of the two polynomial accelerations are of the
samemagnitude but of different signs), but jerk remains finite
since the acceleration is matched. The jerk has infinite spikes
at the start and end, which is common in the robotics books
but is unacceptable.

2.2. Two Fifth-Order Polynomials. The two third-order poly-
nomials presented above, matched at a via point, appear in
many robotics textbooks (e.g., [5]). However, this approach
suffers from discontinuous acceleration functions at the
initial and final time, leading to infinite spikes in jerk at
these points in time. This is unacceptable for the repeated
motions of mechanical systems due to unacceptable wear,
noise, and dynamic excitation. To fix this, we could match
two fifth-order polynomials at the via point, specifying zero
acceleration at the initial and final times (not at the via
time—instead matching velocities and accelerations between
the two fifth-order polynomial functions at the via time).
However, this will not be presented because we came up with
a better method, a single polynomial versus two matched
polynomials—this original work is presented in the next two
subsections.

2.3. Single Fourth-Order Polynomial. The first original con-
tribution of this paper is presented in this subsection.We can
achieve the same goals as the two third-order polynomials
meeting at a via point much more simply; let us use only
one polynomial, forced to go through the via point. Here are
the constraints for meeting the required angles with smooth
motion (since we use a single continuous polynomial, the
velocity and accelerations are guaranteed to match and be
continuous at the via point):
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Note in this case since there is only one time range, it is
convenient to treat all times as absolute, rather than relative as
when we did matching of two third-order polynomials. With
five constraints, a single fourth-order polynomial is required:
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Figure 1: Two third-order polynomials with via point.

Five linear equations in the five unknown polynomial
coefficients 𝑎

𝑖
, 𝑖 = 0, 1, 2, 3, 4 result from the five constraints

(7). Two of the unknown polynomial coefficients are found
immediately, from the initial time constraints: 𝑎
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The single fourth-order polynomial solution for each joint is
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For the special case of 𝑡
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/2, the solution is
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2.3.1. Example: Single Fourth-Order Polynomial with a via
Point. Use a single fourth-order polynomial for smooth
joint-space trajectory generation, plus motion through a via
point, for one joint. Given 𝜃

𝑆
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∘, 𝜃
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∘,

𝑡
𝑉

= 1.5, and 𝑡
𝐹

= 3 sec, find 𝜃(𝑡):

𝜃 (𝑡) = 20.74𝑡
4
− 131.11𝑡

3
+ 216.67𝑡

2
+ 30,

̇
𝜃 (𝑡) = 82.96𝑡

3
− 393.33𝑡

2
+ 433.33𝑡,

̈
𝜃 (𝑡) = 248.89𝑡

2
− 786.67𝑡 + 433.33,

...

𝜃 (𝑡) = 497.78𝑡 − 786.67.

(12)

Again, deg units are used throughout this example. These
results are plotted in Figure 2.

The 𝜃(𝑡) shape for the single fourth-order polynomial
is very similar to that for the two third-order polynomials.
Again, the joint angle passes through the via point 𝜃

𝑉
= 180

∘

and keeps going briefly, due to the fact that the velocity is
still positive beyond the first 1.5 sec. The peak for this fourth-
order case is slightly greater and occurs in time slightly after
the peak for the two third-order polynomials example. The
maximum angle is 𝜃MAX = 185.4

∘, occurring at 𝑡 = 1.74 sec.
For the fourth-order polynomial, a side benefit has arisen: the
jerk is now continuous at the via time, where it was discon-
tinuous for the two matched third-order polynomials.

The jerk still has an infinite spike at the start and end as
we saw with the two third-order polynomials example, which
is unacceptable. We now improve upon this with a single
sixth-order polynomial in the next subsection; again, this
next subsection is original work.

2.4. Single Sixth-Order Polynomial. This section presents
another original contribution.We can achieve the same goals
as the single fourth-order polynomial with a via point and
eliminate the infinite spikes in jerk at the start and end as
follows. To the previous five constraints, add two more, for
zero acceleration at the start and end of the single motion
range. Here are the seven constraints:
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Figure 2: Single fourth-order polynomial with via point.

With the seven constraints, a single sixth-order polynomial is
required:
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Seven linear equations in the seven unknown polynomial
coefficients 𝑎
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{
{

{

(𝜃
𝑉

− 𝜃
𝑆
)

𝑡
3

𝑉

(𝜃
𝐹
− 𝜃
𝑆
)

𝑡
3

𝐹

0

0

}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}

}

. (15)
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The single sixth-order polynomial solution for each joint is

𝑎
3
=

1

(𝑡
𝐹
− 𝑡
𝑉
)
3
[

(𝜃
𝑉

− 𝜃
𝑆
) 𝑡
3

𝐹

𝑡
3

𝑉

−

(𝜃
𝐹
− 𝜃
𝑆
) (15𝑡

2

𝐹
− 24𝑡
𝐹
𝑡
𝑉

+ 10𝑡
2

𝑉
) 𝑡
𝑉

𝑡
3

𝐹

] ,

𝑎
4
=

3

(𝑡
𝐹
− 𝑡
𝑉
)
3
[ −

(𝜃
𝑉

− 𝜃
𝑆
) 𝑡
2

𝐹

𝑡
3

𝑉

+

(𝜃
𝐹
− 𝜃
𝑆
) (5𝑡
3

𝐹
− 9𝑡
𝐹
𝑡
2

𝑉
+ 5𝑡
3

𝑉
)

𝑡
4

𝐹

] ,

𝑎
5
=

3

(𝑡
𝐹
− 𝑡
𝑉
)
3
[

(𝜃
𝑉

− 𝜃
𝑆
) 𝑡
𝐹

𝑡
3

𝑉

−

(𝜃
𝐹
− 𝜃
𝑆
) (8𝑡
3

𝐹
− 9𝑡
2

𝐹
𝑡
𝑉

+ 2𝑡
3

𝑉
)

𝑡
5

𝐹

] ,

𝑎
6
=

1

(𝑡
𝐹
− 𝑡
𝑉
)
3
[

(𝜃
𝑉

− 𝜃
𝑆
)

𝑡
3

𝑉

−

(𝜃
𝐹
− 𝜃
𝑆
) (10𝑡

2

𝐹
− 15𝑡
𝐹
𝑡
𝑉

+ 6𝑡
2

𝑉
)

𝑡
5

𝐹

] .

