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Wall defect detection is an important function for autonomous decoration robots. Object detection methods based on deep neural
networks require a large number of images with the handcrafted bounding box for training. Nonetheless, building large datasets
manually is impractical, which is time-consuming and labor-intensive. In this work, we solve this issue to propose the low-shot
wall defect detection algorithm using deep reinforcement learning (DRL) for autonomous decoration robots. Our algorithm first
utilizes the attention proposal network (APN) to generate attention regions and applies AlexNet to extract the features of attention
patches to further reduce computation. Finally, we train our method with deep reinforcement learning to learn the optimal
detection policy. (e experiments are implemented on a low-shot dataset in which images are collected from real decoration
environments, and the experimental results show the proposed method can achieve fast convergence and learn the optimal
detection policy for wall defect images.

1. Introduction

Autonomous decoration robots are increasingly applied in
the field of house decoration. Figure 1 shows our robot
platform, autonomous decoration robot, which is used to
decorate the walls of rough houses. (e first thing of wall
decoration for an autonomous decoration robot is wall
defect detection.

Wall defect detection is an important research problem
in automatic housing decoration. In recent years, deep
learning (DL) is widely used in computer vision [1–3], and
the current mainstream object detection methods [4] based
on deep learning can be divided into two-stage detection and
one-stage detection. Two-stage detection decomposes the
object detection algorithm into two stages: it first generates
region proposals and then classifies the region proposals.
Many methods belong to two-stage detection, such as
R-CNN [5], fast R-CNN [6], and faster R-CNN [7]. In
general, two-stage detection methods have an advantage in
accuracy, but they cannot meet real-time requirements in

practical use. To address this issue, some researchers pro-
posed one-stage detection methods which have advantages
in speed. One-stage object detection cannot generate region
proposal but directly outputs the location and classification
of the bounding box in the output layer. Classical one-stage
detection methods include YOLO [8], YOLO-v2 [9], YOLO-
v3 [10], and SSD [11]. However, both methods need a large
amount of wall defect images and require to annotate
handcraft bounding box for region proposal. In addition,
collecting larger number of wall defect images from real
building decoration environments is very difficult, and
annotating bounding boxes for each image increases the
difficulty of making a ground-truth dataset. (erefore, the
process of wall defect image collection is not only time-
consuming but also labor-intensive.

To address the issues mentioned, we propose wall defect
detection with low-shot data based on deep reinforcement
learning in which the image dataset used in our work is low-
shot, and handcrafted bounding boxes are not required. We
first utilize the APN [12] to acquire attention regions and use
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AlexNet [13] to generate a compressed feature vector.
Furthermore, we feed the feature vector into LSTM that
outputs a center location of the wall defect image. In the
subsequent iterations, our method continuously improves
the accuracy of detection location based on the previous
center location. Figure 2 shows some image samples of wall
defects.

(e contributions in our work can be summarized as
follows:

(1) Defect detection via DL requires a ground-truth
dataset with the handcrafted bounding box. How-
ever, our method does not require manual annota-
tions for wall defect images.

(2) Our method extends deep reinforcement learning
from classification tasks to detection tasks.

(e remainder of this paper is organized as follows: in
Section 2, we present the background.(en, in Section 3, the
proposed method is described in detail. In Section 4, the
experimental results are presented and discussed, which
demonstrate the advantage of our method. Finally, the
conclusions are presented in Section 5.

2. Background

2.1. Deep Reinforcement Learning. (e aim of reinforcement
learning is to maximize a discounted sum of rewards when
an agent interacts with an environment over a number of
discrete time steps [14, 15]. At each time step, the agent
receives a state st from the environment and produces an
action at according to its learned policy π. In return, the
environment gives the agent a next state st+1 and a reward
rt+1. Reinforcement learning can be divided into three
categories [14]: value-based methods, policy-based methods,
and actor-critic methods. Among these categories, policy
gradient methods [16] are used to compute an estimator of
agent’s policy gradient by a stochastic gradient ascent al-
gorithm and are suitable to incorporate with the deep neural
network. Works on policy gradient methods have been
developed, such as actor-critic (AC) [14, 17], in which the
actor is a policy, and the critic is a baseline. Lillicrap et al.
[18] extended DQN [15] and DPG [19] to propose deep
deterministic policy gradient (DDPG), and DDPG based on
AC includes 4 neural networks: current critic network,
current actor network, target critic network, and target actor
network. Mnih et al. [20] proposed asynchronous advantage
actor-critic (A3C) that uses asynchronous training of
multiple agents in parallel. In recent years, DRL algorithms
have been applied to robotics [21–23].

