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(is paper presents a review of the impact of rooftop photovoltaic (PV) panels on the distribution grid. (is includes how
rooftop PVs affect voltage quality, power losses, and the operation of other voltage-regulating devices in the system. A
historical background and a classification of the most relevant publications are presented along with the review of the
important lessons learned. It has been widely believed that high penetration levels of PVs in the distribution grid can
potentially cause problems for node voltages or overhead line flows. However, it is shown in the literature that proper
control of the PV resource using smart inverters can alleviate many of those issues, hence paving the way for higher PV
penetration levels in the grid.

1. Introduction

Since the 1980s, many researchers have tried to study the
impact of photovoltaics (PVs) on the distribution grid. It
has been generally believed that once PV penetration ex-
ceeds a certain limit, problems and challenges could arise
affecting the operation or security of the grid. Naturally,
this would limit the hosting capacity of the grid for PVs. In
order to increase this capacity, the utility could introduce
mitigation techniques to counteract the negative effects of
PVs or, alternatively, use various centralized or decen-
tralized grid optimization solutions to coordinate PV
operation with the rest of the grid. In this paper, we survey
the publications that study the impact of rooftop PVs on
the distribution system, focusing on voltage profile, system
losses, power flow through the lines, and other operational
and technical concerns.

Historically, the impact of PVs on the distribution grid
was first observed in 1977 [1, 2]. Between 1977 and 1979
[3–5], some researchers performed economic analysis in
order to assess the effectiveness of PV integration with the
grid, and from that standpoint, they found no barrier for
further installation of PVs. However, they expected that

there could be some operational issues experienced by the
utility. Another study in 1979 [6] emphasized that PV in-
tegration could introduce challenges into the grid operation
and careful investigations need to be conducted. During this
time, there were studies focusing on the reliability aspects of
the grid [1], or issues such as safety, protection, and power
quality [7].

(e main concern during the 1980s was to estimate how
much PV resource can be deployed in the system so that the
ramp rate of conventional generation resources can still
withstand their output power fluctuations [8–11]. It was
believed that cloud coverage and movement in the sky and
the geographical dispersion of PVs would collectively de-
termine the levels at which PVs can be deployed in the grid.
(e authors in [10] concluded that a decrease in solar ir-
radiance fluctuations by 10% could allow the penetration
level to increase by up to 10%. Of course, this result was
based on the 1980s PV technology when rooftop PVs were
not controllable [8]. Another study in 1981 forecasted that
PV integration could bring instability at the transmission
level or it could exacerbate voltage imbalance [12]. Safety was
(and still is) an issue as indicated in [13]. Nevertheless, some
researchers in the early days recommended further PV
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integration in the grid regardless of the anticipated problems
[14–18] or did not find any barriers to increasing the
penetration level [19].

Since 1987, there have been several review publications
focused on the impacts of renewable energy resources
(RESs) or, in general, distributed energy resources (DERs)
on the power grid [20]. However, focusing on a broad range
of technologies would lead to generalizations of conclusions
and findings. Table 1 provides a summary of the review
publications that focus on RES. (e majority of these do not
distinguish in detail between the impact of PV on the dis-
tribution grid compared to the transmission network, or the
impact of distributed rooftop PV compared to PV power
plants (PV farms). In addition, in many of these publica-
tions, a detailed analysis of the impacts of PV on the power
grid is missing due to the broad coverage of topics such as
mitigation techniques, standards, policies, and projected
growth. In [21], the authors provide a detailed analysis of
reliability impact of PVs on the power grid.(e same applies
to [22] although it reviews the impacts of all RES tech-
nologies, and not just PVs. (e review in [23] is mainly
dedicated to the hosting capacity of the grid to DGs. Also,
some of the review papers study the potential impacts of PVs
for a specific country as in [24, 25] or for islands such as [26].

In order to keep the review focused, this survey only
considers the impacts of distributed and rooftop PVs on the
distribution grid. Section 2 of the paper presents a quan-
titative assessment of the existing literature on PV impact.
Section 3 elaborates the main findings based on what has
been reported in the literature on the impact of rooftop PV
on the distribution grid. Interfacing PV inverters allow PV
units to participate in reactive power support, which can
help mitigate some of the negative effects discussed in this
section. (is aspect has been addressed in Section 4 of the
paper. Future research directions and some existing chal-
lenges are presented in Section 5. Finally, concluding re-
marks appear in Section 6 of the paper.

2. Literature Review: Quantitative Assessment

Publications that address the impact of rooftop PVs on the
distribution grid date back to 1970s. Since then, the number
of publications has increased dramatically (see Figure 1).

Penetration level of PV units in the distribution net-
works is an important metric that has been defined differ-
ently across publications, and various researchers may
indicate different metrics (see Table 2). It is important to
specify the definition; otherwise, it can lead to inaccurate
assumptions about the number or sizes of PV units con-
sidered in the system studies. It has been observed that
publications that study the distribution network typically
tend to define the penetration level as the ratio of the total
rated power of PVs to the total rated power of the loads. On
the other hand, publications that study the impact of rooftop
PVs on the transmission grid often define penetration level
as the ratio of the total rated power of PVs to the total rated
power of conventional generation units. Also, many pub-
lications by researchers from Australia, United Kingdom,
and Canada tend to define penetration level as the ratio of

the number of houses with PV to the total number of houses
connected to the feeder. On the contrary, publications by
researchers from the United States, South America, and
Africa often define penetration level as the ratio of total PV
power to the total load.

One technical factor that has received much attention in
the literature is the impact of PVs on voltage imbalance.
Most publications have defined voltage imbalance as the
ratio of negative sequence voltage to the positive sequence
voltage. However, this is not followed by all researchers and
some publications have used different metrics. Similar to
what is stated above, without clarifying the definition that
has been adopted by the publication, inaccurate conclusions
may be made. A list of possible definitions for voltage
imbalance has been provided in Table 3.

