
Research Article
Optimization and Experimental Study of an Intelligent
Bamboo-Splitting Machine Charging Manipulator

Tian-Hu Liu , Yong-Lu Wen, Gui-Qi Li, and Xiang-Ning Nie

College of Engineering, South China Agricultural University, Guangzhou 510642, China

Correspondence should be addressed to Tian-Hu Liu; liuparalake@126.com

Received 8 January 2020; Accepted 17 February 2020; Published 17 March 2020

Academic Editor: L. Fortuna

Copyright © 2020 Tian-Hu Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A nonautomatic bamboo-splitting machine must charge with material and change tools manually. However, manual charging is
very dangerous. An intelligent bamboo-splitting machine can feed automatically and change tools intelligently and has broad
application prospects. A charging manipulator is an important part of an intelligent bamboo-splitting machine. *e size of the
manipulator was optimized here using a genetic algorithm. *e capture rate, centering rate, and dynamic characteristics of an
intelligent bamboo-splitting machine charging manipulator, in which key factors were considered, were experimentally studied.
First, three different manipulators, with arm lengths at 210, 220, and 230mm, were developed. *en, the bamboo materials were
divided into three gradients (60–85, 85–110, and 110–135mm) according to diameter ranges. Accelerators were used to measure
the manipulator arm dynamic characteristics, and a high-speed charge-coupled device was used to record the grasping process.
Experimental results showed that the manipulator capture rate with an arm length of = 220mm was as high as 100%, but that of
manipulators with arm lengths of = 210 and 230mm was 96 and 98.67%, respectively. *us, the manipulator with a 220mm arm
length showed better performance than the other two manipulators. Trend curves of the influence of material diameter on capture
time were similar to an exponential function.

1. Introduction

Asia Pacific, America, and Africa are the main distribution
areas of bamboo in the world [1]. In Asia, bamboo plants are
mainly distributed in China, India, and other developing
countries. Bamboo grows rapidly and has good mechanical
properties, such that it can be processed into many kinds of
daily necessities. *e production process of bamboo prod-
ucts is shown in Figure 1. Bamboo material is split into
pieces by a bamboo-splitting machine. *en, it is drawn into
a silk from by a wire-drawing machine, dried, and finally
processed into products, such as toothpicks and chopsticks.
*us, a bamboo-splitting machine plays an important role in
bamboo processing. A nonautomatic bamboo-splitting
machine must charge with material and change tools
manually. However, manual charging is very dangerous. An
intelligent bamboo-splitting machine can feed and charge
automatically and can change tools reliably and therefore
has broad application prospects. A charging manipulator is

an important part of an intelligent bamboo-splitting
machine.

As an important part in many kinds of intelligent ma-
chinery, many studies have been conducted regarding
various manipulators, such as a flexible manipulator [2, 3].
Peng et al. have studied an apple internal-quality-grading
manipulator [4]. Li et al. have designed a kind of trans-
planting manipulator [5]. Wan et al. have carried out di-
mensional synthesis of a parallel manipulator using a
particle swarm optimization algorithm [6]. A reconfigurable
6-degree-of-freedom (DOF) manipulator has been opti-
mized [7], in which three performance criteria have been
combined using the weighted-sum approach and optimi-
zation was carried out using the sequential simplex method.
Mandur and Budman have discussed a method for updating
mechanism model parameters using state measurements
[8, 9]. Okazaki et al. have developed a 6-DOF manipulator
driven by McKibben artificial muscles [10]. A P-4R (pris-
matic-four-rotational-joint) has been proposed to measure a
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high-temperature steel cylinder robotic system [11]. Abe has
built a dynamic model for a planar flexible-rigid manipu-
lator by assumed mode method (AMM) [12]. Abe defined
trajectories as cubic splines and used particle swarm opti-
mization (PSO) to optimize the spline control points. Tra-
jectory functions have been defined as high order
polynomials for planar flexible manipulators [13]. A 7-DOF
manipulator has been designed, actuated entirely by an-
tagonistic McKibben artificial muscle pairs [14]. Ahmad
et al. have proposed a PD-type fuzzy logic controller for tip
angular position control in a flexible joint manipulator [15].
Nikdel et al. have also developed a fuzzy approach based on
the parallel distributed compensation technique in con-
trolling a flexible joint robot [16].

