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Solar resource data derived from satellite imagery are widely available nowadays, either as an open-source or paid database.
This article is intended to assess open-source databases, which cover the region of Indonesia. Here, four known solar resource
databases, which spatially cover the Indonesian archipelago, have been used, namely, Prediction of Worldwide Energy
Resource (POWER), Surface Solar Radiation-Heliosat-East (SARAH-E), CM SAF Cloud, Albedo, Radiation edition 2
(CLARA-A2), and SolarGIS. In addition, a minor portion of the Meteonorm database by Meteotest, around five sample points
across Indonesia, has been assessed in terms of coherency to the four mentioned databases. Correlation coefficient and relative
bias of the multiyear monthly mean annual cycle global horizontal irradiation (GHI) between pairs of databases are inspected.
Three out of four databases are then validated through the available irradiation ground measurement data provided by the
World Radiation Data Centre (WRDC). The correlation between each pair varies mostly between 0.7 and 1, which shows that
the four databases to a certain extent agree on how the intermonthly variation would behave throughout the year. On the other
hand, the validation result reveals that the three databases, i.e., POWER, CLARA-A2, and SARAH-E, are suffering from
positive bias error ranging from 3% to 7%. Despite that fact, the correlation between measured and estimated values is still
acceptable with SARAH-E showing the best performance among the three. Careful selections and adjustment enable the
possibility of these databases to be utilized as a tool for depicting interannual and intermonthly variations of solar irradiation
throughout the Indonesian archipelago.

1. Introduction

In the modern energy society, photovoltaic (PV) has
emerged as one of the leading technologies contributing
more than 20% of the worldwide total installed renewable
energy power plant by the end of 2018. Around 57% of
this PV capacity was installed within the region of Asia
where China, Japan, and India are the three top con-
tributors. Meanwhile, Indonesia is only able to contribute
for less than 0.03% (around 60 MW) of the global total
installed PV capacity [1]. For the last 10 years, PV in-
stalled capacity annual growth in Indonesia only counts
at 52 MW on average. This rate is the fourth slowest
growth among Southeast Asia countries despite being the

largest economic power within the region. Although the
price of solar panels has dropped significantly over the
last decade, the growth of the PV industry in Indonesia
does not seem to get much impact from it. Other issues
are frequently addressed regarding this slow development
such as ineffective support regulation, opaque frame-
work, low IRR for the developer, bank reluctancy on
financing solar developers, low electricity tariff, and many
more [2, 3].

Nevertheless, the fact that the solar PV project requires
high initial investment cost remains. Employing reliable
solar resource data with a long-term historical database
enables a more detailed solar resource analysis such as in-
quiring how solar resources on potential power plants would
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behave throughout the investment years. This kind of
analysis will help investors to understand more about the
uncertainty involved in solar project investment. Likewise,
the developer would also be able to refine this analysis into a
P50/P90 uncertainty report, which is required to obtain
funding from the investors. The existence of reliable solar
resource data without a doubt is an important aspect of
stimulating the growth of the solar PV project within a
region.

Several studies have been conducted to estimate local
solar irradiation in some regions in Indonesia via ground
measurements [4-10]; unfortunately, most of the mea-
surements were only conducted for a short period. Some
works present a thorough summary of solar resources
data acquired from ground measurements throughout
the Indonesian archipelago between the mid-70s and
mid-90s periods [11, 12]. A couple of models also have
been proposed as tools to estimate local solar irradiation
values, e.g., artificial neural network (ANN) [13],
Weather Research and Forecasting (WRF) [7], the sto-
chastic model [5, 6], and the physics model [10]. Among
those prior studies, one work has tried to build a com-
plete map of Indonesian solar resources based on the
surface and solar energy (SSE) database whose data are
mainly derived from images of atmosphere captured by
satellite [14].

Large area coverage of satellite images makes them
superior in acquiring data over certain regions instanta-
neously, while the ground-based sensor only acquires data
within a perimeter of the sensor’s location. Moreover, the
captured images are well-archived, which enables the pos-
sibility of building a proper solar resources database from
archived historical images. Due to these pronounced ad-
vantages, most of the solar resources databases that exist
today incorporate satellite images into their algorithms ei-
ther as a primary or secondary input variable.

Unlike developed countries who put some interest in
developing their solar resource database and provide the
service for free, Indonesia currently is only able to rely on
the data that have been provided by the third party. As a
support to the development of renewable energy world-
wide, some research institutions funded by developed
countries have been providing worldwide open-source
solar resource databases service for quite sometimes, while
some private institutions charge some fees for the solar
resource data services. Despite having their limitations,
such as temporal and spatial coverage ranges and resolu-
tions, the open-source databases are more preferable for
solar PV players in Indonesia since they do not incur any
additional cost.