2.2. Recurrent Attention Model. Recurrent attention model
(RAM) [24] is a novel visual attention model formulated as a
single recurrent neural network. (is visual attention model
takes a glimpse window as the input and uses an internal
state of the neural network to select the next detection lo-
cation and to generate control signals in a dynamic envi-
ronment. Although RAM is not differentiable, the unified

architecture is end-to-end from pixel inputs to actions using
a policy gradient method.

2.3. Attention Proposal Network. APN [12] receives full
image and iteratively generates attention regions from
coarse to fine by taking the previous prediction as a refer-
ence, while a finer scale network takes as input an amplified
attention region from the previous scales in a recurrent way.
(e learning process of the APN is trained in a weakly
supervised fashion because a part-level annotation is hard to
obtain. Figure 3 shows the APN architecture that consists of
a pretrained VGG-19 [25] model and two-stacked fully
connected layers. In addition, pretrained VGG-19 is trained
on ImageNet.

3. Method

In this work, we regard the wall defect detection problem as a
sequential decision process in which a goal-directed agent
interacts with the environment. Our architecture, as shown
in Figure 4, can be decomposed into two modules: initial-
ization module and refinement module. (e initialization
module is responsible for obtaining an initial detection
location that is a preliminary input for the second module.
To further prove the effective detection of our method, our
proposed method also classifies the wall defect images into
convex ones and concave ones based on the detection re-
sults. With several recurrent iterations, the refinement
module gradually refines the results of the wall defect
detection.

In the initialization module, we feed an input image into
the pretrained APN model to generate the initial attention
region. (is initial attention region becomes small and re-
duces computation significantly. (en, AlexNet compresses
the high-dimension attention region into low-dimension
feature vectors. Finally, the agent, via the policy gradient,
receives the feature vectors and outputs an initial detection
and classification policy for the wall defect image. (e
purpose of the initialization module is to calculate rough
center coordinates of detection, and the refinement module
receives the initial detection coordinates to implement re-
current iterations for detection improvement.

3.1. Detection Initialization. (e initialization module out-
puts initial detection. We utilize the pretrained APN to
predict a box coordinate of an attention region for a finer
scale. At each step t, an original image It is fed into the APN,
and the APN outputs an attention region xt. (e repre-
sentation of the attention region xt can be expressed as
follows:

fp It( 􏼁 � tx, ty, tl􏽨 􏽩 � lt−1, (1)

where tx, ty are the square’s center coordinates with respect
to x- and y-axis and tl is the distance between the detection
center location and its border, respectively. For ease of
notation, we rewrite the location [tx, ty, tl] as lt−1. fp is the
neural network architecture of the APN.
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To further reduce the network computation of our
method, we compress image xt to extract features by con-
volutional neural networks. Compared with other frequently
used CNNs, such as VGG and ResNet, AlexNet has much
less training parameters. (erefore, we use AlexNet fn

to extract features from xt, and fn outputs feature vectors
nt � fn(xt) � fn(fp(It)) with much lower dimensionality.

Feature vectors nt are fed into LSTM, and the input
parameters of inner LSTM are shown in Figure 5. In the
inner of LSTM, each hidden unit ht has an internal state
which summarizes information from environment states.

During the interaction period, the update of each hidden
unit is ht � fh(ht−1, nt; θh).