Some researchers have relied on expert knowledge,
obtained from utility engineers, to analyze the impact of PVs
on the grid. Others have studied feeders with actual or
simulated data. Of course, these studies differ in many as-
pects, e.g., locations of PVs and how dispersed they are,
presence of other distributed generator (DG) technologies,
and presence of electric vehicles. It was also observed that
participation of PVs in reactive power support (i.e., non-
unity power factor) has only started to be considered re-
cently. Furthermore, to simplify their analysis, many
researchers have assumed the distribution system to be
balanced and the solar irradiance to be deterministic, neither
of which being accurate assumptions. In particular to ad-
dress the latter, some researchers have performed proba-
bilistic simulations to account for the effects of cloud
coverage. (ese findings are listed in detail in Table 4 where
references are sorted in an ascending order according to the
publication years.

Rooftop PV panels are mostly installed at the low
voltage level and are single phase. For simplicity, some
researchers have modeled the system as a three-phase
balanced network (sometimes a single-phase representative
model) and have lumped single-phase PV units into
equivalent three-phase ones. Others have modeled and
simulated the detailed three-phase unbalanced distribution
grid. (e latter is especially necessary if the study is focused
on the impact of PVs on voltage imbalance or operation of
voltage-regulating devices that are sometimes single-phase
(unganged) operated. Publications that have conducted
three-phase unbalanced simulations are indicated in
Table 4.

3. Impacts of Rooftop PVs on the
Distribution Grid

Research studies focused on the impact of PVs on the
distribution grid have approached the problem from dif-
ferent angles, as shown in Table 5. However, most of the
lessons learned and conclusions made seem to be in
agreement. For instance, most publications have identified
voltage rise as one of the most important negative conse-
quences of high PV penetration levels. However, regardless
of similar conclusions, each paper adds a new perspective in
terms of the impact factors or the simulation and testing
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environment. Some of the main findings in the literature are
summarized in the following sections.

3.1. Voltage Level. In a traditional unidirectional distribu-
tion feeder, voltage magnitude at the end of the feeder is less
than the source voltage.(ese voltage magnitudes need to be
maintained within certain limits. Voltage regulation can be
achieved in two ways [259]: by proper design of the system
(e.g., conductor selection, substation and distribution
transformer tap settings, and fixed capacitor banks) or by
controlling devices such as VRs and OLTC. Once PVs are
installed at the distribution grid, they can potentially

interfere with both these methods which could affect the
voltage profile along the feeder. (is is because the power
flow may not be unidirectional anymore. Even at low
penetration levels where reverse power flow does not occur,
current magnitude through the feeder and laterals may
decrease, thereby reducing the voltage drop. Consequently,
node voltages may increase, which can be exacerbated at low
loading conditions.

If not properly coordinated, the interference of PVs with
control mechanism of VRs, SCs, and OLTCs can be prob-
lematic for voltage control. As a remedy, the recent IEEE
1547 standard allows PVs to actively regulate the voltage at
the point of common coupling (PCC) by absorbing
(injecting) reactive power from (to) the grid in order to
decrease (increase) node voltages.

If the PV power factor is fixed, voltage rise has a direct
proportionality to the penetration level, i.e., higher pene-
tration levels cause higher voltage levels. However, some
publications (for instance, see [260]) have claimed that at
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Figure 1: Timeline histogram of publications that are included in this survey.

Table 2: Definitions used for PV penetration level.

Definition of PV penetration level Reference
Ratio of total PV power to total demand,
peak demand, feeder capacity, or main
transformer capacity. (is could involve
either the instantaneous or the rated
powers.

[1, 3–5, 11, 15, 16, 27,
53–129]

Ratio of the number of houses with PVs
relative to the total number of houses. [130–144]

Penetration level not defined. Instead,
the total kW of PVs and loads are
reported.

[19,128,145–214]

Ratio of the total PV power to the total
load (demand and losses). [215]

Ratio of total PV power to the total
conventional generation. [216–219]

Ratio of the roof area covered by PVs to
the total roof area. [220]

Ratio of the reverse power at the main
substation transformer to the total
power of the system.

[221]

Ratio of the instantaneous power by PV
relative to the sum of both
instantaneous powers of PV and load,
which is referred to as the self-
consumption rate (SCR).

[222]

Table 3: Definition of voltage imbalance adopted by various
publications.

Definition of voltage
imbalance References

Percentage of negative
sequence component of the
voltage relative to the
positive sequence
component

[81, 89, 94, 183, 204, 209, 211, 223]

Percentage of the
maximum deviation of a
single-phase voltage
magnitude relative to the
average value of all phases

[58, 112, 133, 200]

Uses both definitions above [140]
Voltage imbalance not
quantified [90, 103, 106, 128, 132, 161, 172]

Voltage magnitude
difference between two
phases

[91]

Journal of Renewable Energy 5



Table 4: High-level categories for publications included in this survey.