A genetic algorithm, analytical approach, and linear-
least-square (LLS) method are widely used in mechanism
design. For example, Li and Xu have used a genetic algo-
rithm to optimize a planar 3-DOF parallel manipulator [17].
Gao et al. have applied a genetic algorithm based on the
Pareto front approach to synthetize a 6-DOF parallel ma-
nipulator [18]. A genetic algorithm has also been adopted to
optimize the parameters of cubic polynomials, in which four
cubic polynomials are used to describe angular velocities of a
flexible manipulator’s two joints [19]. Chen et al. have
proposed an analytical approach to determine the redundant
parameters for the calibration of serial manipulators [20]. A
manipulator has been studied using an electrostatic model
[21]. An approach to consider the bearing’s contribution to
the manipulator dynamics has been introduced [22]. Liu
et al. studied an elliptical boundary model method detecting
object for intelligent machinery [23, 24]. Bucolo et al. studied
control methods of imperfect dynamical systems [25, 26].

*e complex characteristics of bamboo-splitting pro-
cesses make it expensive to devise an accurate mechanism.
An empirical model in which a certain degree of expertise is
required is somewhat easier and more suitable for mecha-
nism design. In this paper, the charging manipulator of an
intelligent bamboo-splitting machine was optimized using a
genetic algorithm, and a series of experiments was con-
ducted to study key performance characteristics, such as
capture rate, centering rate, and dynamic characteristics.

2. Design and Optimization of Manipulator

2.1. Composition of an Intelligent Bamboo-Splitting Machine.
In general, an intelligent bamboo-splitting machine includes
a feeding mechanism, charging manipulator, tool changer,
and control mechanism (Figure 2). A local structure of an
intelligent bamboo-splitting machine was developed for this
study, where (1) is the charging manipulator, (2) represents
the feeding mechanism, (3) represents the frame, (4) rep-
resents the pushing mechanism, and (5) represents the
automatic tool changer (Figure 3). *e feeding mechanism
(2) fed bamboo materials and concurrently measured di-
ameters automatically and continuously, the charging ma-
nipulator (1) grasped material accurately, the pushing
mechanism (5) pushed materials continuously to the tool,
and the automatic tool changer (5) changed tools auto-
matically according to material diameter.

*e workflow chart of this intelligent bamboo-splitting
machine is shown in Figure 4. During operation, the tool was
first reset. During feeding, the bamboo diameter was
measured using a laser beam sensor. *e machine then
selected the tool automatically according to the measured
diameter. At the end of the feeding process, the bamboo
arrived at the tray and was picked up by the charging
manipulator, grasped, and centered. *en, it was pushed
into the tool by the pushing mechanism.

2.2.ManipulatorDesign andOptimization. *emanipulator
structure has a great influence on its stability and motion
performance, and thus it was necessary to obtain the ideal
motion performance through optimization. In the process of
optimization, the working space of the manipulator needed
to be maximized, but its flexibility and stability needed to
satisfy the working requirements.

Two optional structures of the manipulator are shown
in Figures 5(a) and 5(b). As the sizes of big and small arms
are the same, the workspace of these two manipulators is
drawn together with the solid lines in Figure 5(c) repre-
senting the manipulator of Figure 5(a), and the dotted line
represents that of Figure 5(b) after movement. It was
obvious that, under the condition of the arm and joints
sizes being the same, the target trajectory of the mechanism
shown in Figure 5(a) was larger than that in Figure 5(b).
*erefore, the charging manipulator in Figure 5(a) was
adopted.