The aforementioned limitations of several open-
source solar resources databases will be thoroughly
discussed within this article, and finally, a common
ground map where all open-source solar resources da-
tabases agree on several statistical measures limit is
drawn out. Hopefully, the map can act as a guide for solar
PV players in Indonesia to utilize the open-source da-
tabases and adjust them appropriately to any specific
needs.
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2. Methods

2.1. Satellite-Derived Solar Resources Databases. As men-
tioned previously, open-source solar databases addressed
within this article are all satellite-derived. In general, each
database only differs in terms of satellite selection as images
producer and surface irradiation derivation algorithm. The
basic derivation algorithm usually starts with predicting the
total amount of solar radiation that would reach the Earth’s
surface if the sky is clear (commonly known as clear-sky
irradiation). The prediction applies some physics modeling
that normally requires the estimated value of solar radia-
tion on the top of the atmosphere (known as TOA irra-
diation) and some atmospheric parameters such as aerosols
optical depth (AOD), precipitable water vapor (PWV), and
others [15].

Upon predicting clear-sky irradiation, the algorithm
continues by deciding the inclusion of additional effects
caused by cloud conditions. The cloud condition is often
described by several cloud properties retrieved from satellite
images. The cloud properties retrieval algorithm inspects
each pixel (normally in form of a square) of the image and
determines the most appropriate cloud properties for that
particular pixel. The number of pixels within an image
determines the level of detail on the captured 2D space that
can be derived or simply known as spatial resolution. While
the number of captured images over a period of time de-
termines the level of 1D time detail that can be inferred from
a group of images or often known as temporal resolution.
The quality of the solar resources databases also depends on
these resolution values, higher resolutions mean closer the
database to resemble continuous behavior of true irradiation
values.

The first solar resource database is Prediction of
Worldwide Energy Resource (POWER) developed by
NASA Langley Research Centre. This database is an out-
growth of the previously mentioned SSE database with a
similar spatial resolution. Unlike most solar resources
databases, POWER historical data are built from 3 different
sources for each respective period, GEWEX SRB 3.0
(1983-2007), FLASHFlux v2 (2008-2012), and FLASHFlux
v3 (2013-present) [16]. Due to this discontinuity, it is not
recommended to use this database for analysis that en-
compasses a change of sources. Validation of daily global
irradiance value from the aforementioned sources relative
to ground measurements stations (BSRN, ARM, and Ocean
Buoy) shows that FLASHFlux product is slightly better
than GEWEX SRB product in terms of the root mean
square error (RMSE) by about 0.5%, while in average
worldwide, the relative root mean square error (rRMSE)
value is around 18% [17].

The second database is Surface Solar Radia-
tion-Heliosat-East (SARAH-E) provided by the EUMET-
SAT Satellite Application Facility on Climate Monitoring
(CM SAF) [18]. Since the easternmost view of METEO-
SAT-East Satellite is limited at 128 E; therefore, only
around 70% of the Indonesian archipelago is spatially
covered by this database. Despite having this limitation,
SARAH-E offers high spatial resolution and a long
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historical dataset, which is beneficial for conducting
thorough solar resources analysis. Unlike the POWER
database, global scale validation of SARAH-E was only
conducted on 8 ground measurement stations and included
a single year instantaneous global irradiance dataset. The
result reveals that the average rRMSE value is around 33%,
while the relative mean bias error (rMBE) shows incon-
sistent patterns across the eight stations with some high
positive and negative bias [19]. Some local validations
within the region of Asia are also available, such as India
[20] and China [21].

The third database is Cloud, Albedo, and Surface Ra-
diation edition 2 (CLARA-A2), also developed by CM SAF
[22]. Unlike SARAH-E who derived the data from the
MVIRI sensor of METEOSAT-E, CLARA-A2 utilized the
AVHRR sensor mounted on polar-orbiting satellites oper-
ated by NOAA and MetOp polar orbiter satellites operated
by EUMETSAT. CLARA-A2 daily mean global irradiance
dataset has been validated against the data provided by the
BSRN ground measurement stations network. The result
shows that the database on average is suffering from negative
bias for about 1.7 W/m? [23], while a local validation against
Chinese ground measurement stations reveals that the da-
tabase overestimates the global irradiance value by about
10 W/m? [21].