Source
no. Year Survey

paper?
Includes DGs
other than PVs

Involves
probabilistic
analysis

Includes
electric
vehicles

Assumes the
system is balanced

Considers
nonunity power

factor

Highest %
penetration

level
[1] 1977 110
[3] 1977 300
[4] 1979 300
[5] 1979 32
[69] 1981 √ 55
[227] 1982 √
[147] 1982 √ 55
[15] 1982 50
[109] 1982 √ 50
[136] 1982 √ √ 40
[16] 1984 40
[68] 1986 √ √ 58
[67] 1988 50
[178] 1988 34
[146] 1989 50
[66] 1990 √ 6
[19] 1990 60
[149] 1992 √ 50
[150] 1993 √ 50
[186] 1993 √ 50
[231] 1996 √ 50
[218] 1996 √ 90
[220] 1997 √ 50
[65] 1999 √ √ 50
[70] 1999 √ √
[148] 2002 √
[217] 2003 √ 50
[207] 2003 √ 60
[194] 2005 √ 100
[79] 2006 √ √ 100
[85] 2006
[167] 2006 √
[206] 2006 15
[130] 2007 √
[131] 2007 √
[216] 2007 √ 42
[91] 2007 900
[61] 2007 √ 20
[27] 2008 √ 32
[76] 2008 √ √ 50
[236] 2008 √ √
[238] 2008 √ 25
[89] 2008
[151] 2008 √ 800
[168] 2008 √ √ √ √ 100
[172] 2008 √ 100
[173] 2008 √ 55
[183] 2008 √
[224] 2009 √
[127] 2009
[152] 2009 30
[169] 2009 √ 100
[170] 2009 √ √ 20
[180] 2009 √ 50
[185] 2009
[221] 2009 √ √ 50
[197] 2009 √ √ √ 16
[198] 2009 √ √
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Table 4: Continued.

Source
no. Year Survey

paper?
Includes DGs
other than PVs

Involves
probabilistic
analysis

Includes
electric
vehicles

Assumes the
system is balanced

Considers
nonunity power

factor

Highest %
penetration

level
[125] 2010 √ √ 10
[223] 2010 √ 20
[97] 2010 √ √ 13
[114] 2010 √ √
[192] 2010 √ √ 58
[195] 2010 √ √
[73] 2011 200
[80] 2011 √
[83] 2011 √ √ √ 100
[214] 2011 √
[154] 2011 √ 200
[102] 2011 √ √
[103] 2011
[184] 2011 √ 60
[106] 2011 60
[187] 2011 √ √
[126] 2011 √ √ 100
[201] 2011 √ √
[202] 2011 √
[64] 2012 √ 10
[71] 2012 10
[72] 2012 10
[177] 2012 √ √ 91
[84] 2012 20
[165] 2012 √
[171] 2012 √ 50
[174] 2012 √
[98] 2012 √
[189] 2012 √ √ 15
[113] 2012 √ √
[116] 2012 √ 50
[117] 2012 √ √ √ 70
[239] 2012 √
[120] 2012 √ √ √
[200] 2012 √
[78] 2013 √
[188] 2013
[81] 2013
[82] 2013
[145] 2013 √
[225] 2013 √
[90] 2013 √ 50
[139] 2013 √
[219] 2013 √
[108] 2013
[110] 2013 √ √ √ 100
[128] 2013 40
[142] 2013 √ 50
[143] 2013 √ √ 100
[196] 2013 √ √ 100
[121] 2013 √ √
[124] 2013 100
[60] 2013 √ √
[74] 2014 √ √ 78
[212] 2014
[77] 2014 √
[230] 2014 √
[199] 2014 √ 57
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Table 4: Continued.

Source
no. Year Survey

paper?
Includes DGs
other than PVs

Involves
probabilistic
analysis

Includes
electric
vehicles

Assumes the
system is balanced

Considers
nonunity power

factor

Highest %
penetration

level
[210] 2014 √ 50
[153] 2014 √ √
[160] 2014 190
[161] 2014 √
[163] 2014 √ √ 50
[95] 2014
[179] 2014 100
[141] 2014 √ 100
[191] 2014 √ √ √
[205] 2014
[129] 2015 √ 100
[62] 2015 √
[235] 2015 √
[213] 2015 √ 50
[87] 2015 √
[92] 2015 √ 7.33
[164] 2015 √ √ √
[176] 2015 √
[101] 2015 √ √ √ 4
[181] 2015 √
[107] 2015 √ 100
[111] 2015 √
[190] 2015 √ √
[193] 2015 √
[133] 2015 √
[134] 2015 √ 100
[135] 2015 √ 200
[204] 2015
[208] 2015 √ √ 50
[123] 2016 √ 100
[226] 2016 √ √ 15
[75] 2016
[211] 2016
[228] 2016 √ √ 100
[86] 2016
[229] 2016 200
[137] 2016 √ 250
[156] 2016 √ √ 100
[157] 2016 √ √
[158] 2016 √ √
[159] 2016 √ 25
[162] 2016 √
[93] 2016 √ 100
[94] 2016 √ √ 100
[96] 2016 100
[100] 2016 √ 15
[144] 2016 √ √ √ √
[222] 2016
[53] 2016 √
[63] 2017 √
[232] 2017 √ √
[233] 2017
[234] 2017 √
[155] 2017 √ √ 100
[166] 2017 √ 150
[215] 2017 √ 100
[88] 2017 √ √ 60
[99] 2017 √
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extreme penetration levels, voltage levels become inversely
proportional to penetration level. (ey supported their
findings with analytical analysis and simulations.

3.2. Line Losses. Line losses are proportional to the square of
current magnitude flowing through the line. (erefore,
losses can reach a minimum value when the power injected
by PVs equals the power absorbed by loads. Any increase in
PV penetration beyond that level could result in reverse
power flow and gradual increase of losses. In fact, there is a
rule of thumb that line losses plotted against penetration
level would resemble a U-shaped curve.

3.3. Operation Instances of VRs, SCs, and OLTCs. VRs, SCs,
and OLTCs mechanically change their tap positions or
switch status in order to regulate voltage. PVs may impact
the frequency of these operation instances and can interfere
with their control schemes. Of course, the intensity of this
interference would be dependent on the control algorithm
adopted and the feedback signals used. For instance, if SC
changes its switch status based on the measured line current,
PVs that are located midway between the SC and the end of
the feeder would interfere in its operation because they
would offset the line current [259]. (is problem can be
corrected if the SC’s control algorithm is adjusted based on
reactive power monitoring, provided PVs do not participate
in reactive power support.