*e manipulator in the configuration grasped the target
object through an up and down movement of a pneumatic
cylinder and rotations of the shoulder, elbow, and wrist
joints. Due to the limitation of the overall size of the in-
telligent bamboo-splitting machine, the working path of the
manipulator fingers must meet formula (1) to grasp the
target object.

f(x)1min � a + b sin θ1 + d sin θ2 > 600, (1)

where a, b, c, θ1, and θ2 are shown in Figure 6.
To make the manipulator reach the maximum target

trajectory with minimized size, the objective function is
written as

Raw bamboo
material Splitting Wire drawing

DryingProduct Finish processing

Figure 1: *e production process for bamboo products.
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Minimize f(x)2 � a + b + c + d. (2)

*e optimization function must be subject to formula (1)
to reduce the manipulator weight and ensure that the
manipulator is lighter andmore flexible.*e ranges of a, b, c,
d, θ1, and θ2 were from 0 to 300mm, 0 to 400mm, 0 to
500mm, 0 to 300mm, 0 to π/2, and 0 to 3π/4, respectively.
*is size optimization problem was solved using a multi-
variable genetic algorithm, and the algorithm flow is shown
in Figure 7. A set of initial values satisfying the conditions
was selected to start the optimization process. *e initial
population number was set as 50, the maximum evolution
generation was set as 100, the crossover probability was set at
0.7, the mutation probability was set at 0.01, and the ter-
mination condition was set such that the average changes of
fitness function were less than 10−2.

*e algorithm actually evolved 97 generations,
with the optimized result of these parameters for
a, b, and d equal to 190, 220, and 220mm, respectively
(Figure 8). *e total length of rods c and d needed to meet
c + d sin θ2 ≥ 600 because 0° ≤ θ2 ≤ 3π/4,
0° sin θ2 ≤ 1. *erefore, c + d≥ 600, when c + d � 600,
such that the object function was minimized, and the length
of rod c was 380mm.

2.3. Optimized Charging Manipulator. *e structure of the
optimized charging manipulator is shown in Figure 9. It
mainly included a cylinder (1), five hinges (10), two big arms
(6), two small arms (7), two wrist joints (8), a V-shaped
finger (11), and two U-shaped fingers (9). It had four col-
umns (3), two upper beams (2), and two bottom beams (4).
*e cylinder (1) was mounted on upper beam (2) using bolts.
Component (10) acted as a shoulder, which was mounted at
the end of cylinder piston. One end of big arm (6) was
connected with component (10) and another end connected
with small arm (7) a through hinge. *e upper end of small
arm (7) was mounted on a hinge, which was also mounted
on a rotation axis. V-shaped fingers (11) and U-shaped
fingers (9) were mounted on the bottom end of small arm
(7). In the process of charging, bamboo was picked up by
U-shaped fingers (9). Next, the sample was urged to the front
of the pushing mechanism before touching V-shaped fingers
(11). *en, it was caught and tightly fastened between the
U-shaped (9) and V-shaped fingers (11).

3. Materials and Methods

3.1. Materials. *e test samples were bamboo of different
diameters felled at the end of September 2019 at Nankun

Intelligent
bamboo-splitting

machine

Charging manipulator

Vertical tool
changer

Control mechanism

Tool changers

Feeding mechanism

Push mechanism

Rotary tool
changer

Figure 2: Overall structure of intelligent bamboo-splitting machine.
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Figure 3: (a) *e virtual model and (b) the image of developed bamboo-splitting machine.
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Mountain, Longmen County, Huizhou, Guangdong, China.
All samples were placed at the laboratory of South China
Agricultural University in Guangzhou, China, and few samples
are shown in Figure 10. *e sample diameters were a key
parameter in this study and equal to the average of the diagonal
outer diameters of both sample ends, measured using a caliper.

3.2.Methods. A previous study has demonstrated that when
the length of big arm was between 200 and 240mm, the
manipulator could grasp bamboo materials of common
diameters. *erefore, three manipulators, with big arm
lengths of 210, 220, and 230mm, were developed for this trial

Start

Tool resetting

Measuring diameter

Tool changing

Charging

Splitting

Materials feeding

Judging if tool should be
changed

Judging if all materials have
been split

No

Yes

Yes

No
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Figure 4: Workflow chart of intelligent bamboo-splitting machine.
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Figure 5: Manipulator configuration.
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Figure 6: Manipulator parameters.
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and comparison. Hereinafter, those three manipulators were
referred to as manipulators A, B, and C, respectively.