The fourth solar resources database is provided by
SolarGIS, which comes with paid and free versions. An
open-source version of the database is presented in form of
high spatial resolution local solar resource map product
assisting the request of the World Bank’s Energy Sector
Management Assistance Program (ESMAP) as the funding
source [24]. The map itself is presented as a multiyear
monthly mean annual cycle of irradiation values (as shown
in Figure 1); therefore, it does not hold any information
regarding the historical datasets as the proper solar resources
database should do. In exchange, it offers a very fine spatial
resolution dataset, which might be a good alternative for
solar players in Indonesia, e.g., government, NGO, solar PV
developer, consultant, R&D entity (university and research
centre), and manufacturer, who wish to use Typical Mete-
orological Year (TMY) solar radiation datasets. Local vali-
dation of SolarGIS global irradiance database of Indonesia
shows that the rMBE and rRMSE values are 0.6% and 2.5%
for Bukit Kototabang Station, while for Palangkaraya Sta-
tion, the values are around —4.6% and 8%, respectively. Since
Indonesia is located in the humid tropical climate region, the
rMBE value could go as high as 8% outside the measurement
sites [25]. Important information regarding these databases
is summarized in Table 1.

Nowadays, the initial solar resource database is usually
included within common PV design software, e.g., PVsyst
with Meteonorm and HOMER with NASA-SSE. Since many
Indonesian solar developers are already familiar with both
software types, the coupled solar resource databases within
will be assessed in terms of coherency with the four
aforementioned satellite-derived databases; NASA-SSE is
excluded since it has been represented by POWER database.
Similar to SolarGIS, Meteonorm 7.2 brought by Meteotest
also offers free and paid versions. The open-source version

covers a multiyear monthly mean annual cycle irradiation
dataset, limited at a certain maximum number of sites. The
algorithm of Meteonorm is a mixed version of ground
measurement data interpolation and satellite-derived pro-
cess, which roughly follows this rule [26]:

(1) If the closest station is within 30km (for Europe
10 km) radius, the data will be either similar to the
station’s measured data or derived from the inter-
polation of nearby stations

(2) If the closest station is within a radius of 30-300 km,
the data will be a mixture of interpolation and sat-
ellite-derived data

(3) If there is no station within a 300 km radius, the data
will be purely derived from a satellite

To stand in equal terms with the other databases in this
article, only data generated from the last term of the
aforementioned rule is considered. So far, Meteonorm
Satellite Irradiation (MNSI) has only been validated for
Europe, Africa, and Middle East regions whose result has
found that rRMSE of hourly values lies around 12-25% [27].

2.2. Solar Radiation Ground Measurement Stations.
Besides comparing, the article also intends to check these
databases locally whose result might be able to reveal some
specific characteristics that the user needs to be aware of. The
local validation process of the solar resource database re-
quires a reliable ground measurement dataset, and in this
article, daily sum global irradiation data provided by World
Radiation Data Centre (WRDC) network stations [28] was
selected. As the basic requirement for the validation process,
the actual measurement time should coincide with the
available timeframe of the satellite database. Even though
there are 5 WRDC stations located in Indonesia, only one
station satisfies this requirement. Therefore, other nearby
stations from surrounding countries that fulfill the time-
frame are also included within the validation process. A list
of stations that comply with coincidence time terms is
presented in Table 2.

2.3.  Physics Parameter and Statistical ~Measures.
Variations of global horizontal irradiation (GHI) value has
been proven able to represent the energy yield variations of
the flat PV system [29], which is the most frequent PV
installation type in Indonesia nowadays. At least for the
present, GHI alone is sufficient to be the main parameter for
comparison and validation processes. The main interest
focuses on daily, monthly, and annual behavior of flat solar
PV energy yield potential; therefore, the main unit of the
parameter is initially defined as kWh/m? The database
usually comes with its output parameter, mostly either as
daily total incident irradiation or daily mean of valid in-
stantaneous irradiance, which later needs to be adjusted into
the energy unit.

The first thing that has to be verified is the GHI annual
intermonth trend of each database, which is a cycle formed
by a monthly average of irradiance data within a year. The
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FIGURE 1: SolarGIS long-term mean surface radiation in Indonesia.

TaBLE 1: The general summary of open-source satellite-derived solar resource database for Indonesia.

SARAH-E SolarGIS

Spatial resolution 0.05 0.0025
Temporal o
resolution Hourly Monthly average (free edition)
Spatial coverage 40 S-62 30’ N, 65 W-128 E Global
Temporal coverage 1999-2016 1999-2016/2007-2016 (average)
berivation MAGICSOL SolarGIS algorithm

gorithm
Satellite METEOSAT by EUMETSAT METEOSAT, GOES, and Himawari

Database access

https://wui.cmsaf.eu/

https://solargis.com/maps-and-gis-data/download/

indonesia
POWER CLARA-A2
Spatial resolution 1 0.25
E:;ﬁl 2;3:1 Hourly Daily
Spatial coverage Global Global
Temporal coverage 1983-present 1982-2015

Derivation
algorithm
Satellite
Database access

LPSA, CERES-2 cloud property retrieval MAGIC, and

SAFNWC
Aqua and terra by NASA
https://power.]larc.nasa.gov/

POES by NOAA and EUMETSAT
https://wui.cmsaf.eu/

TaBLE 2: Summary of the WRDC station network used for validation.

