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'e inherent highly nonlinear coupling and system uncertainties make the controller design for a flexible-joint robot extremely
difficult. 'e goal of the control of any robotic system is to achieve high bandwidth, high accuracy of trajectory tracking, and high
robustness, whereby the high bandwidth for flexible-joint robot is the most challenging issue. 'is paper is dedicated to design
such a link position controller with high bandwidth based on sliding-mode technique. 'en, two control approaches ((1) ex-
tended-regular-form approach and (2) the cascaded control structure based on the sliding-mode estimator approach) are
presented for the link position tracking control of flexible-joint robot, considering the dynamics of AC-motors in robot joints, and
compared with the singular perturbation approach. 'ese two-link position controllers are tested and verified by the simulation
studies with different reference trajectories and under different joint stiffness.

1. Introduction

'e development of robotics in the past few years has been
extended from the earlier standard applications of industrial
robots to new fields such as space, service robotics, medical,
and force-feedback systems. 'is demand makes the re-
search directions on manipulators is to lighten the total
weight while keeping the control and operation performance
unchanged. Especially, desire for higher performance from
the structure and mechanical specifications of chain-like
mechanical manipulators has spurred designers to come up
with flexible-joint robots. 'e topic of control of flexible-
joint robots has troubled control experts of the world several
decades.

Most of the researchers start the control design for
flexible-joint robots with the Spong model [1]. Since then, a
large amount of theoretical and experimental results are
developed.

Some descriptions about the state-space approach based
on the feedback linearization have been given before. As
proposed by Spong in [2], even using a simplified robot

model (i.e., the joint flexibility is generated by linear spring
and the kinetic energy of a joint is only generated by the
rotation of this joint), the resulting control algorithm is
rather complicated, due to the state transformation and the
inverse calculation of the control input. 'e control algo-
rithm depends on the robot parameters, which are generally
unknown. 'e robust analysis about the feedback lineari-
zation approach can be found in [3].

In general case of the flexible-joint robot model, the
static feedback linearization may not be realizable [4]. De
Luca and Lucibello involve the previous system information
to form the so-called dynamic feedback linearization [5]. He
uses not only the actual states of the robot, but also the past
states; no global state transformation is required. 'e
resulting control structure is of 2n(n − 1) order (with n
being the number of robot joints). He pointed out the
sufficient condition of dynamic feedback linearization: there
is no zero dynamics in the system. 'e authors in [5] won a
best paper award during conference IRCA98 due to the
theoretical contribution. For a simplified flexible-joint robot
model, both static and dynamic feedback linearization can
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be applied. However, both linearization methods need the
state variables which may not be measured in a practical
robot system. An observer design for the unmeasured state
variables has been proposed [6, 7]. However, these observer
design approaches increased the complexity of the control
system and may make the feedback linearization
meaningless.

Singular perturbation approach is one of the promising
approaches to control the real-world lightweight robots,
which solves the control problem in two time scalars: a fast
joint torque control (often in form of a damping) term for
the fast mode of the joint torque dynamics, and a slow joint
torque feedforward term for the outer position control loop
(related to the rigid-body dynamics of the robot arm) [8].
More about the research works of singular perturbation
approach for flexible-joint robots can be found in [9–12].

Integral back-stepping approach is actually one of the
pure cascaded control approaches and has the advantages
such as not sensitive to the joint stiffness; state variables used
for the control implementation are available. It provides a
systematic way, i.e., a step-by-step way to design a Lyapunov
function for the overall control system. However, the
resulting controllers based on the basic version of integral
back-stepping approach need system parameters; thus, the
approach is sensitive to these parameters. To overcome this
drawback, the Lyapunov function is often extended to in-
volve a parameter adaptation process and the system ro-
bustness with respect to the parameter variations is
theoretically ensured. However, the parameter adaptation
process makes the overall control system more complicated
and may not be able to react on the fast changing of the
system parameters. 'erefore, integral back-stepping ap-
proach provides more theoretical contribution than it
practically does. Some works about the integral back-step-
ping approach used for the control of flexible-joints robots
can be found in [13, 14].