3.2.1. Grasp Reliability and Accuracy Test. *e rate and
centering rates were two parameters used to determine the
grasping reliability and accuracy. Samples were divided into

three gradients: 60–85, 85–110, and 110–135mm according
to diameter differences. If a sample was tightly captured
between V-shaped and U-shaped fingers, the grasp was
successful. *erefore, the capture rate was calculated by the
number of successfully grasped samples divided by the total
number of grasped samples.

If the distance between tool and sample centerlines was
less than or equal to 5mm, the charging was accurate enough
for useful production. Otherwise, the charging failed. *us,
the centering rate was computed by the number of suc-
cessfully charged samples divided by the number of total
charged samples. To estimate whether the charging was
successful or not, a laser pointer was installed at the tool
head center. At the end of every charging test, the distance
between the laser light point and the center of the bamboo
sample was measured using a caliper.

3.2.2. Dynamic Characteristic Test. To analyze the instan-
taneous movement of samples, a mercury series
mer–030–120gx–pdes Poe Ethernet interface CCD was used
to capture images of the grasping process. Its acquisition
frequency was at 20 frames per second. Four images are
shown in Figure 11, including before grasping
(Figure 11(a)), a manipulator touching a sample
(Figure 11(b)), a manipulator grasping a sample
(Figure 11(c)), and after grasping was finished
(Figure 11(d)).

A piezoelectric accelerometer (Chengke CT1010SLFP)
was installed on manipulator wrist joint to detect its ac-
celeration. *e sampling frequency of the accelerometer was
set as 1 kHz, and the measured voltages of acceleration
signals, termed Vx, Vy, and Vz, were converted into X, Y,
and Z axis accelerations, termed ax, ay, and az, through a
USB-6001 acquisition card, and input into a computer using
USB 2.0 port (Figure 12).

An expression used to calculate the magnitude of the
acceleration vector ar was obtained using (3), which was
obtained in terms of its components ax, ay, and az, using the
Pythagorean theorem.

ar

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

����������
a2

x + a2
y + a2

z

􏽱
, (3)
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Figure 7: Flowchart of the genetic algorithm.
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Figure 10: Experimental materials.
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where |ar| is an absolute value or |ar|≥ 0.
*e average of the median of the resultant acceleration

peaks and their standard deviation, which reflected the

overall trend of acceleration more clearly, were used in
result analyses and calculated using the following
equation:

(a) (b)

(c) (d)

Figure 11: Four captured images in the grasping process.

PC
Data acquisition
card USB-6001

12V power

CT5204 constant
current adapter

Chengke CT1010SLFP
triaxial acceleration sensor Manipulator

Figure 12: Accelerometer and signal conditioning system.
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where Med |ar|􏼈 􏼉i represents the median of the resultant
acceleration peaks for grasping the i sample and n represents
the quantity of data in a group.

An example of X, Y, and Z axis accelerations detected by
the accelerometer is shown in Figure 13. *e magnitude of
acceleration vectors calculated from the accelerations in
Figure 13 is shown in Figure 14. By analyzing the acceler-
ation curve, the start and end time points of the grasp were
found. Furthermore, the total period of grasp process was
calculated using the following equation:

t �
n

f
, (5)

where n is the sampled acceleration signal number from
being a sample picked up to grasped firmly and f is the
sampling frequency of the accelerometer.