Measurement stations Period Coordinates Elevation (m)
Brunei Airport-Brunei Darussalam 1987-1995 4 56'N, 114 56'E 22
Christmas Island-Australia 1996-1997 10 27'S, 105 41'E 262
Changi Airport-Singapore 1984-2004 1 22'N, 103 59'E 15
Bayan Lepas-Malaysia 1984-2009 518'N, 100 16'E 3
Pengkalan Chepa-Malaysia 1984-2009 6 10'N, 102 17'E 5
Subang-Malaysia 1984-2009 3 07'N, 101 33'E 17
Kuching-Malaysia 1989-2009 1 29'N, 110 21'E 20
Kota Kinabalu-Malaysia 1989-2007 556'N, 116 03'E 2
Bukit Kototabang-Indonesia 1996-2017 012'S, 100 19'E 864
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trend similarity of two databases is estimated by employing
Pearson correlation coefficient (r) to the daily long-term
average for each month within a year; this means a mul-
tiyear average of typical daily irradiation data for each
month, which is then arranged as a year dataset. Since each
database has a different spatial and temporal resolution,
some adjustments such as data downscaling and timeframe
filtering are required to compare both datasets in an equal
manner. Spatial downscale via averaging reduces variations
within a dataset; therefore, the coeflicient of variation
(CoV) [30] is employed to estimate how much has been
lost; E; and E, terms stand for GHI value for each pixel and
mean GHI value of pixels after downscaling, respectively.
Temporal CoV (CoVr) is also added as an extra infor-
mation to analyze some disagreement on GHI annual
intermonth trend between the four databases as shown on
the later section; E; and E, terms stand for multiyear av-
erage of typical daily GHI value for each month and mean
of Ejin a year period. Since the four databases have different
temporal coverage, the 1999-2016 period has been selected
to analyze CoVt for POWER, SARAH-E, and SolarGIS,
while for CLARA-A2, the 1999-2015 period has been
chosen:

CoV(dbl, db2)

r(dbl, db2) = (1)
Odb10db2
. , 12
(E,-E;)/ ]
E,
1 ) 12
[zjﬁl (Eq B Ej) /12] (3)
COVT = >
E
q
i=12
B, = Zizl (dblzzz — dbli). (4)

Another statistical measure that has been employed is
the mean bias (B,,) between one database relative to
another. Computation steps of mean bias are similar to
mean bias error (MBE). However, instead of comparing
the estimated values against true values of the parameter,
it compares two estimated values relatively. The measure
is computed on a yearly time frame for each month and
then mapped across the Indonesian archipelago to explore
the major behavior of a particular database compared to
another. Unlike r and CoV, B,, is not a dimensionless
parameter, and it holds kWh/m?/day as the unit. Besides, a
rule where a database with the lowest spatial resolution
acts as a reference for B,, computation has been set. The
reference data (dbl) simply replace “measured data” term
on widely known MBE formula, while the db2 term still
acts as estimated data. As for validation purposes, com-
mon statistical measures such as RMSE and MBE are
employed; E, and E,, terms on equations (4) and (5) stand
for estimated and measured solar energy resources,
respectively:

5
i=n 212
RMSE = [—Z"-l (E;_ En) ] : (5)
wipg - 2ot (Be=E,) ®
n

At the last step, both computed r and B,, are employed as
agreement constraints to depict a spatial common ground
for the four databases. The values are set to be r>0.8 for
“very strong” correlation [31] and -x<B,,<x, where
x=0.4kWh/m?/day; selected x value covers roughly 90% of
overall database pairs mean bias distribution. Generated
common ground map is acting as a reminder for solar
players in Indonesia that there are some regions where the
databases statistically exhibit weak agreement or even do not
agree on each other. In these regions, the user is advised to be
careful when using the data provided by one of the afore-
mentioned databases.

3. Results and Discussion

3.1. Databases Validation against WRDC Stations. The val-
idations presented in Table 3 are only conducted on a da-
tabase, which provides free access to at least a daily basis
historical dataset, i.e., POWER, CLARA-A2, and SARAH-E.
Overall, POWER and SARAH-E exhibit consistent trends
across all validation stations both in terms of time series
trend and bias error direction, which consistently overes-
timate their GHI data. Meanwhile, CLARA-A2 performs
relatively well on time series coherency, but it does not have
any tendency toward either positive or negative bias for
every measurement station. It might be related to strangely
high initial spatial variations that will be discussed on the
CoV topic. Another interesting fact is related to CLARA-A2
low performance (especially on RMSE and r) compared to
POWER, which fundamentally offers a lower spatial reso-
lution. Both SARAH-E and CLARA-A2 similarly utilize the
MAGIC algorithm for estimating clear-sky irradiance;
therefore, the low performance issue might be related to how
the database handles cloudy conditions.