Passivity-based control approach uses the concept of
storage energy as well as storage energy changing (in time),
providing a sufficient condition for a dynamic system to be
stable. 'is control approach possesses some nice features:
physically interpretable, systematical Lyapunov stability
proof (using just the energy functions of the system), certain
degree of robustness with respect to system uncertainties,
simple-form controller, applicable to the case when con-
tacting with environmental objects, etc. 'e author believes
that passivity-based control approach is another promising
control approach besides the singular perturbation ap-
proach. Ott studied the passivity-based control approach for
flexible-joint robots systematically and showed the potential
of this approach for different control tasks [15]. From the
work of Ott, it seems that the only weak point of this control
approach lies in the tracking control performance; this
might be the price one has to pay for the nice features. Other
research works about the passivity-based control approach
used for the control of flexible-joint robots can be found in
[16, 17]. In the literature about the passivity-based control
approach for flexible-joint robots, the dynamics of the
electric motor used in the robot joint were generally and
unfortunately not taken into account.

It is clear that the advance control approaches for
flexible-joint robots need the support of advance control
theories. However, it seems that the model-based control
theories in the last 20 years have not got significant progress
in the sense of solving real-world control problems, such as
the control of flexible-joint robots as high-order, nonlinear,
uncertain MIMO systems. On the other hand, non-model-
based control approaches such as fuzzy-logic control and
neutral network-based control have been tested everywhere
and it is hoped that these control approaches are universal
and applicable to any dynamic system. However, the value of
non-model-based control approaches is often over esti-
mated. As mentioned before, the non-model-based control
approaches may not be applicable to the control of high-
order systems. 'e above observations have motivated re-
searchers to find a middle way between model-based and
non-model-based control designs. It is recognized, mean-
while, that to design a good control system, the controller
designer has to possess a deep understanding about the
physic plant to be controlled, independent of which control
approach is applied. As a result, for control engineers who
have no “good feeling” about the controlled plant, a rough
model which contains the basic bone structure of the dy-
namic system is highly desirable, though there are some
unmodeled dynamics, external disturbances, and parameter
uncertainties associated with this rough model. As a can-
didate of the control theories which are able to handle the
basic bone-structure model with a high degree of robustness,
variable structure control as well as sliding-mode control
[18] (in this thesis, no difference is made between these two
closely related control approaches) has been selected for the
control problems of the uncertain nonlinear systems
[19–22]. It well known that sliding-mode control theory can
be applied to high-order, nonlinear, uncertain MIMO sys-
tems and the resulting controllers are generally simple
enough for the real-time implementation. Another advan-
tage of sliding-mode control theory is easy to understand for
“normal” control engineers. 'e major disadvantage asso-
ciated with sliding-mode control is the chattering phe-
nomena due to the high-frequency switching of the
discontinuous control input. However, if the chattering
problem can be solved or the inherent discontinuous
property of the final control inputs (for the case of flexible-
joint robots, the final control inputs are the terminal voltages
on the stator windings of the electric motor used in robot
joints) can be positive utilized, sliding-mode control theory
will be a good control design tool for the systems such as
flexible-joint robots.

Besides using the control approaches discussed above,
adaptive control techniques [23], fuzzy logic and neural
network approaches [24], and simple PD (or PID) con-
trol [25] were also used to the control of flexible-joint robots.

If selecting the link position and the joint torque as state
variables, the Spong model can be transformed into the
block form of state-space description as follows:

M(q)€q + C(q, _q) _q + G(q) + F( _q) � τ,

€τ + Aτ(t)τ + Dτ(t) � Bττm,
􏼨 (1)
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where M(q) ∈ Rn×nis the mass matrix, C(q, _q) _q ∈ Rnis the
vector including centrifugal and Coriolis forces,
G(q) ∈ Rnis the gravity force vector, F( _q) ∈ Rnis the fric-
tion force vector, q ∈ Rnis the link position vector, τ ∈ Rnis
the joint torque vector Aτ(t) � K(J− 1 + M (q)− 1),Dτ (t) �

K(J− 1τds+ M(q)− 1N(q, _q)),Bτ � KJΓ,N(q, _q) � C(q, _q) _q+

G(q) + F( _q), τm ∈ R
n is the motor torque vector, τds ∈ R

nis
the disturbance torque vector, J � [Ji] ∈ R

n×nis the diagonal
joint inertia matrix, K � [ki] ∈ R

n×nis the diagonal joint
stiffness matrix, and Γ � [ci] ∈ R

n×nis the diagonal gear-
ratio matrix.

Equation (1) is actually a two-block system, block A and
block B, as shown in Figure 1.'emotor torque τm generates
the joint torque τ, while the joint torque τ generates the
motion of the link position q. In the joint torque dynamics,
i.e., the second equation of (1), the influence of the link
position and its time derivative exists. Normally, this in-
fluence is treated as system uncertainties when designing the
joint torque controller, because the model parameters are
generally unknown.

