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A new highly accurate closed-form capacitance calculation model has been developed to calculate the capacitance of capacitive
micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The model has been developed by using a two-
dimensional polynomial function that more accurately predicts the deflection curve of a square diaphragm deformed under the
influence of a uniform external pressure and also takes account of the fringing field capacitances. The model has been verified
by comparing the model-predicted deflection profiles and capacitance values with experimental results published elsewhere and
finite element analysis (FEA) carried out by the authors for different material properties, geometric specifications, and loading
conditions. New model-calculated capacitance values are found to be in excellent agreement with published experimental results
with a maximum deviation of 1.7%, and a maximum deviation of 1.5% has been observed when compared with FEA results. The
model can help in improving the accuracy of the design methodology of CMUT devices and other MEMS-based capacitive type

sensors built with square diaphragms.

1. Introduction

Capacitive micromachined ultrasonic transducers (CMUTs)
have become the choice of technology for a wide range
of applications such as medical diagnostic imaging, nonde-
structive testing, material characterization, and automotive
collision avoidance applications like park assist or blindspot
monitoring. This type of sensors exhibit many advantages
over their piezoelectric counterparts, such as inherently low
power consumption, very high resolution and sensitivity,
excellent stability and durability, lower sensitivity to tem-
perature variations, low noise features, and monolithic and
IC integration [1-3]. The typical CMUT geometry is built
with a square, circular, or hexagonal diaphragm separated
from a fixed backplate by a small airgap. When subjected to
an incident ultrasonic wave, the diaphragm deforms and the
capacitance between the diaphragm and the fixed backplate
changes dynamically following the dynamic characteristics of
the incident wave. A suitable microelectronic circuit is used

to convert the capacitance change to a useful voltage signal
[4].
As the CMUT’s sensitivity depends on the change of
capacitance, an accurate analytical method is necessary to
calculate the capacitance between the deformed diaphragm
and the backplate for any amount of deformation. However,
as the diaphragm is rigidly clamped at the edges, the center of
the diaphragm deflects more compared to the regions closer
to the edges resulting in a cosine-like deformation curve. As
one of the electrodes is curved, a parallel plate approximation
to calculate the capacitance will introduce significant error.
An accurate analytical approach to calculate the capacitance
of such a geometry is to divide the curved electrode into
a number of elemental areas where the elemental areas are
small enough to be considered to form a parallel plate
geometry with the flat electrode and then integrating over
the length and width of the curved electrode to determine
the total capacitance. Thus, accurate determination of the
capacitance depends not only on the accuracy of the



deflection of diaphragm center but also on the accuracy of
the deformed shape of the diaphragm.

As the exact shape of a deflected clamped edge diaphragm
is not known, generalized plate theory has been applied by
different authors to obtain a functional form of the defor-
mation curve that must satisfy the boundary conditions,
diaphragm geometry, and the specific loading condition.
Typical approaches to determine the deformation curve of
clamped diaphragms used to design CMUTs can be grouped
into 3 main categories: (1) thin plates with small deflection,
(2) thin plates with large deflection, and (3) membrane
approximation.

(1) Thin Plates with Small Deflection (w < h). When
the deflection w of a microfabricated thin diaphragm is
much small compared to its thickness h, the transversal
deformation of the diaphragm is dominated by the bending
stress and the residual stress developed during the fabrication
process. Authors in [5] presented an approximate mathe-
matical expression to determine the deformation curve for
thin plates in small deflection regime using a trigonometric
series. However, the model is computationally expensive as it
requires extensive numerical calculations to determine a set
of coefficients. Authors in [6] used the Galerkin method with
polynomial basis function to determine the deflection shape.
However, the model is limited in accuracy and convergence
[7]. Authors in [7] improved the accuracy and convergence
of the approach in [6] by replacing the polynomial basis
function with a trigonometric basis function. However, the
model has not been verified against any finite element
analysis (FEA) or experimental results.

(2) Thin Plates with Large Deflection. When the deflection
w of a microfabricated thin diaphragm becomes comparable
to or larger than its thickness, the strain energy due to
stretching of the middle plane of the diaphragm can no
longer be ignored. Thus, in case of thin plates with large
deflection, approach that accounts for the stretching of the
diaphragm midplane along with the bending stress and the
residual stress developed during the fabrication process must
be used. Functional forms based on polynomials [8] using
Ritz energy method and sine/cosine functions in the form
of Fourier series using von Karman equations [9] have been
explored by many authors. However, these methods are
computationally very expensive and an exact solution would
require infinite number of terms. In [5], a more compact
polynomial-based function that can be solved using energy
minimization method has been proposed to determine the
deformation curve of thin plates in the large deflection
regime. But this too is computationally quite expensive as it
involves the determination of eleven undetermined constants
by numerical solution of eleven simultaneous nonlinear
equations using the method of successive approximation [5].

Authors in [10] proposed a deflection shape function
using a single-term Fourier approximation of the exact
bending shape that incorporates a double cosine squared
term. Due to its simpler form, the function is widely used
for load-deflection analysis of clamped diaphragms subject
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to large deflections. However, its accuracy is compromised
due to the truncation of higher order terms in the Fourier
series. A similar function based on double sine squared term
proposed in [11] also suffers from the same accuracy issue.