According to the result, it is no doubt that SARAH-E
outperforms the other two databases especially on RMSE
and time series correlation measures. However, there is a
concern regarding sudden performance drops on 2 vali-
dation sites, namely Kuching and Kota Kinabalu. Similarly,
POWER and CLARA-A2 also suffer from these performance
reductions, but somehow, the drops are not as pronounced
as the one on SARAH-E. The two stations are located at the
Malay side of Kalimantan, close to Indonesian regions where
the majority of databases do not agree on how the GHI
annual intermonth trend should be. Therefore, the perfor-
mance drop could also be triggered by low/no-temporal
variation dataset as elaborated on the next section or
transnational forest fire pollution, which has been proven to
be one of the causes of air quality degradation in Malaysia
[32]. Databases validations on Christmas Island station seem
to exhibit unsatisfactory MBE and RMSE values, most likely
due to a limited amount of validated data. Meanwhile, the
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TaBLE 3: Daily energy resource validation result of POWER, CLARA-A2, and SARAH-E against data retrieved from WRDC network

stations.

Number of pairs AVG (kWh/m?) RMSE (kWh/m?) and rRMSE MBE (kWh/m?) and rMBE r
POWER
Brunei Airport 2658 5.00 1.20 (24.0%) 0.44 (8.7%) 0.56
Christmas Island 485 4.74 1.50 (31.6%) 1.77 (37.4%) 0.85
Changi Airport 7366 455 1.04 (22.8%) 0.03 (0.6%) 0.72
Bayan Lepas 8917 4.96 0.90 (18.2%) 0.19 (3.8%) 0.80
Pengkalan Chepa 8307 4.95 1.01 (20.3%) 0.34 (6.9%) 0.80
Subang 8577 4.38 0.99 (22.6%) 0.53 (12.0%) 0.70
Kuching 7059 4.17 1.06 (25.5%) 0.50 (11.9%) 0.69
Kota Kinabalu 6646 5.02 0.99 (19.7%) 0.09 (1.8%) 0.66
Bukit Kototabang 7107 4.35 0.89 (20.5%) 0.40 (9.2%) 0.73
CLARA-A2
Brunei Airport 1655 5.03 1.61 (32.1%) 0.42 (8.3%) 0.41
Christmas Island 319 4.81 1.41 (29.3%) 2.30 (47.9%) 0.84
Changi Airport 5183 4.53 1.23 (27.3%) 0.13 (2.8%) 0.72
Bayan Lepas 6969 495 1.30 (26.3%) -0.20 (-4.1%) 0.65
Pengkalan Chepa 6572 4.94 1.16 (23.6%) 0.57 (11.6%) 0.78
Subang 6456 4.40 1.29 (29.4%) -0.02 (-0.4%) 0.60
Kuching 5710 417 1.35 (32.4%) 0.43 (10.3%) 0.58
Kota Kinabalu 5381 5.00 1.39 (27.8%) -0.42 (-8.5%) 0.57
Bukit Kototabang 6197 4.38 1.08 (24.6%) 0.32 (7.3%) 0.65
SARAH-E
Brunei Airport X X X X X
Christmas Island X X X X X
Changi Airport 2045 4.49 0.62 (13.7%) 0.26 (5.9%) 0.92
Bayan Lepas 3652 4.95 0.60 (12.1%) 0.34 (6.8%) 0.92
Pengkalan Chepa 3427 5.02 0.53 (10.6%) 0.12 (2.4%) 0.95
Subang 3154 4.44 0.74 (16.6%) 0.44 (10.0%) 0.86
Kuching 3607 4.16 1.06 (25.4%) 0.51 (12.3%) 0.70
Kota Kinabalu 3129 5.05 0.97 (19.3%) 0.19 (3.7%) 0.72
Bukit Kototabang 6010 4.39 0.70 (16.0%) 0.27 (6.2%) 0.84

validations on Brunei Airport station reveals that POWER
and CLARA-A2 estimated data do not perform well on
predicting local time series trends. Since the last data time
stamp was recorded in 1995, it was less likely caused by
transnational forest fire effects. The most probable reason
should be related to the low/no-temporal variation within
the satellite-derived and/or ground-measurement datasets.
Bukit Kototabang station is located relatively high on alti-
tude compared to other mentioned stations; therefore, the
result of the validations could represent database perfor-
mance on tropical hilly conditions. Despite being on a
different condition, the three databases are still performing
quite well with SARAH-E exhibiting the best estimation,
while CLARA-A2 is still behind POWER on three statistical
measures. By excluding Christmas Island result validation, it
is clear that all validated databases overestimate the true GHI
value by about 0.07-0.32kWh/m?/day (3-7% rMBE) on
average, which is roughly in line with the upcoming
statement regarding the position of true GHI value among
satellite-estimated GHI dataset.