Another issue may happen with the line drop com-
pensation control of VRs where the goal is to control the tap
positions based on the current magnitude and line pa-
rameters in order to maintain the voltage at a particular
downstream location, for instance, at the consumer side
[259]. (ere are three control modes for VRs, namely,
normal bidirectional mode (NBM), cogeneration mode

(CGM), and reactive bidirectional mode (RBM). NBMmode
is sensitive to direction of power. When there is no reverse
power flow in the feeder, a VR that operates based on NBM
would regulate the voltage on the downstream side. In this
situation, PV power will not impact the operation of VR.
However, once reverse power flow occurs, the VR may start
regulating the voltage on the substation side, i.e., upstream of
its location. Naturally, the substation voltage is dictated by
the transmission system (infinite bus) and will not respond
to the VR’s actions. (us, the net effect of VR will be to
increase the voltage on the downstream side. (is would
worsen matters because the reverse flow of power is most
likely already causing a voltage rise and now its negative
effect will be combined with that of the VR’s response.

(is problem associated with NBMmode can be solved by
switching to CGM mode because it controls the downstream
voltage regardless of the power flow direction. However, the
settings of LDC are selected based on the feeder’s expected load
profile. Since PVs change the load profile on the feeder, it might
affect the operation of VRs. Another possible issue with CGM
happens when the grid is reconfigured, for instance, during
emergency situations when the feeder may be supplied from
the downstream side. Here, a VR operating based on CGM
mode will try to control the voltage at the upstream side which
can be problematic [259]. If PV does not participate in reactive
power support, all these problems can be solved by operating in
RBM mode, because the controller would be sensitive only to
reactive power. However, once PV starts participating in re-
active power support, it will change the expected reactive power
profile of the feeder, hence interfering with the VR. Also, RBM
mode is sensitive to reactive power direction and it will exhibit
the same problems as NBM once reversal in reactive power
occurs.

(e location of PV is another important factor that
determines howmuch it may affect the operation of VRs. For

Table 4: Continued.

Source
no. Year Survey

paper?
Includes DGs
other than PVs

Involves
probabilistic
analysis

Includes
electric
vehicles

Assumes the
system is balanced

Considers
nonunity power

factor

Highest %
penetration

level
[182] 2017 √ 100
[105] 2017 √ √
[140] 2017 √ 100
[112] 2017 100
[115] 2017 √ 100
[118] 2017 √ 100
[132] 2017 √ 20
[122] 2017 100
[203] 2017 100
[54] 2017 √ 100
[237] 2017 √ √
[175] 2018 75
[138] 2018 √
[55] 2018 √ √
[56] 2018 √
[57] 2018 √ √ 200
[58] 2018
[209] 2018 √
[119] 2019
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Table 5: Different aspects of PV impact on the distribution grid.

Study area Related references

Power fluctuations due to variability in solar irradiance
[11, 19, 61, 64, 67, 71–74, 86, 89, 96, 122, 123, 129, 131, 145, 146,
149, 174, 176, 178, 188, 198, 200, 208, 214, 216, 224, 226, 229, 232,

233, 235, 240–243]
Overvoltage caused by PVs [68, 93, 104, 113, 139, 157, 158, 197, 201, 237, 244–251]
Effect of rooftop PV on the transmission grid [12, 109, 128, 135, 145, 216–219, 221, 228]
Comparing the performance of PV in voltage correction to
voltage regulators (VRs) or capacitor banks [76, 192, 195, 231]

Effects of installing PVs at different locations in the grid with
different voltage levels [66, 69, 92, 148, 159, 227]

Power flow in the feeder (reactive power) [67, 76, 78, 83, 84, 89, 112, 125, 153, 189, 197, 224, 239]

Power flow in the feeder (active power) [65, 71–73, 76, 78, 83, 84, 89, 96, 112, 125, 133, 153, 189, 197, 201,
209, 214, 215, 224, 232, 239]

Load peak shaving [61, 62, 231]
Relation with the grid size [11]

Voltage profile

[19, 27, 53, 54, 56–78, 80–84, 86–91, 93, 94, 96–101, 103, 105–110,
112–116, 118–120, 122–125, 127–139, 142–145, 148, 151, 153–159,
161, 162, 164, 167, 168, 170–173, 175, 177, 180–184, 187–192, 194,
195, 199–204, 207, 209, 210, 212–216, 220–225, 227, 228, 230–237,

239, 241, 252, 253]

Voltage fluctuations or flicker [27, 64, 75, 81, 88, 89, 99, 107, 110, 118, 138, 152, 153, 172, 174, 188,
189, 203–205, 208, 212, 215, 216, 229, 250, 254]

Reverse reactive power flow [84, 89, 128, 224, 239]

Reverse active power flow [7, 65, 67, 76, 78, 84, 86, 87, 89, 96, 97, 105, 107, 109, 123, 128, 129,
131–133, 137, 149, 189, 196, 201, 214, 224, 230, 232, 239]

Power losses

[54, 59, 60, 65, 70, 76, 79, 83, 84, 86–88, 96, 99, 101, 102, 107, 112,
114, 119, 125, 131–133, 136, 145, 151, 153, 156–158, 162, 168, 171,
173, 174, 183, 184, 189–191, 196–198, 200, 209, 214, 215, 220, 224,

227, 230–232, 236, 237, 239, 250]

Interaction with static capacitor banks, SCs, or SVCs [59, 60, 70, 75, 76, 80, 82, 84, 107, 153, 185, 187, 188, 195, 200, 214,
223, 227, 235]

PV with the option of active power curtailment [101, 114, 161, 162, 167, 170–173, 180, 195, 202, 207, 237, 250, 253]

PV contribution to reactive power support

[53, 57, 60, 65, 66, 68–70, 74, 76–78, 83, 84, 88, 98, 99, 101, 107,
109–111, 113, 114, 123, 125, 129, 132, 137, 139, 143, 153, 156–158,
161, 168–174, 180, 182, 184, 187, 189, 192, 193, 195, 197, 201, 207,