(3) Membrane Approximation. The authors in [5, 12] have
used a membrane approximation to determine the center
deflection and the deformation curve for clamped thin
diaphragms. For a thin membrane which has much larger
lateral dimensions compared to its thickness, strain energy
due to bending becomes negligibly small compared to those
due to the residual stress and nonlinear stretching of the
middle plane. As the bending moment at the clamped
edge is zero, unlike the plates, zero gradient of the tangent
plane to the displacement surface along the edge is no
longer a required boundary condition for membranes [5,
12]. Authors in [5] proposed a membrane deflection shape
function based on a double cosine function which is a
one term approximation of Fourier series that represents
the actual deflection shape. Following the function, the
membrane deformation curve along either the x- or y-axis
mimics the single-mode vibration of a string attached to two
ends where the displacements normal to the initial string
position at the fixed nodes are zero but the tangents to the
string at the nodes are not zero. However, the model fails
to describe the diaphragm’s real bending shape accurately,
and the authors in [12] improved the accuracy of the model
by adding two more terms to minimize the deviation from
FEA and experimental results. Though the modified model
shows excellent agreement with experimental results for thin
diaphragms with relatively large sidelengths, investigation
by the authors shows that it does not agree well with the
deflection shapes of thick diaphragms that behave more
like plates. Further, deviation increases monotonically for
thinner diaphragms with sidelengths less than 1 mm to imply
that actual behavior of thin diaphragms depends not only
on the deflection-thickness ratio, but also on the lateral
dimension-thickness ratio.

Typical diaphragms as used in CMUTs have thicknesses
in the range of 0.4ym to 1-3uym. An analysis carried
out by the authors that involves comparison of different
models with the FEA and experimental results reveals that
even for a very thin diaphragm, the bending moments at
the clamped edges cannot be neglected and a membrane
approximation would fail to capture the actual deformed
shape of the diaphragm. The analysis also reveals that the
double cosine or double cosine squared or double sine
squared functions also fail to adequately capture the true
nature of the deformed shape. The authors observed that the
deflection shape functions presented in [5, 10-12] deviate
considerably in accuracy from 3-D FEA with maximum
deviations of 50-60% for 1-3 ym thick and 200-1000 ym
sidelength diaphragms. Consequently, this deviation ripples
into the calculated capacitance values to make the accuracy
worse. Investigation by the authors shows that if the existing
deflection shape functions are used, resulting capacitance
values are in error as high as 16—-18% for a 2 ym thick 200 yum
sidelength square diaphragm CMUT device.
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Moreover, commonly used parallel plate approximation
theory for capacitance calculation neglects the fringing field
capacitance associated with the diaphragm edges, due to
an infinite plate assumption. However, investigation by the
authors shows that fringing field capacitance associated with
the diaphragm edges also contribute to the total capacitance
during deformation.

In this context, this paper develops a new, readily usable,
simple, and highly accurate deflection shape function for
uniformly loaded clamped square diaphragms used in typical
CMUT design space. A polynomial-based function presented
in [5] for thin plates in large deflection has been modified to
include two empirically determined parameters to develop
the new function. The new empirical parameters capture
the contributions of the eleven undetermined constants of
the polynomial function which can be determined only
through extensive numerical analysis [5]. The resulting
deflection shape function shows excellent accuracy in the
typical CMUT design space and is also applicable to both
small and large deflection regimes. Further, a capacitance
calculation method has been developed that uses the new
deflection shape function and includes fringing field effects
to calculate the capacitance of a square diaphragm CMUT
with an accuracy higher than those available in the literature.

The rest of the paper has been organized in the follow-
ing manner: Section 2 gives a brief description of device
operation including the problem definition and reviews the
deflection shape functions presented in [5, 10, 12] and their
discrepancies with the FEA results; Section 3 describes the
development of a new deflection shape function that can
more accurately represent the deflection shapes of square
diaphragms used in CMUT devices; Section 4 describes
capacitance calculation formulae that takes into account the
fringing field effect; Sections 5 and 6 provide the validation
of the new deflection shape function and the capacitance
model by comparing with the FEA results obtained using
IntelliSuite and the experimental results published elsewhere.
Section 7 concludes the findings of this work.

2. Problem Illustration

The structure of a square diaphragm CMUT as shown in
Figure 1 consists of a dielectric spacer-supported clamped
square diaphragm separated from a fixed backplate by a
thin airgap. The diaphragm sidelength is 2a, thickness h,
and the thickness of the airgap is dp. When exposed to
an external uniform pressure Py, the diaphragm deflects
causing a decrease in the airgap that results in an increase
in capacitance between the diaphragm and the backplate.
When pressure is withdrawn, the diaphragm moves back to
its original position resulting in a decrease in capacitance.
For a time varying incident pressure, the capacitance change
follows the same dynamic characteristics of the incident
pressure. This change in capacitance is converted into a
useful voltage signal using a bias voltage and a charge
integrator.

The diaphragm is assumed to be homogeneous and
isotropic with perfect edge conditions. It is assumed that
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Ficure 1: Top and cross-sectional view of a conceptual CMUT
device with a square diaphragm.

the clamped edges hold the diaphragm rigidly against any
out-of-plane rotation or displacement at the edges but allow
displacement parallel to the diaphragm plane. At the edges,
out-of-plane displacement is zero and the tangent plane
to the displacement surface along the edge coincides with
the initial position of the diaphragm middle plane. The
boundary conditions imposed by the clamped edges can be
expressed mathematically as [5, 10]

w(x =+a,Vy) =0,
w(y = +a,Vx) =0,

Z—:(x=ta,‘v’y) =0, (1)

dw
@(y = +a,Vx) = 0.