It is recognized that the dynamics of block B should be
faster than the ones of block A, otherwise it makes no sense.
'is assumption is true for all designed robot manipulators
so far, regardless of how large compliance the robot joints
have. For this two-block system, many control approaches
have been developed for the problem of link position
control, either trajectory tracking control or point-to-point
regulation.

'e basic problems of the existing control approaches
can be summarized as follows:

(1) 'e dynamics of the electric motor are generally not
considered. In the literature, some researchers
considered the motor dynamics (most of them used
only a DC-motor model instead of an AC one), but
the physical properties of the electric motor were not
positively utilized to increase the system perfor-
mance. Instead, the motor dynamics was always as
negative effect taken into account.

(2) 'e existing control approaches generally lack joint
torque tracking control capability. Some of the
control approaches do not take joint torque as a state
variable (or called interface variable) to be con-
trolled; thus, the extension to the end-effect force and
impedance control is not straightforward.

(3) Link position tracking control, joint torque tracking
control, dynamics of AC-motors, and robustness
with respect to the system uncertainties were not
considered simultaneously.

In this paper, we will consider all aspects in point (3)
simultaneously. As first, we add the motor dynamics to form
the so-called three-block formulation of flexible-joint robots
as shown in Figure 2.

As mentioned before, the dynamics of block B are faster
than the ones of block A. However, the dynamics of block B
may be faster or slower than the ones of block C (i.e., the
dynamics about the motor currents). If the dynamics of
block B are faster than that of block C, for the joint torque

tracking control, a cascaded control structure with an inner
current control loop and an outer joint torque control loop
would not work properly. 'erefore, we need a general
solution to control the joint torque, independent of which
block is faster among blocks B and C. Such a joint torque
control approach has been presented in [26].

For the link position control issues discussed in this
paper, two control approaches will be presented. In Section
2, we review the singular perturbation approach to work
with the robust link position controller for rigid-body
manipulators and with the direct sliding-mode current
control. In Section 3, we integrate the robust link position
controller with the direct sliding-mode joint torque con-
troller. In Section 4, the joint torque controller based on the
sliding-mode estimator is cascaded with the robust link
position controller. All these control approaches take joint
torque as interface variable (or better to say as state variable);
thus, the extension to the end-effector force and impedance
control will be straightforward. However, the singular
perturbation approach does not possess joint torque
tracking control capability; instead, the required joint torque
for the slow dynamics (i.e., the dynamics about the link
position) is implemented in a way of open-loop control, or
called feedforward control. Because the singular perturba-
tion approach is a simple and effective control approach,
thus it is considered here as an alternative to the proposed
controllers.

2. Singular Perturbation Approach

'e composite control structure of singular perturbation
approach for the slow and fast dynamics will be summarized
as follows.

'e robust link position controller for rigid-body ma-
nipulators is now taken as the controller for the slow dy-
namics of the flexible-joint robots:

B: second-order joint torque system

A: second-order link position system

τm τ

q

Figure 1: Two-block system of flexible-joint robots.

B: second-order joint torque system

A: second-order link position system

τm = KtIq

q

C: first-order motor current system
Iq

Id

Ud, Uq

τ

Figure 2: 'ree-block system of flexible-joint robots.
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τ0 � M0(q) €qd − KD _qe − KPqe( 􏼁 + N0(q, _q),

s � _qe + KDqe + KP 􏽚
t

0
qe(ξ)dξ − _qe(0) − KDqe(0)

+ 􏽚
t

0
M

− 1
0 (q) τ1 − τ1av( 􏼁dξ

τ1 � − Γ0
s

‖s‖
,

τ1av � lowpass τ1( 􏼁,

τd � τ0 + τ1av,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where M0(q) � M(q) − ΔM and N0(q, _q) � N(q, _q) − ΔN,
with ΔM and ΔN being the unknown part of matrix M(q)

and vector N(q, _q), respectively; qe � q − qd is the link
position error vector; KD ∈ Rn×n and KP ∈ Rn×n are positive
definite diagonal gain matrices determining the closed-loop
performance; τ0 represents the computed torque part of the
controller; Γ0 is a positive constant (control gain may also
take other forms), and ‖s‖ denotes the norm 2 of s, i.e.,
‖s‖ �

��������������
s21 + s22 + . . . + s2n

􏽱
; and control term τ1av serves here as

a perturbation compensator. 'e output of this controller
τd is quasicontinuous, which is the reference input for the
joint torque implementation. Normally, when using sin-
gular perturbation approach, the joint inertia matrix J has
to be considered in the link position controller by adding
matrix J to the mass matrix of the robot arm M(q).
However, since our link position controller is a robust
controller, implying that no exact parameters are required,
the information about the joint inertia is normally not
necessary (the system robustness depends on the available
control resource).