208, 225–228, 231, 235, 237, 239, 250, 255, 256]

Impact of PV on voltage imbalance
[7, 12, 56–58, 63, 71–73, 81, 89–92, 94, 103, 106, 110, 112, 115, 128,
132–134, 138, 140, 154, 160–162, 165, 172, 179, 182, 183, 187, 190,

195, 200, 203, 204, 209, 223, 252]
Impact of PV on power imbalance [90, 91, 107, 109, 128, 160, 193]
Comparing distributed PVs to PV plants [75, 80, 82, 86, 87, 116, 157, 158, 189, 257]

Effect of spatial allocation of PVs or loads [56, 64, 65, 70, 82, 84–86, 100, 102, 114, 118, 120, 133, 140, 144, 148,
154, 156–158, 175, 177, 187, 195, 199, 209, 210, 223, 236, 239]

Transient behavior of terminal voltage [226]
Power factor at the main substation [65, 66, 70, 74, 136, 206, 227]

System response during the peak demand [1, 55, 61, 65, 69, 70, 76, 78, 109, 140, 149, 150, 196, 224, 227, 232,
235, 257]

Comparing system behavior in summer vs. winter (seasonal
response)

[1, 65–67, 70, 78, 95, 97, 102, 121, 122, 131, 138, 149, 176, 188, 214,
218, 222, 224, 227, 232, 235]

Effect of grounding wire on PVs [128]
Effect of customer type (residential, commercial, industrial) [7, 55, 69, 117, 124, 126, 137, 150, 153, 200]
Diversity factor (aggregate peak demand effect) [7, 188]
Short circuit impedance of the transformer [177]
Impact on the effective lifetime of the main transformer [95, 96, 117, 126, 131, 166, 186, 206, 238]
Effect of substation transformer capacity at different PV
penetration levels [69, 109, 115, 131, 133, 135, 183, 186, 230, 238, 239]

Effect of feeder capacity, length, or cross-sectional size
[54, 57, 68, 69, 71–73, 75, 82, 83, 86, 93, 94, 96, 115, 118, 119, 121,
133, 137, 138, 142, 144, 154, 155, 157, 158, 177, 183, 195, 199–201,

210, 213, 222, 223, 232, 239]
Whether the system allows for microgrid configuration [221, 232]
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instance, in the case of LDC, the goal is to compensate for the
expected voltage drop between the bus where the VR is
installed and another bus of interest. A PV that is installed
midway between the VR and the bus of interest will interfere
with VR operations. However, the pattern of interference
would be different if this PV is installed closer to the VR’s
location.

Similar to VRs, OLTC can be equipped with LDC
control, although with a different time delay [261]. (ere-
fore, PVs exhibit similar impact on the tap operation of
OLTC. At high penetration levels of PVs, the voltage at PCC
may rise, prompting the OLTC to lower the voltage on the
feeder. (e shortcoming of this scenario is that voltage
control of the feeder becomes mainly dependent on PV
power. So if a group of PVs disconnect or reduce power
injection due to cloudy conditions, this could lead to voltage
sag that, under extreme scenarios, could result in false
tripping of protective relays [261].

3.4. Impacts on the Upstream Grid. At high penetration
levels, the impacts of PVs could encroach further upstream
of the main distribution transformer, mainly due to reverse
power flow. Some researchers have explored this scenario
[12, 109, 128, 135, 145, 216–219, 221], andmost have reached
a consensus that reverse power flow starts happening once
penetration level exceeds approximately 30% (based on the
definition of the ratio of total PV power to the total con-
ventional generation power). (is is when cosimulation of
distribution and transmission networks may be beneficial
and/or necessary.

It has also been reported in the literature that high level
of PV penetration can make the electric grid more prone to
instability. (is is mainly due to two reasons: first, re-
placement of traditional rotary generation units with PV will
reduce the system’s inertia and second, possible widespread
disconnection (or reduction in power) of PVs as a result of
shading could lead to a sudden and significant imbalance
between load and generation [145, 216, 217, 219, 221]. Al-
though these conclusions are common among most re-
searchers, some have found no probable impact on the
transmission grid caused by PVs installed at the distribution
level, for instance [109]. It is fair to assume that the severity
of the above issues would be case dependent.

High PV penetration can also negatively affect the
performance of synchronous generators. Simulations in
[145] showed that when PV penetration reaches certain
levels, phase angle difference between some buses will be-
come larger more frequently, which could make it harder to

maintain synchronization. Also, at high penetration levels,
synchronous generators may need to operate at a lower
power factor since their active powermay have been partially
replaced by that of the PVs. (is degrades the generator’s
performance and may lead to overheating. Furthermore, in
extreme situations with significant reactive power flow re-
versal, synchronous generators may be forced to operate in
an underexcited mode which could lead to excessive heating
of the stator end core as well as reduction in the margin of
steady state stability.

Simulation studies in [145, 216] showed that on days
with high wind and high cloud conditions, fluctuations in
voltage magnitude can become more frequent since PV
output power is weather-dependent. (e obvious impact of
rooftop PVs on voltage rise at the transmission level is
recognized bymany researchers; however, some have argued
that voltage rise at the distribution level must still receive
higher priority [135].

3.5. Fast Changes in Power. (e amount of active power
injected by the PV is determined by the solar irradiance at
the ground level. While extraterrestrial solar irradiance is
deterministic, cloud coverage and wind conditions canmake
it stochastic and highly variable at the ground level. Once PV
penetration level exceeds a certain threshold, power fluc-
tuations can become problematic. (is is because fluctua-
tions in power injected by the PVs will likely surpass normal
load variations [67, 146, 188] and also voltage profile at the
PCC will start following the irradiance profile [224, 226].
Ambient temperature adds an additional layer of compli-
cation because it has an impact on the power produced by
the PVs [240]. (ese are particularly problematic if the PVs
operate based on MPPT. Although power fluctuations
manifest themselves in the voltage profile, no association has
been found between them and voltage flicker [229].