4. Results and Discussion

4.1. Results

4.1.1. Grasp Reliability and Accuracy Test. Experimental
results for the capture and centering rates of manipulatorsA,
B, and C are shown in Table 1. *e average capture rate of
manipulatorsA, B, andCwere 96, 100, and 98.67%, and their
centering rates were at 87.52, 90.45, and 88.35%, respec-
tively. In general, the average capture rate for grasping
samples of 85–110mm diameter was the highest and that for
grasping samples of 60–85mm diameter was the lowest.
*ere results also demonstrated that the capture rate of
manipulator B was as high as 100%, and therefore manip-
ulator B was the most suitable for this intelligent bamboo-
splitting machine. *e average centering rate of this ex-
periment was <91%. *e captured images showed that the
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Figure 13: X axis acceleration (a), Y axis acceleration (b), and Z axis acceleration (c).
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Table 1: Test results.

Manipulator Diameter
(mm)

Centering
rate
(%)

Capture
rate
(%)

A

60–85 87.50 92
85–110 85.43 100
110–135 89.64 96
Average 87.52 96

B

60–85 91.01 100
85–110 87.76 100
110–135 92.59 100
Average 90.45 100

C

60–85 90.00 96
85–110 86.34 100
110–135 88.72 100
Average 88.35 98.67
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cause of the centering error was that some sample sections
were not circular.

4.1.2. Dynamic Characteristic Test. Capture time curves of
manipulators A, B, and C are in shown in Figure 15,
which demonstrated that capture time decreased with
sample diameter. No significant capture time differences
were observed among these three manipulators in
grasping samples with diameters between 105.1 and
114.4 mm. *e trend curves of the influence of sample
diameter on average capture time were similar to ex-
ponential curves; the fitted curve expressions are listed in
Table 2.

No matter which manipulator was used for grasping, the
average acceleration decreased with decreased sample di-
ameter (Figure 16). *e longer the big arm was, the greater
the average acceleration became. *e trend curves of the
influence of the sample diameter on the average acceleration
were also similar to exponential curves; the fitted curve
expressions are listed in Table 3.

4.2. Discussion. *e longer the big arm was, the larger the
grasping force of the manipulator was, and the faster the
grasping speed was. Captured images showed that in
grasping with manipulator C, small samples always
slipped in the groove of U-shaped fingers acting at high
speed, and some samples stuck between U and V-shaped
fingers at wrong positions. *us, the capture rate of
manipulator C grasping samples of diameters between 60
and 85mm was only 96%. If the big arm was too short, the
grasping force became too small to grasp small materials,
which also explained why the average centering rate of
manipulator A was the lowest.

When picked up by U-shaped fingers, big samples can
barely slide, being captured firmly and quickly. *erefore,

the required time for grasping big samples was shorter. If
the big arm was too short, the grasping force became
insufficient and materials vibrated in U-shaped fingers
with a large amplitude. *is explained why the required
time for manipulator A for capturing samples was the
longest.

*e captured images showed that small samples vi-
brated violently in U-shaped fingers. Due to the size
limitation of U-shaped fingers, the vibration space of large
samples was limited. As the big arm became longer, the
grasping force became larger and the instantaneous
grasping acceleration became larger. *is explained why
the detected average acceleration of manipulator C was the
highest.

5. Conclusions

Experiment results showed that the average capture rate
of manipulator B was 100%, and its average centering
rate was 90.45%. *erefore, it grasped samples with
different diameters successfully. *e size of manipulator
B was also equal to our calculated optimal size. *ese
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Table 2: Capture time formula.

Manipulator Capture time formula R2

A t� 2.8144e−0.033d 0.8284
B t� 2.8384e−0.038d 0.9665
C t� 2.6327e−0.033d 0.9535
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Table 3: Average acceleration formula of grasping.

Manipulator Average acceleration formula R2

A a� 18.65d−0.044 0.8491
B a� 24.472d−0.17 0.8549
C a� 31.05d−0.239 0.8676
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experiments partly validated the present optimization
strategy.

*e required time for grasping larger samples was
shorter than that of grasping smaller samples. *e trend
curves of the influence of sample diameter on average
grasping time were similar to exponential curves, and the
fitted curve expression of manipulator B was
t� 2.8384e−0.038d. *e trend curves of sample diameter in-
fluence on the average acceleration were also similar to
exponential curves, and the fitted curve expression of ma-
nipulator B was a� 24.472d−0.17.

Data Availability
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