Following the variational method, the load-deflection model
of arigidly clamped square diaphragm under large deflection
due to an applied uniform pressure Py can be expressed as
[13]

h 12D Eh
Py = G2+ G122 o+ [csﬂ<v>¢1]w3, )

where wy is the deflection at the center of the diaphragm, ay
is residual stress, and v is the Poisson ratio of the diaphragm
material. The constants C,,Cy, and C; are determined by
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FiGUure 2: Comparison of FEA deflection profile of 1-ym thick
polysilicon diaphragm with the existing models, plotted from center
to diaphragm edge. Py = 172 kPa.

adjusting the analytical solution with the numerical results
in [12] as

C, = 3.45,
Cp = 4.06, (3)
C, = 1.994.

The Poisson ratio dependent function f;(v) is given by [12]

1-0.271vy
1-v

fiv) = (4)
In (2), D is the flexural rigidity of the diaphragm and is
expressed as

En?
S 12(1-92) )
and the effective Young’s modulus E is the plate modulus,
expressed as

E

F- L
1—?

(6)
where E is the Young’s modulus of the diaphragm material.
In (2), the first term within the square bracket on the
right side represents diaphragm stiffness due to residual
stress, second term is the stiffness due to bending, and
the third term represents stiffness due to nonlinear spring
hardening. Real root of the above 3rd order polynomial
(2) represents the diaphragm center deflection. Two other
roots are imaginary and have no practical significance. Once
the center deflection is obtained, deformation curve of the
diaphragm can be obtained following any of the deflection
shape functions discussed in the introduction section.
Figures 2 and 3 show a comparison of FEA determined
deflection profiles of two polysilicon diaphragms, 1 and
3 um thick, respectively, with those obtained following the
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Figure 3: Comparison of FEA deflection profile of 3-ym thick
polysilicon diaphragm with the existing models, plotted from center
to diaphragm edge. Py = 950 kPa.

TasLE 1: Device specifications.

Parameter Value Unit
Diaphragm sidelength 200 um
Young’s modulus 169 GPa
Residual stress 100 MPa
Poisson ratio 0.3 —

deflection shape functions presented in [10, 12]. These
two deflection shape functions are chosen for comparison
purposes as they are most widely used, probably due to
their simplicity. Device specifications as listed in Table 1 have
been used for the FEA simulation. Deflection profiles are
plotted from diaphragm center along x-axis using the same
center deflection value as obtained following FEA for all the
cases and are plotted as a percentage of diaphragm thickness.
From the figures, it is evident that while [12] agrees closely
with the deflection profile of the 1-ym thick diaphragm, it
predicts significantly higher deflection values compared to
FEA for the 3-ym thick diaphragm. In contrast, deflection
values calculated following [10] are lower compared to the
FEA results for both the 1 and 3um thick diaphragms
with significantly lower deflection values for the 1 ym thick
diaphragm. Also, the FEA results show relatively larger
drooping in the deflection profiles for the thinner diaphragm
than the thicker one. This behavior is expected as the thinner
diaphragms are stress dominated, whereas the thicker ones
behave more like plates (bending dominated).

Figures 4 and 5 show the deflection profiles for the same
diaphragms but plotted from the center along a diagonal
direction towards the top right corner of the diaphragm.
From the figures, the maximum percent deviations of the
profiles following [10, 12] relative to the FEA results are
estimated to be around 57% and 68%, respectively. These
deviations are too large to ignore in any design process.
It is obvious from the results that while [10] is more
accurate for the deflection profile of thick diaphragms, [12]
is more accurate for the thinner ones. However, both of
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FiGure 4: Comparison of FEA deflection profile of 1-ym thick
polysilicon diaphragm with the existing models, plotted from center
along the diagonal axis of the diaphragm. Py, = 172 kPa.
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Figure 5: Comparison of FEA deflection profile of 3-ym thick
polysilicon diaphragm with the existing models, plotted from center
along the diagonal axis of the diaphragm. Py, = 950 kPa.

them deviate significantly from the 3-D FEA results for
diaphragms typically used in CMUT design space.

As the diaphragm lies in the x-y plane, the parallel
plate capacitance between the deformed diaphragm and the
backplate can be calculated following [14]

B dxdy
CDeform = so.gdo — w(x,y) > (7)

where & is the permittivity of free space and w (x,y)
represents the deflection surface of deformed diaphragm also
known as deflection shape function.

From the Figures 2-5, it is evident that the existing deflec-
tion shape functions are not adequate to accurately describe
the deflection profiles of clamped square diaphragms within
the design space considered in this work. Thus, use of them,
notably [10, 12], would result in significant error if used in
(7) to calculate the capacitance.