(e research in [11, 86] showed that the intensity of
power fluctuations and spatial dispersion of PVs across the
grid are inversely proportional, i.e., less severe fluctuations
tend to correlate with larger dispersion of PVs. A similar
correlation was observed in [243] between power fluctua-
tions and the geographical service area of the distribution
grid.

(e authors in [240] observed that power fluctuations
become less intense when the sky conditions show transition
from sunny to cloudy. (e opposite is true when the sky
shows transitions from cloudy to sunny conditions. (e
authors have explained this phenomenon by associating it
with ambient temperature, i.e., as the sky shows transitions

Table 5: Continued.

Study area Related references

Tap operation: VRs or OLTC
[59, 74–76, 78, 81, 84, 86–88, 94, 96, 99, 100, 107, 109, 110, 122, 123,
128, 129, 153, 155, 168, 171, 174, 176, 183, 187, 188, 200, 213, 214,

230, 235]
Effect of system strength (R/X ratio) [155, 177, 234]
Impact of PV on voltage swell/sag [145, 169, 170, 194, 211]

Effects of cloud movements, cloud pattern, or shading [19, 27, 59, 61, 64, 67, 75, 86, 96, 99, 100, 107, 109, 131, 146, 160,
178, 215, 218, 224, 240, 242, 243, 258]
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from sunny to cloudy, both solar irradiance and temperature
decrease. A decrease in irradiance decreases the output
power of PVs, but temperature drop has an inverse effect. As
a result, less intense fluctuations in PV powers occur.

In [72, 73, 224], the authors claim that reconfiguration of
the distribution grid is the best approach to resolve voltage
fluctuations compared to other approaches such as installing
SVC or capacitor banks.

3.6. Role of Rated Voltage. Some researchers have investi-
gated the effects of PVs for different rated voltage levels
[66, 69, 92, 148, 159, 227]. (e authors of [66] found that
increasing the rated voltage of the grid reduces its sensitivity
to the power factor of PVs. (is means that PV participation
in voltage regulation is more effective in a lower voltage grid
than a medium voltage one. On the contrary, if PVs do not
participate in reactive power support, the hosting capacity of
medium voltage grid to PV would be higher than the low
voltage one. Interestingly, the authors of [159] found that the
cost of operation with PVs can be significantly reduced by
simply decreasing the rated voltage from 240V to 230V.

3.7. Hosting Capacity. A few review papers have tried to
summarize the maximum permissible PV penetration levels
reported in the literature [27, 28, 30, 31]. However, deriving
a general rule of thumb may not be practical. In fact, there is
a consensus among publications that maximum penetration
level of PVs in a feeder would be case dependent. (is is in
part due to varying characteristics among different feeders,
for instance, the loading level, spatial distribution of PVs,
lengths of the feeders and the laterals, sizes of the con-
ductors, the control schemes adopted, and the voltage levels.
Another aspect is that the limiting factor could vary from
one circuit to another, e.g., maximum penetration level
limited by voltage drop, line ampacity, or harmonics.

Most of the publications that have investigated the
impacts of PVs on the distribution grid did so at different
penetration levels. Some papers studied the impacts at
penetration levels less than 100% while others considered
levels as high as 300%. Table 5 lists the maximum pene-
tration levels that have been used in the literature to in-
vestigate the impacts of PVs. It should be noted that this
number represents the maximum penetration used for
simulations and not a recommendation level. For the latter,
the interested reader is referred to [27, 28, 30, 31].

3.8. Power Flow through the Lines. When PVs operate under
a unity power factor, the active power flowing through the
lines would be correlated with the PV penetration level. As
PV penetration increases, active power flow decreases ini-
tially until PV power becomes close to the load level, after
which an increase in PV penetration would increase the
power flow in the lines again. Once PVs start to participate in
reactive power support, they tend to inject or absorb reactive
power to combat undervoltage or overvoltage conditions.
(is would change the flow of power through the lines, but
the direction of change would be case dependent. It should

be noted that PV penetration level is not the only factor that
determines power flow in the feeders. Other important
factors include solar irradiance, ambient temperature,
conductor size, and load profile [224].

3.9. ShortCircuit Fault. Most of the publications that study
short circuit analysis focus on fault analysis of PVs at the
medium-voltage level. (ere are few publications that
have studied short circuit analysis specifically for rooftop
PVs. Generally speaking, it has been observed that PV
penetration increases fault voltage but decreases fault
current at the main transformer [262, 263]. (is is ex-
pected since the smart inverter of the PV limits the fault
current contribution of the device. In addition, no pub-
lications were found that address the fault-right-through
capabilities of rooftop PVs.

3.10. Miscellaneous Effects. Distribution grids are tradi-
tionally designed using radial configuration. (e authors in
[157, 158] investigated the potential impact of PVs if the grid
is configured in a mesh topology. (ey concluded that the
impact of PVs online losses is mainly driven by the pene-
tration level and is less sensitive to grid topology.

Reverse power flow is one of the consequences of high
PV penetration. However, the authors of [84] investigated
this phenomenon from a different angle, i.e., if there is a
reverse flow in active power but not in the reactive power
which they referred to as counter power flow. (ey found
no evidence to the impact of counter power flow on the
grid.

Conservation voltage reduction (CVR) is a technique
that enables utilities to save energy by lowering the voltages
at the end of feeders, especially when the majority of loads
are of the constant-impedance type. Traditionally, this has
been done using VRs and SCs; however, the authors of [214]
argued that with a proper control scheme, PVs can be
utilized efficiently to achieve CVR.

(e researchers of [83, 264] investigated how different
ways of modeling loads would change the conclusions about
the impact of PVs on the grid. (ey observed that modeling
the loads as constant power, constant impedance, or a
mixture of the two would result in different values for power
losses (less than 10% difference). However, they concluded
that the way loads are modeled does not have a noticeable
impact on the maximum permissible PV penetration level or
the voltage profile.