'e reference current vector for the most inner current
control loop can be calculated from the torque commands
for the slow and fast dynamics, i.e., τslow ∈ Rn and τfast ∈ Rn:

I
∗
q � K

− 1
t τm � K

− 1
t Γ

− 1 τslow + τfast( 􏼁, (3)

where Kt is the diagonal torque constant matrix of the
electric motors and Γ is the diagonal gear-ratio matrix;
I∗q � [i∗qi ] ∈ Rn, i� 1∼n, is the reference current vector in-
cluding the reference q-axis currents for all joints; τm rep-
resents the motor torque vector. 'e slow and fast joint
torque commands can be given as (taken from reference
[15])

τslow � τd,

τfast � − DSPB _τ,

or τfast � − KSPB τ − τd( 􏼁 − DSPB _τ,

⎧⎪⎪⎨

⎪⎪⎩
(4)

with DSPB ∈ Rn×n and KSPB ∈ Rn×n being constant diagonal
gain matrices to be determined by the control designer (if

joint stiffness is changed, these control gain matrices need to
be retuned accordingly).

For the motor current control, the equations of the
current controller are written as follows (note that this
current controller is only for the control of ith joint motor,
and the subscript i is not used for simplicity):

sd � id − i
∗
d ,

sq � iq − i
∗
q ,

Ω1 � sd cos θa − sq sin θa􏼐 􏼑,

Ω2 � sd cos θb − sq sin θb􏼐 􏼑,

Ω3 � sd cos θc − sq sin θc􏼐 􏼑,

u1 � − u0 sign Ω1( 􏼁,

u2 � − u0 sign Ω2( 􏼁,

u3 � − u0 sign Ω3( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

with id and iq are the stator currents in the (d, q) coordinate
frame; i∗q is one of the components of compose controller
(3); and reference current component i∗d � 0 for constant
torque operation and i∗d ≠ 0 for field-weakening operation
θa � θe, θb � θe − (2π/3), θc � θe + (2π/3), and θe being the
rotor electrical angle of the PMSM used. 'is current
controller does not need the motor parameters as well as the
decoupling process; thus, it is a robust current controller.

From equations (2)∼(5), it can be recognized that this
link position control system needs very few information
from the controlled plant. 'is is the main advantage of this
control approach. 'e disadvantage is that the joint torque
dynamics are not really controlled, but taken as disturbance
and rejected by a damping term. From theory point of view
and verified by the simulation studies given later, this control
system is not robust with respect to the large change in the
joint stiffness.

3. Extended-Regular-Form Approach

In this section, we will combine the state-space joint torque
controller using direct sliding-mode control with the robust
link position controller for rigid-body manipulators to form
a robust link position controller for flexible-joint robots. To
achieve this design goal, we need some theoretical supports.

Two methods are often used in the control of nonlinear
high-order uncertain systems:

(1) 'e order reduction method, e.g., using singular
perturbation theory

(2) 'e pure cascaded control method

'e first method may possess a relative higher band-
width than the pure cascaded control method, but the
neglected high-frequency dynamics in the real controlled
plant may be excited if high control gains are used (high
control gains are often required by some robust control
approaches); thus, the bandwidth will be limited in turns.
'e cascaded control method has the advantages: the control
system is easier being set into operation and the state
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variables used by the controller are measurable by some
sensors. However, the bandwidth of the control system is
limited by the cascaded control structure. 'eoretically, the
state-space control structure based on the full-state feedback
has a higher control performance (i.e., higher bandwidth).
However, the state-space method may need the high-order
time derivatives of the sensor signal, which are difficult to
obtain, because

(1) the sensor signal has always some noise
(2) a low-pass filter would introduce some time delay
(3) an observer would need a dynamic model and as-

sociated parameters

As a result, one has to do some tradeoffs. In Section 1, we
have presented the three-block formulation of the flexible-
joint robots. Actually, we had combined blocks B and C to
control the joint torque in a way of state-space control.
Moreover, because we used the direct sliding-mode control
approach to implement the joint torque tracking control by
applying the discontinuous terminal voltages of the motor
windings directly, the joint torque controller is free from the
chattering problem and is of a high robustness with respect
to the system uncertainties. 'is control performance can
hardly be achieved by a normal cascaded control structure.