3.2. Comparison between Databases. As implicitly stated by
the previous equation, the correlation coefficient explains
the relation of two variables that move together in parallel, or
in this case, the two GHI databases intermonth variations.

Two representative results, POWER vs SolarGIS and
CLARA-A2 vs SolarGIS, presented in Figure 2 describe that
every pairing case exhibits roughly similar GHI annual
intermonth trend across the country indicated by r value
close or equal to +1. Some disagreements on the GHI annual
intermonth trend largely occur at the centre region of
Kalimantan and are vaguely visible at the southern and
central parts of Sumatera. While the exact cause of the
discrepancies has yet to be revealed, some clues from prior
works might provide one of the possible answers.

Looking closely at the distribution of low/no correlation
regions, there are two possibilities that might be able to
explain this situation. The first cause should be related to the
low/no temporal variation cells within the dataset; without
temporal variation, the correlation itself would be minimum
or even do not exist since the covariance between pair of
databases should also be minimum. The maps of CoVr in
Figure 3 represent the magnitude of temporal variation within
each cell of each database with their own original spatial
resolution. As can be seen that regions with low/no temporal
variation are roughly similar between the three representative
databases with majority of low/no correlation cells coinciding
with low/no temporal variation cells. Though one question
still remain, only some part of low/no temporal variation cells
trigger low/no correlation cells, while the rest still exhibit
some correlation between databases.
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FIGURE 2: Representative figure of correlation coefficient between two databases. (a) POWER vs SolarGIS. (b) CLARA-A2 vs SolarGIS.

The second most probable cause is the disturbance of
aerosol temporal trend within the atmosphere, which is most
likely related to a natural or man-made forest fire that occurs
frequently during the dry season. Citing a summary data
released by Indonesian Ministry of Living Environment and
Forestry (MENLHK) within the 2014-2016 period, Suma-
tera, Kalimantan, and Papua were the three top regions
suffered from forest fire phenomenon, with each contrib-
uting 38%, 33%, and 17% of total around 3 million hectares
of the burnt area across the country [34]. Moreover, loca-
tions of specific provinces where large portions of forest fire
occurred coincide well with low/no correlation regions, e.g.,
Central Kalimantan, Riau, South Sumatera, and Papua. It is
suspected that the combination of regions with low/no
temporal variation existence and the absence of aerosol
temporal trends due to the forest fire phenomenon triggers
the low/no correlation regions within the result.

CM SAF surface radiation products have been validated
on several ground measurement sites around the world;
among those sites, there are some cases where the local
climate is prone to aerosol load changes such as China [21],
India [20], and Eastern Mediterranean [33]. These three
cases reported that CM SAF surface radiation products
exhibit some discrepancies, and the most probable expla-
nation so far is related to the absence of aerosol temporal
trends, which is inherited from algorithm as stated on both
databases manual [18, 22]. The reasoning could also be
applied to the present issue regarding solar databases

disagreement of the GHI annual intermonth trend for some
regions in Indonesia.

The spatial distribution of B,, is presented in the box plot
format instead of the map as shown in Figure 4. The box plot
explains the upper and lower limits of the dataset through its
caps (ends of whiskers), which has been set to be 95% and
5%, respectively, while the upper and lower border of the box
informs Q3 and Q1 positions along the axis. Points outside
the caps (red diamonds) are usually called outliers, or in this
context, they are interpreted as the region with the mean bias
value exceeds either the upper or lower limit value. As a
reminder, zero axis of the box plot is relative to reference
definition, i.e., POWER [1-3], CLARA-A2 [4, 5], and SA-
RAH-E [6].

As depicted by the first three box plots, the POWER da-
tabase overvalues other databases by about 0.5-0.22 kWh/m?*/
day on average. More than 90%, 60%, and 55% of POWER data
estimations overvalue estimated GHI of SolarGIS, SARAH-E,
and CLARA-A2, respectively. Meanwhile, when CLARA-A2 is
appointed as reference (box plot 4 and 5), more than 95% and
75% of its data estimations overvalue SolarGIS and SARAH-E
by 0.22 and 0.14 kWh/m?/day, respectively. The last box plot
reveals that around 70% of SARAH-E data estimations over-
value SolarGIS by 0.09 kWh/m?*/day. Sorting the result in the
ascending order will lead to following rank configuration,
SolarGIS < SARAH-E < CLARA-A2 < POWER, which overall
explains the relative position of each database in term of es-
timated GHI magnitude.



Journal of Renewable Energy

(b)

FiGgure 3: Continued.