3. New Deflection Shape Function

The new deflection shape function has been developed by
modifying the equations presented in [5] for thin plates in
large deflection. Following [5], the lateral and transverse dis-
placements of a rigidly clamped thin plate with sidelengths
2a and 2b can be approximated by

u= (612 — Xz) (b2 - yz)x(boo + boz}/z + b20x2 + bzzxzyz),
v=(a’>—x*)(b* = y*) y(coo + coay® + ca0x* + cnx*y?),
2

w= (a* - xz)z(b2 - yz)z(aoo +agy* + ayx?),

(8)

where u and v are the displacements in the middle plane of
the plate along x and y directions, respectively, and vanish
at the boundary and w represents the transverse deflection.
As w also vanishes at the boundary and so does its first
derivative, all the necessary boundary conditions imposed
by the clamped edges are satisfied by (8). The undeter-
mined parameters bg,...,a in (8) can be determined
by applying the principle of virtual displacement and an
energy minimization method [5]. However, determination
of eleven undetermined parameters is computationally quite
expensive as it will involve numerical solutions of eleven
simultaneous nonlinear equations using the method of
successive approximation. Most notable feature of (8) is that
the polynomial basis function (a? — )2 (b? - yz)2 captures
the actual shape of the deformation curve with an accuracy
higher than the double cosine squared [10] or double sine
squared [11] functions and the quantity aq is associated with
the center deflection of the diaphragm that can be calculated
following (2). Instead of trying to determine eleven undeter-
mined parameters by solving eleven simultaneous nonlinear
equations using the method of successive approximation
each time, a simple and straightforward approach can be to
formulate a deflection shape function with the same basis
function as in (8) and then determine one or two empirical
parameters that capture the contribution of eleven unknown
parameter values with reasonable accuracy for a target design
space. Following this approach, a trial deflection shape
function

2 2\ 2 24 .2
w=wo<l—zz> ( —i;) [1+c1<x ;-2}/ )] 9)

has been formulated where the second term in the
square bracket represents the adjustment necessary to
compensate for the deviation of the polynomial function
wo(l — x%/a?)*(1 — yz/az)2 from the actual deflection shape.
The coefficient ¢; can be determined for any target design
space by comparing with the deflection profiles obtained
experimentally or from FEA analysis. To investigate the
validity of the trial function (9), deflection profiles obtained
following (9) for ¢;= 0 (dashed line) and ¢; = 1.1 (solid
line) are compared in Figure 6 with the FEA-determined
deflection profile of a polysilicon diaphragm for small
diaphragm deflection (wy about 21% of the diaphragm
thickness). As can be seen from the figure, deflection profile
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FiGURE 6: Comparison of FEA deflection profile of 1-um thick
polysilicon diaphragm with the trial deflection shape function (9)
for small deflection, plotted from center to diaphragm edge. Py =
10 kPa.
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Ficure 7: Comparison of FEA deflection profile of 1-ym thick
polysilicon diaphragm with the trial deflection shape function (9)
for large deflection, plotted from center to diaphragm edge, with
¢; = 1.1 (dashed line) and ¢; = 1.5 (solid line). Py; = 172 kPa.

obtained following the trial function with ¢; = 1.1 shows
excellent agreement with the FEA derive deflection profile for
small diaphragm deflection.

To investigate the effectiveness of (9) for diaphragms
subject to large deflection, a similar comparative plot of
deflection profiles of the polysilicon diaphragm subjected to
a uniform pressure of 172 kPa, obtained following FEA and
the trial function (9) for ¢; = 1.1 (dashed line) and ¢; = 1.5
(solid line), is plotted in Figure 7. The maximum diaphragm
deflection wy is set at 240% of the diaphragm thickness. It
can be observed from Figure 7 that while for ¢; = 1.1, (9)
predicted deflection profile agrees well with the FEA results
for 0 < x < 0.54, for ¢; = 1.5, it agrees well with FEA results
for 0.65a < x < a. These observations suggest that though the
trial function (9) provides accuracy better than those that can
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Ficure 8: Comparison of FEA deflection profile with the new and
the existing models for the 1-ym thick polysilicon diaphragm for
small deflection, plotted from center to diaphragm edge. Py =
10 kPa.

10 1

151

Deflection as a percent of
diaphragm thickness

=]
S
T

0 20 40 60 80 100 120 140
Diagonal distance from diaphragm center (ym)

e FEA
...... [10]

--- [12]
— New model, N =1

FiGure 9: Comparison of FEA deflection profile with the new and
the existing models for the 1-ym thick polysilicon diaphragm for
small deflection, plotted along the diagonal axis of the diaphragm.
Py = 10kPa.

be achieved by either [10] or [12], the accuracy can be further
improved by adjusting ¢; and introducing additional terms in
(9) to adequately capture the nonlinearity of the diaphragm
behavior during large deflection. Therefore, a strategy has
been adopted to determine optimal value of ¢; to match the
deflection profile obtained following (9) to some part of the
FEA result and then introduce one or more terms in (9) to
compensate for the deviation of (9) from the rest of the FEA
simulation result.

By careful investigation, it has been determined that a
fourth order term in the form of (x*/a*) can minimize
the deviation in the x > 0.5a range. The rationale behind
this is that because of the higher order, the term would
have negligible effect on deflection for smaller values of x
(0 < x < 0.5a). Due to symmetry, same argument applies
to diaphragm deflection along y direction. Following this
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methodology, a new term ¢, (x> + )/2)2/(14 is introduced in (9)
to obtain the new deflection shape function as

2\ 2 2\ 2 2. .2
conli2 () el

The above equation can be rewritten in its general form as

22 2 y? 2 N Xty n
W=W0<1—a2) 1—; n=%’2Cn 2 > (11)

where the coefficients ¢, are adjustable for any design space.
For the target CMUT design space (diaphragm thickness
range of 1-3um and sidelength range of 200-1000 ym),
investigation shows that three terms (N = 2) in (11) are
necessary for large deflection cases while only two terms
(N = 1) are necessary for small deflection cases to achieve
a high degree of accuracy. For the specified design space, the
parameters co, 1, and ¢, have been determined as

o = 1)
~0.0011
= \/E > (12)
0.0005
6= \/E >

by comparing the results from (11) with 3-D FEA using
IntelliSuite for a wide range of device specifications and
loading conditions.