For the link position control problem for flexible-joint
robots dealt with in this section, we will use the state-space
joint torque controller as the inner control loop. As the outer
position control loop, it is nature to use the robust link
position controller for rigid-body manipulators. As a result,
there are totally two control loops instead of three. Because
the dynamics of blocks A and B+C in Figure 2 are inter-
connected, if we cascade the link position controller with the
joint torque controller, we need associated theoretical
support. For this purpose, we extend the so-called regular-
form approach in the context of sliding-mode control
theory.

For a general nonlinear affine system,

_x � f(x) + B(x)u, (6)

where x, f(x) ∈ Rn, B(x) ∈ Rn×m, and u(x) ∈ Rm, and we
propose now the concept of extended-regular-form. System
(6) can be rearranged or transferred to the following two-
block system (see [23] for such kind of transformation, but
in case of flexible-joint robots, the system equations are
already in this form):

_x1 � f1 x1, x2( 􏼁,

_x2 � f2 x1, x2( 􏼁 + B2 x1, x2( 􏼁u,
􏼨 (7)

where x1 ∈ Rn− l, x2 ∈ Rl, and B2 is an l × m matrix with
l≥m. 'e first block does not depend on control.

Note that the classical regular-form approach requires
that the dimension of x2 should be equal to the dimension of
the control input, i.e., l � m, see [27]. Now, we extend this
design concept to the case of l≥m.

'e control design is performed in two stages. At first,
the l-dimensional state vector x2 is handled as the control
input for the first block and designed as a function of the

state vector x1 of the first block according to some per-
formance criteria:

x
d
2 � − s0 x1( 􏼁. (8)

'en, for the control of x2 in the second block to be equal
to the one given above, we design the control u using the
sliding-mode control theory to achieve the required ro-
bustness with respect to the system uncertainties including
the influence of x1 to the second block, so now we deal with a
reduced order problem of an uncertain system. At this
second stage, discontinuous control u is to be designed to
enforce sliding mode in the manifold:

s � C x2 − x
d
2􏼐 􏼑 � 0, (9)

where C ∈ Rm×l is a designed constant matrix determining
the system behavior in sliding mode (note that s may also
take other forms). In sliding mode, the system motion is
governed by

_x1 � f1 x1, x2( 􏼁,

C x2 − x
d
2􏼐 􏼑 � 0.

⎧⎨

⎩ (10)

'e second system in (6)–(10) is of l − m order, the
convergence of x2 to xd

2 depends only on the designed
parameter matrix C, and theoretically, the poles of the
second system can be placed arbitrarily, implying that the
system response can be designed as fast as required.
'erefore, a fast convergence of x2 to xd

2 can be achieved by
properly selecting matrix C (under the condition that the
sliding mode already occurs). If the control gains used in
controller (8) are not infinitely high, the motion in (10) can
be classified into slow and fast dynamics (corresponding to
the first and second equation of (10), respectively).
Depending on singular perturbation theory, for the slow
dynamics, i.e., the first equation of (10) x2 � xd

2 can be
assumed. As a result, the slow dynamics will be stabilized by
the feedback control given in (8) and the following final
system will be stable as expected:

_x1 � f1 x1, − s x1( 􏼁( 􏼁. (11)

For the control of flexible-joint robots, x1 in (7) stands
for the state vector of the link position system (which is a
second-order system) and x2 presents the state vector of the
joint torque system (which is a third-order system including
the dynamics of motor current).

As mentioned before, we intend to use the link po-
sition controller to control the link position and to use the
joint torque controller to control the joint torque. Both
controllers are robust controller based on sliding-mode
technique. 'e joint torque controller utilizes the
switching property of the power converter (i.e., the in-
verter), implying that we are not suffered from the
chattering problem.

3.1. Link PositionController of the Robot Arm. 'e controller
algorithm for this section can be summarized as follows:
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τ0 � M0(q) €qd − KD _qe − KPqe( 􏼁 + N0(q, _q),

s � _qe + KDqe + KP 􏽚
t

0
qe(ξ)dξ − _qe(0) − KDqe(0)

+ 􏽚
t

0
M

− 1
0 (q) τ1 − τ1av( 􏼁dξ,

τ1 � − Γ0
s

‖s‖
,

τ1av � lowpass τ1( 􏼁,

τd � τ0 + τ1av.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

See Section 2 for the definitions of variables and pa-
rameters as equation (2).