Journal of Renewable Energy

Intermonth temporal CoV

| —

0 0.1 0.2 0.54

FIGURE 3: CoVr on the 1999-2016 period. (a) CLARA-A2. (b) POWER. (c) SolarGIS.

0.25 1

0.00 A

[ 3

-0.25 4

-0.50 4

oom— » (4 oo

-0.75 4

GHI long-term mean bias (kWh/m?/day)

-1.00 4

-1.25 1

%
j f

1 @99

1 2 3

4 5 6

Comparison scenarios

FiGUrE 4: GHI mean bias between two databases. (1) POWER vs SolarGIS. (2) POWER vs SARAH-E. (3) POWER vs CLARA-A2. (4)
CLARA-A2 vs SolarGIS. (5) CLARA-A2 vs SARAH-E. (6) SARAH-E vs SolarGIS. Orange line, median and green triangle, mean.

The loss of spatial variations during the downscaling
process is recorded and presented in Figure 5, which has
been sorted to follow the scale of spatial resolution reduction
in the descending order. By comparing 95% data of each plot
(upper cap), it is clear that the box plots exhibit expected
trends where the CoV value decreases as the scale of spatial
resolution reduction are getting smaller. The CoV reduction
of the downscaling process resembles a linear behavior with
the different decreasing rate (gradient) between databases,
i.e., SolarGIS (upper caps 1, 2, and 4) and SARAH-E (upper
caps 3 and 5). The plots also reveal strange facts regarding

variations in loss of CLARA-A2. Somehow, with a much
smaller downscaling factor (upper cap 6), it is suffering
roughly similar or even more spatial variations loss com-
pared to other databases. It implies that, initially, the
CLARA-A2-estimated GHI dataset already has high spatial
variations. In addition, all box plots agree to have right-
skewed data distribution, which implies a minor portion
(less than 25%) of CoV tends to spread over high values.
In addition, the spatial CoV loss of two representative
figures that have undergone the strongest downscaling (i.e.,
SolarGIS to CLARA-A2 and SolarGIS to POWER) is
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FIGURE 7: The common ground region between databases. (a) POWER, CLARA-A2, SARAH-E, and SolarGIS. (b) CLARA-A2, SARAH-E,

and SolarGIS. (c) SARAH-E and SolarGIS.

TaBLE 4: Correlation coefficient and mean bias of Meteonorm relative to other satellite-derived databases.

Correlation coefficient

Mean bias (kWh/m?)

Locations POWER CLARA-A2 SARAH-E SolarGIS POWER CLARA-A2 SARAH-E SolarGIS
Bali (839 S, 11556 E) 0.62 0.80 0.77 0.76 ~0.01 0.11 Z0.46 Z0.58
Java (739 S, 111.95E) 0.74 0.80 0.71 0.72 0.30 0.23 0.42 0.24
Kalimantan (247N, 11741E)  0.87 0.90 0.81 0.84 0.41 0.31 0.30 0.07
Sulawesi (2.42 S, 120.97 E) 0.62 0.72 0.73 0.71 ~0.07 ~0.28 ~0.09 ~016
Sumatera (4.80 N, 97.63 E) 0.90 0.87 0.95 0.95 0.14 0.24 0.44 0.12

presented on Figure 6. Both figures generally agree in which
region that significant impact from this downscaling process
is estimated to be emerged, i.e., northern Kalimantan, most
regions in Sulawesi, centre of Papua, southern of Sumatera,
and Java. Apart from these regions, the spatial CoV loss is
negligible.

By putting some constraints over » (GHI annual inter-
month trend) and B,, (magnitude difference range) as re-
quirements, several relative common grounds have been
extracted out of the previous result and summarized into
maps which are presented in Figure 7. Each map represents
the agreement region of databases relative to the selected
reference database. Assuming the true GHI data lies within
databases estimated values, the pixels labeled as “agree”
should give a higher chance of being close to the true value
instead of the one with “not agree” label since they have been
agreed at least by two databases. Due to the possibility of
false signals triggered by one or more databases, three maps
with a different number of databases combination and
reference databases have been generated.

According to the maps, it is clear that the main highlights
of “not agree” regions are highly influenced by previously
discussed GHI annual intermonth trend disagreement
around Kalimantan, Sumatera, and Papua. Since the GHI
annual intermonth trend does not seem to be the cause of
some “not agree” pixels on Sulawesi and Maluku region as
shown in Figure 7(a), the disagreement must be triggered by