4. Capacitance Calculation

Commonly used parallel plate capacitance model as
expressed in (7) does not take account of the fringing
field effects. However, investigation by the authors show
that for diaphragms with smaller sidelength (24 < 1 mm),
contribution of fringing field capacitance goes up and can be
as high as 9% for diaphragms with sidelength 100 ym and
airgap 3 ym. Therefore, it is necessary to include the fringing
field capacitance while calculating the total capacitance of
CMUTs which are typically built with diaphragms with
sidelengths less than 1 mm.

Though an accurate value of the fringing field capac-
itance can only be obtained by solving Poisson’s equation
using a 3D field solver, an approximate value of the fringing
field capacitance can be obtained by modifying a formula
presented in [15] to calculate the capacitance between a VLSI
on-chip interconnect separated from an underneath silicon
substrate by a dielectric medium of thickness dy, expressed
as

W W 025 B\ 05
C—eL[dO+0.77+l.06<do> +1'06(d70> , (13)

where L is the length and W is the width of the metal
interconnect, and ¢ = g¢,, where g, is relative permittivity of

the dielectric layer. The quantity eLW/d, in (13) is simply the
parallel plate capacitance. The second term within the square
bracket represents fringing field capacitance due to the
interconnect length (L), the third term due to interconnect
width (W), and the fourth term represents that due to the
interconnect thickness (h). Rearranging (13), fringing field
capacitances can be expressed as a function of parallel plate
capacitance in the form:

C = Cy(1+ Cg), (14)

where Cy is the parallel plate capacitance (eLW/dy) and Cy is
the fringing field factor expressed as

0.75 0.5
YT

d
Ci =0.77-2 + 1.06( W

w
Investigation shows that (15) can be used to calculate the
capacitance of a rigidly clamped square diaphragm separated
from the ground plane by a small airgap (e, = 1). The third
term in (15) representing the fringing field capacitance due
to diaphragm thickness can be neglected as the flux lines
originating from the diaphragm sides along the thickness
will terminate beyond the effective area of the backplate of
the device and, therefore, will not contribute to the total
capacitance. Thus, for a square diaphragm with sidelength
W = L = 2a, the capacitance between the undeflected
diaphragm and the backplate can be expressed as

0 [rom(G) e ()
A [1+0.77 20 +1.06 24 .

(16)

C=Cy(l1+Cq) =

After deformation, the total capacitance is also con-
tributed by two factors: the parallel plate capacitance Cpeform
between the deformed diaphragm and the backplate which
can be calculated using (7) and the fringing field capacitance
Cpeform Ctr- Thus, the total capacitance after deformation can
be expressed as

C= CDeform(1 + Cff) (17)

Since diaphragm edges are rigidly fixed and do not
undergo any deformation and as fringing field is contributed
mainly by the charges concentrated at the edges, fringing
field factor Cg can be assumed to remain unchanged despite
diaphragm deformation and the same formula (15) can be
used to calculate C as before.

5. FEA Validation

5.1. Deflection Shape Function

(i) Thin Plates in Small Deflection. Figure 8 shows compar-
ison of the FEA-derived-deflection profile of a 1 ym thick
polysilicon diaphragm for small diaphragm deflection (w, =
21% of the diaphragm thickness), plotted from center to the
midpoint of the edge along the x-axis, with those obtained
following the new (11) and the existing models [10, 12]. The
diaphragm specifications are as listed in Table 1. The figure
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TasLE 2: Comparison of new model-calculated capacitance values using deflection shape functions following [10, 12] and (11) with the FEA
results for small diaphragm deflection. dy = 3 ym, Young’s Modulus, E = 169 GPa, Poisson Ratio, v = 0.3, and Bias Voltage = 12V for all

cases.
B b o Py wo c C analytical (fF) %AC (FEA-analytical)
[12] New model [10] [12] New model

(um)  (um)  MPa  (kPa) A BEA(F) N=1 N=1

(pm)
100 1 100 20 0.43 132.96 130.01 135.06 132.72 2.22 —1.58 0.18
100 2 100 160 1.08 144.84 139.22 154.01 145.5 3.88 —6.33 —0.46
100 3 100 400 1.18 146.08 140.3 156.4 146.3 3.94 -7.05 -0.15
100 1 250 60 0.43 136.64 132.14 139.36 136.03 3.29 -1.99 0.44
100 2 250 320 0.95 149.64 142.25 160.49 150.02 4.94 —-7.25 -0.25
100 3 250 700 1.11 151.84 144.48 165.31 152.24 4.85 —-8.87 -0.26

Deflection as a percent of
diaphragm thickness

Distance from diaphragm center along x-axis (¢m)

e FEA
...... [10]

--- [12]
—— Newmodel, N =1

Figure 10: Comparison of FEA deflection profile with the new and
the existing models for the 3-ym thick polysilicon diaphragm for
small deflection, plotted from center to diaphragm edge. Py =
200 kPa.
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FiGure 11: Comparison of FEA deflection profile with the new and
the existing models for the 3-um thick polysilicon diaphragm for
small deflection, plotted along the diagonal axis of the diaphragm.
Py = 200 kPa.

shows excellent agreement between the FEA and the new
model predicted deflection profile obtained with N = 1 in
(11). Figure 9 shows excellent agreement between the new
model and FEA results for the deflection profile of the same
diaphragm along a diagonal line from center to the top right
corner of the diaphragm.