3.2. Joint TorqueController of ith Robot Joint (Subscript i Is Not
Used for Simplicity).

eτ � τ − τd,

sτ � eτ + c1 _eτ + c0eτ ,

sd � A
− 1

L id − i
∗
d( 􏼁,

Ω1 � sd cos θa − sτ sin θa( 􏼁,

Ω2 � sd cos θb − sτ sin θb( 􏼁,

Ω3 � sd cos θc − sτ sin θc( 􏼁,

u1 � − u0 sign Ω1( 􏼁,

u2 � − u0 sign Ω2( 􏼁,

u3 � − u0 sign Ω3( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where eτ � τ − τd is the joint torque control error. 'e
parameter A− 1L � kckt/J is introduced in sd to simplify the
control design; the parameters c0 and c1 have to be provided
by the control designer depending on the required closed-
loop performance of the joint torque control.'e definitions
of other variables and parameters in the control system are
given by (12) and (13), see Section 2.

4. Cascaded Control Structure Based on the
Sliding-Mode Estimator Approach

In this section, we use the joint torque controller for the
inner torque control loop and the robust link position
controller for the outer link position control loop. 'is
combination has an advantage comparing to the approach
given in the previous section, namely, signal τ is not re-
quired. However, it has also some disadvantages:

(1) 'e control algorithm needs the nominal value of
some parameters

(2) 'e joint torque control performance for large or fast
changing reference torques is not as good as the one
of direct sliding-mode control approach

(3) It needs an inner current control loop for the control
of iq; thus, there are totally three control loops in-
stead of two.

4.1. Link PositionController of the Robot Arm. 'e controller
algorithm for this section can be summarized as follows:

τ0 � M0(q) qd − KD _qe − KPqe( 􏼁 + N0(q, _q),

s � _qe + KDqe + KP 􏽚
t

0
qe(ξ)dξ − _qe(0) − KDqe(0)

+ 􏽚
t

0
M

− 1
0 (q) τ1 − τ1av( 􏼁dξ,

τ1 � − Γ0
s

‖s‖
,

τ1av � lowpass τ1( 􏼁,

τd � τ0 + τ1av.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

See Section 2 for the definitions of variables and pa-
rameters as equation (2).

4.2. Joint TorqueController of ith Robot Joint (Subscript i IsNot
Used for Simplicity).

eτ � τ − τd,

τf � 􏽢b
− 1

􏽢aτ + τd − c1 _eτ − c0eτ( 􏼁,

􏽢z(0) � _τ(0),

ueq � lowpass Ms sign(􏽢z − _τ)( 􏼁,

τr � 􏽢b
− 1

ueq,

_􏽢z � τd − c1 _eτ − c0eτ + 􏽢bτr − Ms sign(􏽢z − _τ),

τm � τf + τr,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where 􏽢z is the artificially introduced auxiliary variable,
which is actually an estimate of _τ. Parameters 􏽢a, 􏽢b, c0, c1,
and Ms, and the time constant of the low-pass filter have to
be provided by the control designer. 'e definitions of
others variables and parameters are given in Section 2. 'e
stability proof of controller (15) is similar to the literature
[28].

A current controller for the control of iq is required as
the most internal control loop (the same happens with the
control system presented in Section 2). 'e current con-
troller used here could be the same as the one given by
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equation system (5) (sure, a classical current controller with
conventional PWM may be employed too).

5. Simulation Studies

5.1. Plant Model Used for the Simulation. To verify the
proposed control approaches, we use a two-link flexible-
joint robot as the plant model shown in Figure 3, which
consists of the two-link rigid-body robot model which can be
given as

m11 m12

m21 m22
􏼢 􏼣

€q1

€q2
􏼢 􏼣 +

d1 + g1 + f1

d2 + g2 + f2
􏼢 􏼣 �

τ1
τ2

􏼢 􏼣,

ie. M(q) �
m11 m12

m21 m22
􏼢 􏼣,

N(q, _q) �
d1 + g1 + f1

d2 + g2 + f2
􏼢 􏼣,

(16)

with

m22 � L
2
2M2,

m12 � m21 � m22 + L1L2M2 cos q2,

m11 � L
2
1 M1 + M2( 􏼁 + 2m12 − m22,

d1 � − L1L2M2 2 _q1 _q2 − _q
2
2􏼐 􏼑sin q2,

d2 � L1L2M2 _q
2
1 sin q2,

g2 � L2M2g cos q1 + q2( 􏼁,

g1 � L1 M1 + M2( 􏼁g cos q1( 􏼁 + g2,

f1 � kv1 _q1 + kc1 sign _q1( 􏼁,

f2 � kv2 _q2 + kc2 sign _q2( 􏼁.

(17)

'e parameters of the two-link flexible-joint robot used
for the simulation are listed in Tables 1∼3.