(16)

For the special case of 𝑡
𝑉

= 𝑡
𝐹
/2, the analytical solution is

𝑎
3
=

2

𝑡
3

𝐹

[32 (𝜃
𝑉

− 𝜃
𝑆
) − 11 (𝜃

𝐹
− 𝜃
𝑆
)] ,

𝑎
4
= −

3

𝑡
4

𝐹

[64 (𝜃
𝑉

− 𝜃
𝑆
) − 27 (𝜃

𝐹
− 𝜃
𝑆
)] ,

𝑎
5
=

3

𝑡
5

𝐹

[64 (𝜃
𝑉

− 𝜃
𝑆
) − 30 (𝜃

𝐹
− 𝜃
𝑆
)] ,

𝑎
6
= −

32

𝑡
6

𝐹

[2 (𝜃
𝑉

− 𝜃
𝑆
) − (𝜃

𝐹
− 𝜃
𝑆
)] .

(17)

2.4.1. Example: Single Sixth-Order Polynomial with a via Point.
Use a single sixth-order polynomial for smooth joint-space
trajectory generation, plus motion through a via point, for
one joint. Given 𝜃

𝑆
= 30
∘, 𝜃
𝑉

= 180
∘, 𝜃
𝐹

= 120
∘, 𝑡
𝑉

= 1.5,
and 𝑡
𝐹

= 3 sec, find 𝜃(𝑡):

𝜃 (𝑡) = −9.22𝑡
6
+ 85.19𝑡

5
− 265.56𝑡

4
+ 282.22𝑡

3
+ 30,

̇
𝜃 (𝑡) = −55.3𝑡

5
+ 425.9𝑡

4
− 1062.6𝑡

3
+ 846.7𝑡

2
,

̈
𝜃 (𝑡) = −276.5𝑡

4
+ 1703.7𝑡

3
− 3186.7𝑡

2
+ 1693.3𝑡,

...

𝜃 (𝑡) = −1106.2𝑡
3
+ 5111.1𝑡

2
− 6373.3𝑡 + 1693.3.

(18)

Again, deg units are used throughout this example. These
results are plotted in Figure 3.
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Figure 3: Single sixth-order polynomial with via point.

Again, the 𝜃(𝑡) shape is similar to the previous two
examples. The maximum angle is 𝜃MAX = 185.6

∘, occurring
at 𝑡 = 1.70 sec. Note the magnitude of the angular velocity,
acceleration, and jerk are not greatly different for the three
cases we have presented with via point. Generally they are
lowest for the two third-order polynomials.This single sixth-
order polynomial approach has eliminated the problem of
infinite spikes in jerk at the start and end of each motion.
Here, the jerk is discontinuous but it remains finite, which
obeys the rule of thumb for mechanical design/motion.

3. Discussion

All joint-space trajectory generation methods presented by
previous authors and the new ones proposed in this paper
can easily be applied to multiple joints, simultaneously but
independently.

This main original contribution of this paper is to present
a new joint-space trajectory generation approach using a
single polynomial for motion through a given via point. The
robot does not need to stop at the via point, but the motion
must be smooth and continuous through the via point. A
single fourth-order polynomial was developed to achieve this
smooth motion through a via point and to replace the two
three-order polynomialsmatched at the via point in common
usage today. With the new approach, this via point matching
comes automatically and there is no need for two-polynomial
functions.
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An important secondary contribution of this paper is to
expose a bad practice in common usage in joint-space trajec-
tory generation in robotics today.We are not the first to notice
this [11–13], but judging from the four robotics textbooks
in the list of references published within the past five years,
the message has not been widely understood (only [9] is
concerned with preventing infinite jerk). For any functions in
which the acceleration is discontinuous, the associated jerk
(time derivative of acceleration) function will have infinite
spikes at those acceleration discontinuities. Cam’s design
teaches that these infinite spikes in jerk are unacceptable
and must be avoided by the designed/motion controller. By
extension, in robot joint-space trajectory generation, any
method which allows discontinuous acceleration functions is
unacceptable and must not be used. Unfortunately, the linear
velocity with parabolic blends, the third-order polynomial,
and the two third-order polynomials matched to meet at a
via point all suffer fromdiscontinuity in acceleration and thus
infinite spikes in jerk.Thesemethods are still very common in
usage in the standard robotics textbooks today; these meth-
ods must be discarded. Otherwise, unacceptable noise, wear,
stress, reduced life, and the introduction of baddynamicsmay
result.

The novel single fourth-order polynomial introduced in
this paper to go through a via point also suffers from this
discontinuous acceleration. Therefore, to remedy this we
introduced a novel sixth-order polynomial tomove smoothly
and continuously through a via point, with finite jerk
throughout the entire motion, which is acceptable.

4. Conclusion

For joint-space trajectory generation in robotics, the recom-
mendations of this paper are simple; for all joint motions
without a via point, use the standard fifth-order polynomial
from Craig [5]. For all joint motions with a via point, use the
new single sixth-order polynomial introduced in this paper.
Not only does this new sixth-order polynomial keep the jerk
finite, it also achieves the via point motion with only one
function.
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