Similar comparisons for a 3um thick polysilicon
diaphragm subjected to an external pressure of 200 kPa are
shown in Figure 10 (drawn from center along the x-axis) and
Figure 11 (diagonally from center to the top right corner).
Other specifications for the 3 ym thick diaphragm remain
the same as in Table 1. Figures 8—11 clearly establish that
the deflection profiles obtained following the new deflection
shape function are in excellent agreement with the FEA
results for small deflections.

(ii) Thin Plates in Large Deflection. For large deflections,
best match to the FEA results with the new model is
obtained with N = 2 in (11). Figures 12 and 13 show
comparison of FEA-derived deflection profiles of a 1um
thick polysilicon diaphragm with the new and the existing
models for large diaphragm deflection (wy = 240% of the
diaphragm thickness), drawn from center along the x-axis
and diagonally from center to the top right corner, respec-
tively. Similar comparisons for the 3 ym thick diaphragm for
large deflection are shown in Figure 14 (drawn from center
along the x-axis) and Figure 15 (diagonally from center to the
top right corner). All the figures show excellent agreement
between the new deflection shape function and FEA results
for both the thin and thick diaphragms in large deflection.

Figure 16 shows a comparison of the FEA and the
new model predicted deflection profiles for the 1-um thick
polysilicon diaphragm at different loading conditions result-
ing in a center deflection as high as 8 times the diaphragm
thickness. For all the cases, device specifications as listed in
Table 1 are used. The results are still in excellent agreement
except for very large deflection (8 times the diaphragm
thickness) where (11) predicted deflection profile deviates
slightly from the FEA results for x > 0.5a.

Figure 17 shows a comparison of the FEA and the
new model-predicted deflection profiles for the 1-ym thick
polysilicon diaphragm with different sidelengths subject
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Deflection as a percent of
diaphragm thickness
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Figure 12: Comparison of FEA deflection profile with the new
and the existing models for the 1-ym thick polysilicon diaphragm
for large deflection, plotted from center to diaphragm edge. Py; =
172 kPa.

to different external loading conditions. Again excellent
agreement between the FEA and the new model is observed
except for the diaphragm with large sidelength (2a =
1000 ym) where the new model-predicted deflection profile
deviates slightly from FEA for x > 0.7a. The figures clearly
establish that the developed deflection shape function (11)
can predict deflection profiles of clamped square diaphragms
subject to uniform pressure loading with a much higher
accuracy compared to the existing models presented in [10]
or [12].

5.2. Capacitance Comparison. Capacitance values between
the deformed diaphragm and a fixed plate separated by an
airgap thickness dy = 3um have been calculated using
(17) for different device parameters and material properties
under different external pressure. For the purpose of com-
parison, deflection profile w(x, y) is calculated using both
the existing deflection shape functions following [10, 12]
and the new model (11). The diaphragm center deflection
wy is determined by solving (2). The capacitance values
thus calculated using the three deflection shape functions
along with those obtained from 3-D FEA under the same
conditions are tabulated in Tables 2 and 3 for the small (wy <
0.5h) and large (wy > 0.5h) deflections, respectively. While
the capacitance values obtained following the new model
are in excellent agreement with the FEA results for all the
cases with a maximum deviation of ~1.5%, those obtained
following [10, 12] show large deviations. Deflection shape
function in [10] results in an underestimation of capacitance
values with a maximum deviation of ~16%, while [12]
results in an overestimation with a maximum deviation of
~19%. It is worth mentioning here the effect of fringing
fields which when ignored results in a maximum deviation
of ~6% in capacitance values even with the new deflection
shape function.

50 ° v 4
100 | . . _

150 e .

Deflection as a percent of
diaphragm thickness
L)
)
N
N

e h=1ypm
250 = 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Diagonal distance from diaphragm center (ym)

e FEA
...... [10]

--- [12]
—— New model, N =2

F1Gure 13: Comparison of FEA deflection profile with the new and
the existing models for the 1-ym thick polysilicon diaphragm for
large deflection, plotted from center along the diagonal axis of the
diaphragm. Py = 172 kPa.

Deflection as a percent of
diaphragm thickness
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--- [12]
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Figure 14: Comparison of FEA deflection profile with the new
and the existing models for the 3-ym thick polysilicon diaphragm
for large deflection, plotted from center to diaphragm edge. Py =
950 kPa.

The results clearly indicate that the new model for capac-
itance calculation when combined with the new deflection
shape function predicts the capacitance values of CMUT
devices with square diaphragm with a very high degree of
accuracy. It is to be mentioned here that 3-D electromechan-
ical analysis module of IntelliSuite uses FASTCAP to calculate
the capacitance and the accuracy of FASTCAP is within 1%
of actual values [16].

6. Experimental Verification

This section provides experimental verification of the new
deflection shape function and the developed model for
capacitance calculation. The new deflection shape function is
verified against the experimental deflection profile presented
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TasLE 3: Comparison of new model-calculated capacitance values using deflection shape functions following [10, 12] and (11) with the FEA
results for large diaphragm deflection. Other parameters same as in Table 2.