5.2. Reference Input for Testing the Link Position Controllers.
For the link position tracking control, we demand the
manipulator to move along a circular trajectory in its
workspace; see the following equation:

xd(t) � xd0 + rd cosψd,

yd(t) � yd0 − rd sinψd,

ψd(t) �
2π
tf

t − sin
2π
tf

t􏼠 􏼡,

0≤ t≤ tf.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

'e parameters of the circle are given as rd � 1.0m,
xd0 � 0.5m, and yd0 � 0.5m. 'e simulation time is now
selected as tf � 4 s in order to zoom-in the transition period.
'rough the inverse kinematics, the reference link positions

for joint 1 and joint 2 are calculated according to equation
(19). 'is reference trajectory will generate large and fast
changing joint torques to be followed:

q2 � a tan 2(D, C), withC �
x
2
w + y

2
w − L

2
1 − L

2
2

2L1L2
,

D � ±
������
1 − C

2
􏽰

,

q1 � a tan 2 yw, xw( 􏼁 − 2a tan 2 L2 sin q2, L1 + L2 cos q2( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(19)

5.3. Controller Parameters. 'e parameters for the outer
position control loop of Sections 2∼4 are selected to be the
same, and they are

M0(q) �
2.0 0
0 1

􏼢 􏼣,

N0(q, _q) �
0
0

􏼢 􏼣,

Kp �
120 0
0 120

􏼢 􏼣,

Kd �
50 0
0 50

􏼢 􏼣,

Γ0 �
200 0
0 200

􏼢 􏼣.

(20)

y

x

yw

xw

M1

M2

L1

L2

q1

q2

Figure 3: Two-link manipulator with link lengths L1 and L2 and
concentrated link masses M1 and M2 (the manipulator is shown in
joint configuration (q1, q2), which leads to end-effector position
(xw, yw) in world coordinates).

Table 1: Arm parameters.

M1 M2 L1 L2

4 kg 2 kg 0.5m 0.5m

Table 3: Parameters of joint 1 and joint 2.

J (kgm2) k (Nm/Rad) c kω (Nm/(Rad/s))

1.5 10000 40 1

Table 2: Parameters for motor1 and motor2.

L(H) R(Ohm) λ0 P kt (Nm/A) Iq max (A) U0 (V)

44.5 × 103 0.68 0.24 4 (3/2)Pλ0 60 120

Journal of Robotics 7



'e joint torques of both joints are limited to 200Nm.
'e time constant of the two low-pass filters to extract the
equivalent control of τ1 ∈ R2 is 0.01 s. To improve the
control performance, this time constant is linearly increased
from zero to 0.01 s in the first half second and remains
constant thereafter, similar to the following equation:

u(t) �

0.025
0.5

􏼒 􏼓t, 0≤ t≤ 0.5,

0.025, t> 0.5.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

For the singular perturbation approach described in
Section 2, the simple form fast τfast � − DSPB _τ is used for the
fast dynamics, where matrix DSPB is selected as

DSPB �
0.002 0

0 0.002
􏼢 􏼣. (22)

For the extended-regular-form approach described in
Section 3, the inner loop joint torque controller parameters
are selected to be the same as those given by

c01 � 20000,

c11 � 200,

A
− 1

L􏼐 􏼑1 � 3.84 × 105,

c02 � 20000,

c12 � 200,

A
− 1

L􏼐 􏼑2 � 3.84 × 105.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

For the cascaded control structure based on the sliding-
mode estimator approach described in Section 4, the inner loop
joint torque controller parameters are the same as those given by

Jm1 n �
1.3J1

c
2
1

,

Jl1 n � 1.5m11|q2�0 � 1.5 L
2
1M1 + L1 + L2( 􏼁

2
M2􏼐 􏼑,

k1 n � 0.5k1,

Jm2 n �
1.3J2

c
2
2

,

Jl2 n � 1.5m2 � 1.5L
2
2M2,

k2 n � 0.5k2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

􏽢a1 �
k1 n

c
2
1Jm1 n

+
k1 n

Jl1 n

,

􏽢b1 �
k1 n

c
2
1Jm1 n

,

􏽢a2 �
k2 n

c
2
2Jm2 n

+
k2 n

Jl2 n

,

􏽢b2 �
k2 n

c
2
2Jm2 n

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c01 � 20000,

c11 � 200,

Ms1 � 2 × 106,

μ1 � 1 × 10− 3
,

c02 � 20000,

c12 � 200,

Ms2 � 2 × 106,

μ2 � 1 × 10− 3
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

5.4. Simulation Results and Discussion. Figures 4∼8 show
the simulation results of the link position tracking
control of the two-joint robot arm considering the joint
flexibility and the AC-motor dynamics. Figures 4 and 5
are for the case of normal joint stiffness, i.e.,
k1 � k2 �10000 Nm/Rad; while Figures 6 and 7 are for the
case of large joint compliance, i.e., very small joint
stiffness k1 � k2 �1000 Nm/Rad (without changing the
controller parameters).