unfit mean bias values, which means the relative bias be-
tween two databases does not satisfy the requirement of
—X < B,, <X, where x=0.4kWh/m?/day. According to Fig-
ure 4 (1-4), the three databases (i.e., SolarGIS, SARAH-E,
and CLARA-A2) hold some pixels whose B,, values are
outside the required range. However, among the three, only
SolarGIS and SARAH-E, whose caps, extend beyond the
limit of defined x value, the higher probability of exhibiting
excessive B,, value. Upon confirming B,, distribution for
each possible databases pair, it is found that “not agree”
pixels around eastern Sulawesi, eastern Nusa Tenggara, and
Maluku are indeed caused by the unfit B, values of SARAH-
E and SolarGIS against POWER as the reference database.
Both SARAH-E and SolarGIS employ METEOSAT-East
products as either primary or secondary inputs [19, 25]. As
mentioned previously, METEOSAT-East easternmost
viewpoint lies at 128 E, which approximately coincides with
questioned regions. As commonly known, the edge of the
viewpoint is prone to the parallax effect, which usually
triggers misinterpretation of actual cloud conditions, and in
the end generates inaccurate irradiance values.

To assess Meteonorm, five sample points across Indonesia
were randomly selected. The points have been arranged to be
positioned within regions that satisfy “agree” requirements on
the three aforementioned common ground maps. The points
also have been filtered to only consist of a satellite-derived
dataset (no interpolation involved). The assessment is
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conducted by simply checking r and B,,, values for designated
points and confirm whether the values satisfy the minimum
requirements of being “agree” pixel. The assessment results
presented in Table 4 reveal that only two sample points, i.e.,
Sumatera and Kalimantan, fulfill the GHI annual intermonth
trend, as indicated by a strong correlation coefficient of more
than 0.8. And one sample point complies with “agree” cell
requirement of “~0.4 < B,, < 0.4kWh/m?/day,” i.e., Sulawesi.
Overall, none of these sample points passes the minimum
requirement of being “agree” pixel. At this point, the
Meteonorm satellite-derived dataset seems to be undervalued
around 0.12-0.15 kWh/m?/day by the majority of the database
while only overvalues SolarGIS by about 0.06 kWh/m?/day.
Further investigation using a larger pool of data points is
suggested to enhance the reliability of the present conclusion.

4. Conclusions

In this article, four satellite-derived databases, i.e.,
POWER, SARAH-E, CLARA-A2, and SolarGIS, which
cover the region of Indonesia have been assessed in terms
of data correlation and mean bias relatively between each
other. Most database pairs are showing a strong corre-
lation, which implies they follow roughly similar GHI
annual intermonth trend. Meanwhile, some regions such
as Central Kalimantan, Riau, South Sumatera, and Papua
are exhibiting weak/no correlation, which is suspected to
be triggered by the existence of cells with low/no temporal
variation within the inspected databases and the absence
of aerosol temporal trends due to the forest fire phe-
nomenon. Spatial distributions of mean bias values reveal
the relative position of each database in terms of estimated
GHI magnitude, which on average follows this order:
SolarGIS < SARAH-E < CLARA-A2 < POWER. Both
computed correlation coefficient and relative bias are
employed as agreement constraints to depict spatial
common grounds for the four databases. The majority of
“not agree” regions on presented common ground maps
are influenced by the GHI annual intermonth trend
disagreement between databases. While some minor “not
agree” regions triggered by mean bias disagreement are
believed to be the consequence of METEOSAT-East’s
parallax effect.

In addition, a similar assessment was conducted on
Meteonorm satellite-derived dataset relative to the four data-
bases in five selected sample points, Bali, Java, Kalimantan,
Sulawesi, and Papua. It reveals that none of these sample points
passes the minimum requirement of being “agree” pixel, while
the four databases do. Three databases, i.e., POWER, CLARA-
A2, and SARAH-E are validated against WRDC stations lo-
cated in Indonesia and surrounding nations by employing
three statistical measures, namely RMSE, MBE, and correlation
coeflicient. According to the result, SARAH-E outperforms the
other two databases especially on RMSE and time series
correlation measures, while CLARA-AZ2 is still behind POWER
on three statistical measures. The result also reveals that the
three satellite-derived databases tend to overestimate their GHI
value by about 0.07-0.32kWh/m?/day (3-7% rMBE) on av-
erage compared to the true measured value.
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Abbreviations
Odbl: The standard deviation of dbl
Odba: The standard deviation of db2
B,.: Mean bias between one database relative to another
CoV:  Coefficient of variation
CoVr: Temporal coefficient of variation
Cov: Covariance

db1: The GHI reference data
db2: The GHI estimated data

E. Estimated solar energy resources

E;: GHI value for each pixel

Ej: Multiyear average of typical daily GHI value for
each month

E; Mean of multiyear average of typical daily GHI
value for each month in a year

E,.: Measured solar energy resources

E,: Mean GHI value of pixels before downscaling

MBE:  Mean bias error

n: Amount of data

RMSE: Root mean square error

r: Pearson correlation coefficient

rMBE: Relative mean bias error

rRMSE: Relative root mean square error.
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