B h o Py Wo c C analytical (fF) %AC (FEA-analytical)
[10] [12] New model [10] [12] New model
(um) (um) MPa  (kPa) A FEA(F) N=2 N=2
(pum)

100 1 100 60 1.16 149.8 141.26 158.36 152.07 5.70 -5.72 —1.51
100 2 100 480 2.50 217.08 181.4 256.45 218.36 16.43 —18.14 -0.59
100 3 100 1000 2.49 209.2 178.77 249.12 208.18 14.55 —19.08 0.49
100 1 250 120 1.12 150.24 140.88 157.55 151.41 6.23 —4.86 -0.78
100 2 250 320 1.20 149.64 142.25 160.50 151.03 4.93 —7.35 -0.93
100 3 250 1000 1.85 169.6 156.72 193.08 171.89 7.59 —13.84 —-1.35

ot 3

Deflection as a percent of
diaphragm thickness

0 20 40 60 80 100 120 140
Diagonal distance from diaphragm center (ym)

e TFEA
(10]

-~ [12]
""" —— New model, N = 2
FiGgure 15: Comparison of FEA deflection profile with the new and
the existing models for the 3-ym thick polysilicon diaphragm for
large deflection, plotted along the diagonal axis of the diaphragm.
Py = 950 kPa.

in [17] and the developed model for capacitance calculation
against the experimental capacitance values of a single-chip
MEMS capacitive microphone, measured at different bias
voltages from 0—100 volt, presented in [18].

6.1. Deflection Shape Function. Figure 18 shows comparison
of the new model-predicted deflection profile with the exper-
imentally obtained deflection profile of a 13 ym thick single-
crystal silicon diaphragm, size 1000 X 1000 um?, subject
to a uniform external pressure of 100kPa, presented in
[17]. For comparison purpose, deflection profiles following
[10, 12] are also included in the figure. Analytical profiles
are drawn using the same center deflection wy as obtained
experimentally. Deflection profiles following the new model
are plotted with both N = 1 and N = 2, and they
almost overlap each other. Due to the large diaphragm
thickness (13 ym), the third term in (11) has only marginal
contribution to the overall diaphragm deflection. As can be
seen from the figure, the new model-predicted deflection
profiles closely follow the experimental profile for the whole
range. However, deflection profiles following [10, 12] deviate

| Py = 180kPa

Deflection, w (um)
o

2600 kPa

0 20 40 60 80 100
Distance from diaphragm center along x-axis (y#m)

e TFEA
—— New model

Figure 16: Comparison of FEA deflection profiles with the new
model for the 1-ym thick polysilicon diaphragm under different
external pressure Py, plotted from center to diaphragm edge.

from the experimental profile by a large margin with
maximum deviation occurring at around x = 300 ym. The
estimated deviation relative to the experimental value at x =
300 ym for the three deflection shape functions following
[10, 12], and this model are around 42%, 27% and 4%,
respectively.

6.2. Capacitance Comparison. In order to verify the accu-
racy of the developed model for capacitance calculation,
we consider the single-chip MEMS capacitive microphone
presented in [18]. It consists of a 3 ym thick Al diaphragm,
size 0.5 mm X 0.5 mm, with acoustic holes separated from a
rigid backplate electrode with an air gap of about 1 ym. The
density of the 20 ym X 20 gm acoustic holes is 144/mm?. The
Young’s modulus of Al is 64 GPa, Poisson’s ratio 0.36, and the
residual stress is estimated to be around 1500 MPa. Figure 19
shows the plots of experimentally determined capacitance
values against bias voltage of the said microphone in [18]
together with those obtained analytically following (17)
using different deflection shape functions.

For calculation of deflection profiles, experimentally
determined center deflection values at different bias voltages
as obtained from [18] were used. Due to the presence of
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Deflection, w (um)
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Distance from diaphragm center along x-axis (um)

e FEA
—— New model

FiGURE 17: Comparison of FEA deflection profiles with the new
model for the 1-uym thick polysilicon diaphragms with differ-
ent sidelengths, plotted from center to diaphragm edge. 0y =
100 MPa, E = 169GPa, v = 0.3, Py; = 172, 44, and 8.9 kPa for
a =100, 200, and 500 ym, respectively.

Deflection, w (#m)

0 100 200 300 400 500
Distance from diaphragm center along x-axis (y#m)

® Exp. [17] —— Newmodel, N =1
—— [100 New model, N = 2
--- [12]

Ficure 18: Comparison of FEA deflection profile with the new
and the existing models for a 13-um thick single crystal silicon
diaphragm presented in [17], plotted from center to diaphragm
edge.

acoustic holes, the actual capacitance between the diaphragm
and the backplate would be lower than the capacitance if
there were no holes in the diaphragm. Therefore, to account
for this fact, capacitance between the diaphragm and the
backplate was calculated first assuming no holes, and then
an equivalent amount of capacitance equal to the area of the
acoustic holes was subtracted to obtain the total capacitance.
With this procedure, a capacitance value of 2.13 pF for the
undeflected diaphragm is obtained, which is very close to
the reported measured value of 2.12 pF [18], showing an
accuracy better than 0.5%. The capacitance values calculated
using the new deflection shape function (11) show very good
agreement with the experimental results with a maximum
deviation of 1.7% in the measurement range.

11
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FIGURE 19: Comparison of capacitance values calculated using the
developed model with the experimental results of a MEMS capac-
itive microphone, measured at different bias voltages, presented in
[18]. The capacitance values are calculated for the three deflection
shape functions following [10, 12] and this model (11). The
microphone consists of a 3-um thick Al diaphragm, size 0.5 mm X
0.5 mm, with acoustic holes separated from the rigid backplate with
an airgap of about 1 ym.