Maximum PV penetration level and voltage profile have
been found to be dependent on the geometry of the three-
phase lines and the relative distances between phases [71–
73]. Of course, the lengths of feeders and laterals and any
possible load imbalance need to be taken into account as
well, especially for analyzing voltage profile under high PV
penetration.

Finally, the authors of [61, 62, 231] argued that PV can
help with load shaving. However, unlike commercial cus-
tomers, the peak load of residential customers does not
coincide with the peak hours of PV power.
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4. Mitigating the PV Effects Using
Interfacing Inverters

(ere are many mitigation techniques to counteract the
negative effects of PVs (see Table 1). In this paper, we only
focus on countermeasures that can be accomplished using
the PV’s interfacing inverter. Generally speaking, this in-
verter can curtail the active power of the PV and/or regulate
its reactive power flow. Publications that have studied the
capabilities of PV inverters are listed in Table 5. (e fol-
lowing sections provide a high-level discussion.

4.1.ReactivePowerControl. (ePV inverter can regulate the
phase shift of its output AC voltage with respect to the
current and thereby control the reactive power injected or
absorbed [265]. During instances of overvoltage, a PV can
absorb reactive power from the grid in order to lower the
voltage level. However, during undervoltage conditions,
when PVs inject more reactive power in order to increase
node voltages, a rise in the reactive component of the current
could lead to higher losses. Some have also cited high power
fluctuations, especially at high PV penetration levels, which
could lead to rapid changes in voltage level. However,
simulation studies in [123, 129] showed that this problem
can be resolved by allowing PVs to participate in reactive
power support.

4.2. Effectiveness of PVs Relative to VRs and SCs. (e effec-
tiveness of PVs in regulating voltage has been compared with
other voltage controlling devices in [76, 192, 195, 231]. In
[231], it was shown that PVs outperformed VRs and SCs in
voltage regulation. In [76], simulation results showed that
when PV penetration level exceeds 30%, it can effectively
replace voltage regulating equipment without sacrificing the
network performance. (is conclusion was also confirmed
in [195]. Optimization analysis in [266, 267] has reached the
same conclusion although without citing a particular PV
penetration level.

4.3. Active Power Curtailment. One way to eliminate the
negative impacts of PVs is to curtail its active power when it
becomes problematic. In [162], simulation results showed
that PV active power curtailment can mitigate power im-
balance (that is caused by PVs) and improve voltage profile;
however, this solution comes at the expense of higher line
losses. On the contrary, in [161], it was found that PV
contribution to reactive power support is a more effective
way to correct imbalance in the distribution system than
active power curtailment. However, the authors emphasized
that the effectiveness of this solution is dependent on other
aspects such as penetration, irradiance, and cloud coverage.

Hosting capacity of the grid to PVs can be increased if
active power curtailment is utilized [167]. It was shown in
[171] that the reactive power margin by PVs increases if
active power is curtailed which would be a useful mitigation
source. (is reactive power can be utilized to minimize tap
operation instances of VRs or to resolve voltage quality

issues such as voltage imbalance [172], voltage sag [170], or
voltage fluctuations [172]. However, active power curtail-
ment is in general not recommended because it causes
significant energy losses [173, 202] and is unfair to PV
owners [180].

5. Future Research and Remaining Challenges

Although research related to the possible impacts of PVs on
the distribution grid has seemingly matured, there are still
areas that require further exploration. One area of research
pertains to control algorithms adopted for distribution sys-
tems with high PV penetration levels. Various centralized and
decentralized approaches have been studied in the literature,
but few succeed in considering all relevant aspects of PV
control. For instance, in addition to the operational aspects
(losses, voltage profile, etc.), it is necessary to consider asset
management both for PV panels as well as other electrical
components involved in voltage regulation. (is would be an
important feature for enabling the sustainable power grid of
the future. Another area which is not adequately explored in
the literature is simultaneous analysis of both transmission
and distribution systems. In particular at high PV penetration
levels, it may not be possible to decouple the two since the
dynamics of the distribution grid cannot be masked from the
higher voltage network anymore.

Studying the behavior of the distribution grid in the
presence of high PV penetration would certainly be an
important problem to take into account. However, it is
equally important to consider situations where high PV
penetration coincides with high penetration of other small-
scale energy resources such as low-power wind turbines,
community energy storage systems, and/or electric vehicles.

Yet another important aspect is to develop communi-
cation networks andmodels that can effectively handle high-
penetration PV generation at high spatial and temporal
granularity. As PVs start contributing more to reactive
power support, this becomes more important. Different
wireline and wireless technologies need to be investigated in
order to identify which ones can offer acceptable levels of
quality of service for the type of control objective intended.

PVs have mostly been viewed as devices that can affect
the grid operation during longer time frames (minutely to
hourly), which can be considered as quasi-steady state.
However, at larger scales, PVs may also be able to participate
in frequency regulation by providing different types of
ancillary services. (is needs to be analyzed, in particular in
conjunction with expected subminute profile for demand
and solar irradiance.