As one can see from Figures 4 and 5, for the normal
joint stiffness (i.e., k1 � k2 �10000 Nm/Rad), the singular
perturbation approach and two new presented control
approaches given in Sections 2∼4 have similar tracking
control performance. However, for the case of large joint
compliance (k1 � k2 �1000 Nm/Rad), see Figures 6 and 7,
the singular perturbation approach shows a poorer
control performance, due to the lack of adaptation
mechanisms to the changing of the joint stiffness. 'e
extended-regular-form approach based on the direct
sliding-mode joint torque control and the cascaded
control structure based on the sliding-mode estimator
(for joint torque control) show similar control perfor-
mance for the normal and the small joint stiffness at first
glance. However, if we take a close look in the joint
torque tracking performance in the inner control loop
(see Figure 8 for the joint torque tracking of joint 1 in
zoomed time range of 1s), it can be found immediately
that the direct sliding-mode joint torque controller
under the extended-regular-form approach has a much
better tracking performance as the one of the sliding-
mode estimator approach under the cascaded control
structure. 'is result confirms the theoretical
expectation.

Actually, a simple high-gain controller is not ade-
quately being used within a cascaded multiple-loop control
system, except for the most internal control loop.'is is the
reason why we tried to reduce the number of control loops
and use the sliding-mode (i.e., high gain) controller in the
most internal control loop, as done with the extended-
regular-form approach.
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Figure 4: Position control of joint 1 (normal joint stiffness). (a) Angular position tracking of joint 1. (b) Position tracking error of joint 1.
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Figure 5: Position control of joint 2 (normal joint stiffness). (a) Angular position tracking of joint 2. (b) Position tracking error of joint 2.
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Figure 6: Position control of joint 1 (large joint compliance). (a) Angular position tracking of joint 1. (b) Position tracking error of joint 1.
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Figure 7: Position control of joint 2 (large joint compliance). (a) Angular position tracking of joint 2. (b) Position tracking error of joint 2.
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6. Conclusions

In this paper, the three-block formulation of the dynamics
for flexible-joint robots was introduced at first. 'en,
singular perturbation approach and two new control ap-
proaches are presented for the link position tracking
control of this kind of robot. Among them, the singular
perturbation approach (famous approach) is the simplest
one for the real-time implementation, but it is sensitive to
the changing of joint stiffness, from a theory point of view
and verified by the simulation studies. 'e extended-reg-
ular-form approach with the direct sliding-mode joint
torque control has the highest control performance, and the
implementation is also quite simple, except for the re-
quirement on the second-time derivative of the joint torque
signal. 'e cascaded control structure based on the sliding-
mode estimator approach tries to avoid the second-time
derivative of the joint torque signal but possesses a more
involved control structure and needs more controller pa-
rameters than the other two.

'ese comparative studies confirm again that there is no
free lunch in the control of high-order uncertain systems,
unless to give up the intention of achieving high bandwidth.
'e proposed extended-regular-form concept can also be
applied to some other high-order, nonlinear, uncertain
systems.

Moreover, there are still some topics left which need to
be investigated in the future research works. One is
achieving a usable second-time derivative of noisy joint

torque signal with minimal time delay and, at the same time,
reducing the sensitivity of the control algorithms with re-
spect to the noisy joint torque signal.'e other is seeking the
hardware solution for the direct sliding-mode joint torque
control (without using the build-in PWM in micro-
controllers or DSP) to achieve the advanced control per-
formances provided by this control approach.

Data Availability

'e RAR data used to support the findings of this study are
included within the supplementary information file.

Additional Points

'e concept of extended-regular-form for the block-control
of high-order uncertain systems is proposed. 'e proposed
method breaks through the limitation (under certain given
condition) that the dimension of the inner block must be
equal to the dimension of the control input associated with
the conventional regular-form approach. 'e proposed
method serves as the theoretical support for cascading an
outer position control loop with the inner direct (state-
space) sliding-mode joint torque control loop for the tra-
jectory tracking control of flexible-joint robots.
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Figure 8: Joint torque tracking control of joint 1 (large joint compliance). (a) Inner loop joint torque control by direct sliding-mode control.
(b) Inner loop joint torque control by sliding-mode estimator (grey solid line� reference joint torque signal; black solid line� real joint
torque signal).
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