Similar to [24], as shown in Figure 6, the agent outputs a
location action lt and an environment action at using the
internal state ht when it interacts with the environment. In
this paper, the location network fl(ht; θl) outputs lt for the
next time step, and the environment network outputs the
environment action at after a fixed number of time steps.

After performing an action at, the agent receives a new
visual observation It+1 and a reward signal rt+1 from the
environment. Wall defect images would be categorized into

(a) (b)

Figure 1: Autonomous decoration robot. (e arm of the autonomous decoration robot is used to decorate the walls of rough houses, and a
camera sensor on the arm captures environmental image information for the robot.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 2: Some image samples of the wall defect dataset collected by the autonomous decoration robot.(e image dataset is collected in real
building decoration environments and need not require handcrafted bounding boxes: (a) Img-000, (b) Img-055, (c) Img-082, (d) Img-108,
(e) Img-167, (f ) Img-198, (g) Img-237, (h) Img-276, (i) Img-288, and (j) Img-315.

…

VGG FC FC

Figure 3: (e APN architecture. APN contains pretrained VGG-19 and two-stacked fully connected layers.
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convex and concave types, and the reward is 1 if the agent
classifies the wall defect image correctly; otherwise, the
reward is set to 0. In addition, the aim of our agent is to
maximize the accumulated rewards R � 􏽐

T
t�1 rt to learn an

optimal policy π((lt, at) | s1: t; θ).

3.2. Detection Refinement. (e refinement module outputs
the final detection and classification results. When the
initialization module generates an initial detection location
lt, we can get a new attention region xt

′ around lt, and the
region is fed into AlexNet for a compressed feature vector
nt
′ � fn(xt

′). (e LSTM agent receives nt
′ and outputs

classification policy at+1 and detection policy lt+1 which
generate an initial detection coordinate for its next iteration.
After K recurrent iterations, the refinement module can

learn optimal classification and detection policy. Further-
more, the classification policy is used to categorize wall
defect images into a convex defect or concave defect, and the
detection policy is used to generate a center coordinate for
the final detection region.

3.3. Training Method. Similar with RAM [24], our archi-
tecture has three small neural networks: a glimpse network, a
location network, and an environment network. (e
training goal is to learn a policy that maximizes the total
rewards.

J(θ) � Ep s1:T;θ( ) 􏽘

T

t�1
rt

⎡⎣ ⎤⎦ � Ep s1:T;θ( )[R], (2)

AlexNet LSTM

Original image Action

AlexNet

K recurrence

APN

Input image

The initialization module

The refinement module

LSTM

at+1

lt+1

lt

at

Figure 4: (e detection and classification architecture of the wall defect. (e initialization module is used to calculate rough center
coordinates of detection, and the refinement module is used to refine detection and classification results with K recurrence iterations.

nt nt

lt
ht

at+1

ht+1

ht+1
lt+1

ht–1

at

fh (θh) fh (θh)

fl (θl) fl (θl)

fa (θa) fa (θa)
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Figure 5:(e input parameters of inner LSTM. Each hidden unit ht has an internal state to summarize the environment information nt, and
its update is ht � fh(ht−1, nt; θh).

Environment

Agent

It+1 rt+1 (lt , at)

Figure 6: Reinforcement learning used for the detection and classification policy of wall defect detection.(e agent outputs a location action lt and
an environment action at when it interacts with the environment. In return, the environment gives the agent the next state It+1 and a reward rt+1.
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where p(s1:T; θ) depends on the policy.
It is not easy to maximize J because it involves the

expectation of high-dimensional relation sequence. We can
regard this problem as a partially observable Markov de-
cision process (POMDP). However, it allows us to solve this
problem from the technical perspective of RL, and a sample
approximation method is used to approximate the
gradient:

∇θJ � 􏽘
T

t�1
Ep s1: t;θ( ) ∇θlog π ut s1: t; θ

􏼌􏼌􏼌􏼌􏼐 􏼑R􏽨 􏽩,

≈
1

M
􏽘

M

i�1
􏽘

T

t�1
∇θlogπ u

i
t | s

i
1: t; θ􏼐 􏼑R

i
.