Finally, a multidisciplinary research approach is needed
to combine accurate weather models with PV generation
and the power grid operation. Current studies try to model
cloud movement in the sky as a random variable, especially
in probabilistic approaches. However, using a model-based
weather data could improve the solar energy model and the
accuracy of large scale power system studies. Such a model
has not been applied in any of the applications studied in this
paper. Both academic and industrial sectors will benefit
immensely from such studies.
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6. Conclusions

Changes in the global climate, population increase, and a rise in
the energy consumption per capita are placingmore stress on the
modern distribution grids. (e need for finding alternative and
clean energy resources has pushed electric utilities to incorporate
more PV resources into their networks. As the number and sizes
of rooftop PVs increase, new challenges will be introduced for
which the legacy distribution grid may not be prepared. (ese
primarily stem from the fact that distribution systems have been
traditionally designed and operated without considering bidi-
rectional flowof power.(is trend started to gradually but slowly
change from the 1970swhen the industrymoved towards having
DG units at the distribution level.(e changes took a faster pace
in the beginning of the 21st century as technological advances
and environmental concerns paved the way for deployment of
more renewable energy resources, including rooftop PV. (e
challenges that come with these new technologies are part of the
journey towards having a sustainable power grid relying on clean
energy. (e impact of rooftop PVs on voltage profile, voltage
imbalance, power losses, system stability, and operation of
voltage control devices has been studied in the literature. (is
paper provides a survey of the technical challenges associated
with high penetration of PVs in the distribution grid and
summarizes the most important findings.

It has been shown in the literature that if a PV resource is
coordinated with other voltage-regulating devices, and
further, if it is allowed to participate in reactive power
control, most technical challenges and operational issues can
be solved. Hence, there will be no practical limits to how
much PV resource the grid can host, which can create a path
towards having a sustainable power grid.

Abbreviations

CGM: Cogeneration mode
CVR: Conservation voltage reduction
DER: Distributed energy resource
DG: Distributed generator
DVR: Dynamic voltage restorer
LDC: Line drop compensator
MPPT: Maximum power point tracking
NBM: Normal bidirectional mode
OLTC: On-load tap changer
PCC: Point of common coupling
PV: Photovoltaic
RBM: Reactive bidirectional mode
RES: Renewable energy resource
SC: Switching capacitor
SCR: Self-consumption rate
SSSC: Static synchronous series capacitor
SVC: Static var compensator
UPFC: Unified power flow controller
UPS: Uninterruptible power supply
VR: Voltage regulator.
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F. C. Espinosa-González, “Impact of changing location and
power of a PV system in electrical distribution networks,
integrating MATLAB and OpenDSS,” Dyna, vol. 85, no. 205,
pp. 125–131, 2018.

[176] M. Lave, M. J. Reno, and R. J. Broderick, “Characterizing
local high-frequency solar variability and its impact to
distribution studies,” Solar Energy, vol. 118, pp. 327–337,
2015.

[177] R. Tonkoski, D. Turcotte, and T. H. M. EL-Fouly, “Impact of
high PV penetration on voltage profiles in residential
neighborhoods,” IEEE Transactions on Sustainable Energy,
vol. 3, no. 3, pp. 518–527, 2012.

[178] E. C. Kern and M. C. Russell, “Spatial and temporal irra-
diance variations over large array fields,” in Proceedings of
the Twentieth IEEE Photovoltaic Specialists Conference, vol. 2,
pp. 1043–1050, Las Vegas, NV, USA, September 1988.

[179] L. S. Li, S. D. Zhang, H. J. Liu, X. Q. Ji, G. B. Liu, and K. J. Li,
“Voltage imbalance simulation for distributed network with
single-phase PV connected,” Applied Mechanics and Mate-
rials, vol. 687–691, pp. 3166–3170, 2014.

[180] E. Demirok, D. Sera, R. Teodorescu, P. Rodriguez, and
U. Borup, “Clustered PV inverters in LV networks: an
overview of impacts and comparison of voltage control
strategies,,” in Proceedings of the 2009 IEEE Electrical Power
& Energy Conference (EPEC), pp. 1–6, Toronto, Canada,
October 2009.

[181] W. Khuleedee, A. Kaewrawang, and K. Tonmitr, “Impact of
on-grids solar PV rooftop on low voltage grid systems: a case
study of PEA Udonthani, (ailand,” Applied Mechanics and
Materials, vol. 781, pp. 296–299, 2015.

[182] A. Eid and M. Abdel-Akher, “Voltage control of unbalanced
three-phase networks using reactive power capability of
distributed single-phase PV generators,” International
Transactions on Electrical Energy Systems, vol. 27, no. 11,
p. e2394, 2017.

[183] P. Trichakis, P. F. Lyons, R. Hair, and P. C. Taylor, “Pre-
dicting the technical impacts of high levels of small-scale
embedded generators on low-voltage networks,” IET Re-
newable Power Generation, vol. 2, no. 4, pp. 249–262, 2008.

[184] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options
for control of reactive power by distributed photovoltaic
generators,” Proceedings of the IEEE, vol. 99, no. 6,
pp. 1063–1073, 2011.

[185] D. Iioka, K. Sakakibara, Y. Yokomizu, T. Matsumura, and
N. Izuhara, “Distribution voltage rise at dense photovoltaic
generation area and its suppression by SVC,” Electrical
Engineering in Japan, vol. 166, no. 2, pp. 47–53, 2009.

[186] M. M. El-Gasseir, M. A. Sayer, K. P. Alteneder,
G. A. McCulla, and J. Bigger, “Enhancing transformer dy-
namic rating through grid application of photovoltaic ar-
rays,” in Proceedings of the Conference Record of the Twenty
@ird IEEE Photovoltaic Specialists Conference-1993 (Cat.
No. 93CH3283-9), pp. 1279–1284, Louisville, KY, USA, May
1993.

[187] H. E. Farag and E. F. El-Saadany, “Voltage regulation in
distribution feeders with high DG penetration: from

20 Journal of Renewable Energy



traditional to smart,” in Proceedings of the 2011 IEEE Power
and Energy Society General Meeting, pp. 1–8, Detroit, MI,
USA, July 2011.

[188] J. Bank and B. Mather, “Analysis of the impacts of distri-
bution connected PV using high-speed datasets,,” in Pro-
ceedings of the 2013 IEEE Green Technologies Conference
(GreenTech), pp. 153–159, Denver, CO, USA, April 2013.

[189] P. Chongfuangprinya, J. Spare, J. R. Agüero, J. H. R. Enslin,
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