7. Conclusions

A highly accurate analytical model to calculate the capaci-
tance of CMUT devices with clamped square diaphragm sub-
ject to a uniform pressure loading has been presented. A new
deflection shape function is introduced to more accurately
calculate the deformation curves of square diaphragms,
and fringing field effect is incorporated in the developed
capacitance model. The new deflection shape function is
simple, easy to use, and applicable to both small and large
diaphragm deflections. The new model predicted deflection
profiles are in excellent agreement with both the experi-
mental and IntelliSuite FEA results. The developed model is
used to calculate the capacitance between a deformed thin-
square diaphragm and a fixed backplate in a typical CMUT
device for a wide range of geometry, material properties, and
loading conditions. The capacitance values are found to be
in excellent agreement with both the experimental and 3D
electromechanical FEA carried out using IntelliSuite with a
maximum deviation of about 1.7% in contrast to the 16—
19% deviations if models available elsewhere are used. The
model can help in improving the design methodology of
CMUTs and can be extended to design other MEMS-based
transducers where pressure-loaded square diaphragms are
used.

Acknowledgments

This research has been supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
Discovery Grant no. RGPIN 293218 and Ontario Centres
of Excellence (OCE) Grant no. IC50659. The authors would
like to greatly acknowledge the additional generous support
provided by the Canadian Microelectronics Corporation



12

(CMC Microsystems), the IntelliSense Software Corporation
of Woburn, MA, USA.

References

(1]

(13]

(14

(15]

Integrated Sensing Systems, Inc. (ISSYS), “Technology:
Capacitive Sensing,” http://www.mems-issys.com/capacitive
.shtml.

O. Oralkan, A. S. Ergun, J. A. Johnson et al., “Capaci-
tive micromachined ultrasonic transducers: next-generation
arrays for acoustic imaging,” IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, vol. 49, no. 11, pp. 1596—
1610, 2002.

M. Meloche and S. Chowdhury, “Design of a MEMS dis-
cretized hyperbolic paraboloid geometry ultrasonic sensor
microarray,” [EEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, vol. 55, no. 6, pp. 1363—-1372, 2008.

R. Puers and D. Lapadatu, “Electrostatic forces and their
effects on capacitive mechanical sensors,” Sensors and Actua-
tors A, vol. 56, no. 3, pp. 203-210, 1996.

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates
and Shells, McGraw-Hill, New York, NY, USA, 2nd edition,
1959.

N. Ben Moussa, Conception, modélisation et réalisation d’un
capteur de pression capacitif micro électronique, Ph.D. thesis,
LAAS, Toulouse, France, 1985.

F. Kerrour and F. Hobar, “A novel numerical approach for the
modeling of the square shaped silicon membrane,” Semicon-
ductor Physics, Quantum Electronics and Optoelectronics, vol.
9, no. 4, pp. 52-57, 2006.

W. Stewart, “Uniformly loaded, clamped, rectangular plates
with large deflection,” in Proceedings of the 5th International
Congress for Applied Mechanics (Cambridge, Mass, USA, 1938),
pp- 123-128, John Wiley & Sons, 1939.

S. Levy, “Square plate with clamped edges under normal
pressure producing large deflections,” Tech. Rep. 740, 1942.
H. E. Elgamel, “Closed-form expression of the relationships
between stress, membrane deflection, and resistance change
with pressure in silicon piezoresistive pressure sensors,” Sen-
sors and Actuators A, vol. 50, no. 1-2, pp. 17-22, 1995.

X. Y. Ye, J. H. Zhang, Z. Y. Zhou, and Y. Yang, “Measurement
of young’s modulus and residual stress of micromembranes,”
in Proceedings of the 7th International Symposium on Micro
Machine and Human Science, pp. 125-130, Nagoya Municipal
Industrial Research Institute, Nagoya, Japan, October 1996.
D. Maier-Schneider, J. Maibach, and E. Obermeier, “A new
analytical solution for the load-deflection of square mem-
branes,” Journal of Microelectromechanical Systems, vol. 4, no.
4, pp. 238-241, 1995.

S. D. Senturia, Microsystems Design, Kluwer Academic, Nor-
well, Mass, USA, 2000.

H. E. A. Elgamel, “A simple and efficient technique for the
simulation of capacitive pressure transducers,” Sensors and
Actuators A, vol. 77, no. 3, pp. 183-186, 1999.

N. V. D. Meijs and J. T. Fokkema, “VLSI circuit reconstruction
from mask topology,” Integration, vol. 2, no. 2, pp. 85-119,
1984.

K. Nabors, T. Korsmeyer, and J. White, “Multiple accel-
erated preconditioned iterativemethods for solving three-
dimensional mixed first and second kind integral equations,”
http://www.rle.mit.edu/cpg/publications/pub106.pdf.

T. Pancewicz, R. Jachowicz, Z. Gniazdowski, Z. Azgin, and P.
Kowalski, “The empirical verification of the FEM model of

Journal of Sensors

semiconductor pressure sensor,” Sensors and Actuators A, vol.
76, pp. 260265, 1999.

[18] B. A. Ganji and B. Y. Majlis, “Design and fabrication of a new

MEMS capacitive microphone using a perforated aluminum
diaphragm,” Sensors and Actuators A, vol. 149, no. 1, pp. 29—
37, 2009.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