(3)

3.4. Neural Network Architecture. As shown in Figure 4, the
initialization module is a pretrained APN which includes
pretrained VGG-19 layers on ImageNet and two fully
connected layers. (e APN parameters are frozen, and the
APN outputs a 200 × 200× 3 attention region from a
640× 480 × 3 RGB defect image. In addition, we feed the
attention region into AlexNet to generate a 4000-d feature
vector, and the vector is further passed through 512-LSTM
to produce an initial classification policy and a center
coordinate of initial detection. (e refinement module has
a similar neural network architecture as the initialization
module except the APN.

4. Experiments

Experiments are implemented in PyTorch and trained on
Nvidia GeForce GTX 1080Ti GPU. We evaluate our method
on the low-shot dataset of the wall defect images collected
from real decoration environments.

4.1. Experimental Configuration. We collected 317 RGB
images for a low-shot dataset from real decoration envi-
ronments by our autonomous decoration robot and split the
images into the training dataset with 254 images and test
dataset with 63 images, respectively. For ease of training, all
the images are resized into the same size 640× 480, and the
distance between the detection center and its border tl is set
to 100. (erefore, the size of the attention region from the
APN is 200× 200. In addition, proper K recurrence is set to 2
for high accuracy and short training time. We trained this
neural network based on a shared RMSProp optimizer with
learning rate 7×10−4.

4.2. Experimental Results and Analysis. We took five wall
defect images as examples and gave qualitative and quan-
titative analysis to demonstrate the effectiveness of our
method. As shown in Figure 7, the first column is original
images, the second column is initial wall defect detections,
and the third column is refined detections.

Figure 7 represents the qualitative experimental results.
Each original image is fed into the proposed neural network,
and the first column is the output of the APN which

Img-000

Original image
Initialization Refinement

Img-082

Img-167

Img-237

Img-288

Figure 7: (e qualitative experimental results. (e initialization images and the refinement images are the output of the initialization
module and refinement module, respectively.
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generates the initial detection center. (ough several images
(Img-000, Img-082, Img-167, and Img-288) output the
rough detection image, the refinement module still generates
more accurate detections after recurrent iterations. In ad-
dition, APN even gives wrong initialization, such as
Img-237, whose initial detection does not include the wall
defect, and our method also maintains correct detection.(e
qualitative experimental results show the agent can learn
optimal detection policy via the low-shot dataset.

To further prove the effective detection of our method,
we classified images of wall defect after detection into convex
ones and concave ones. Figure 8 shows the quantitative
experimental results. (e classification loss decreases rap-
idly, as shown in Figure 8(a), and it fast reaches stability with
low value at 200 episodes. In Figure 8(b), the classification
accuracy curve reaches 90% when the agent is trained at
about 100 episodes. (e training process begins to achieve
convergence at 150 episodes, and the average classification
accuracy is 98.25% that is calculated between 150 episodes
and the end episode. (e quantitative experimental results
show that our agent can learn the optimal wall defect
classification policy via the low-shot dataset, which further
proves the effectiveness of our detection method.

According to the qualitative and quantitative analysis,
training of our method can achieve fast convergence using
deep reinforcement learning via the low-shot dataset.
Moreover, the agent can learn optimal detection, while the
training dataset is low-shot. In addition, the trained pa-
rameter model is 452M which is small, and our method is
real-time in practice.

5. Conclusion

Wall defect detection is an important function for auton-
omous decoration robots. However, object detection
methods via deep learning require a large number of image
datasets annotated with the ground-truth bounding box. It is
impractical to collect enough images and to handcraft

bounding boxes for wall defect detection from real deco-
ration environments. To address this issue, we proposed
low-shot wall defect detection using deep reinforcement
learning in this paper. We first utilized the attention pro-
posal network to generate attention regions and applied
AlexNet to extract features of attention patches to reduce the
computation. (en, we used deep reinforcement learning to
train the proposed method successfully. (e proposed
method can reach fast convergence via the low-shot dataset
and learn optimal detection policy for wall defect images for
autonomous decoration robots.
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