
Research Article
Boundary Detection Method for Large-Scale
Coverage Holes in Wireless Sensor Network Based
on Minimum Critical Threshold Constraint

Rong Jing,1 Lingfu Kong,1 and Liang Kong2

1 School of Information Science and Engineering, Yanshan University, Hebei 066004, China
2 School of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Hebei 066004, China

Correspondence should be addressed to Rong Jing; jingrong@ysu.edu.cn

Received 25 July 2014; Accepted 29 October 2014; Published 1 December 2014

Academic Editor: Yasuko Y. Maruo

Copyright © 2014 Rong Jing et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existing coverage hole boundary detection methods cannot detect large-scale coverage hole boundary in wireless sensor
network quickly and efficiently. Aiming at this problem, a boundary detection method for large-scale coverage holes in wireless
sensor network based onminimum critical threshold constraint is proposed. Firstly, the optimization problem of minimum critical
threshold is highlighted, and its formulaic description is constructed according to probabilistic sensing model. On the basis of
this, the distributed gradient information is used to approximately solve the optimization problem. After that, local-scale rough
boundary detection algorithm incorporating the minimum critical threshold and its iterative thinning algorithm are proposed
according to blocking flow theory.The experimental results show that the proposedmethod has low computational complexity and
network overhead when detecting large-scale coverage hole boundary in wireless sensor network.

1. Introduction

Wireless sensor network (WSN) is a network composed of a
large number of sensor nodes by means of self-organization
and multihop [1]. By acting as the interface between the logi-
cal information world and the objective physical world,WSN
makes people obtain fine-detail surrounding environment
information from microcosmic perspectives [2], so it is
widely used in national defense, environmental monitoring,
trafficmanagement, medical treatment, antiterrorism, and so
forth.

As one of the important measurement factors of QOS
in WSN, coverage reflects the sensing service quality offered
by WSN. Some nodes in WSN fail due to the limited node
energy being exhausted or other accidental events, which
trigger the phenomenon that sensing data will be lost, the
conveyance time will be increased, and the topology may
be separated, called coverage hole [3]. In general, the scale
of coverage hole triggered by random node failure is small,
so it can be recovered by WSN self-healing mechanism,
such as waking sleep node [4], increasing the sensing power

[5], and adjusting the position of node [6]. However, the
large-scale coverage hole is inevitable in the face of disaster
environment monitoring, and its recovery is usually realized
by external mobile device, like the mobile robot, the UAV,
the unmanned airship, and so on, which has large sensing
range, fast movement, and flexible deployment. Coverage
hole boundary detection can be used for extracting further
information about the structure and health of the network
which is useful for routing, guiding, and management pur-
poses [7]. It is the bridge for the external mobile device to
obtain the large-scale coverage hole boundary information in
WSN, and it directly affects repair efficiency of the external
mobile device. As a result, it is important for designing a fast,
accurate, and efficient large-scale coverage hole boundary
detection method.

In recent years, the research of coverage hole boundary
detection has become a new and hot topic inWSN.According
to whether or not the sensor node needs location infor-
mation, existing coverage hole boundary detection methods
can be divided into two broad categories: geometry-based
method and topology-based method, of which, according

Hindawi Publishing Corporation
Journal of Sensors
Volume 2014, Article ID 985854, 13 pages
http://dx.doi.org/10.1155/2014/985854



2 Journal of Sensors

to the relativity and absolutism of location information,
geometry-based method can be further divided into abso-
lute geometry method and relative geometry method. The
absolute geometry method [8, 9] is based on the fact that
the sensor node can accurately obtain the absolute loca-
tion information, which can exactly discover coverage hole
boundary in WSN, and the rates of missing coverage hole
boundary are close to zero. However, the absolute geometry
location information needs sensor nodes equipped with GPS,
which will bring about big additional hardware overhead.
By contrast, the relative geometry method [10–14] uses only
programs developed by the algorithm to obtain self-location
information in the relative coordinate system, which does not
need additional hardware overhead. However, the deviation
of location information will decrease with the network
scale, which results in poor network scalability, and directly
increases the computational complexity, rates of missing,
and overhead of WSN. The topology-based method [15–
18] uses topological properties related to WSN to recognize
coverage hole boundary, which does not require any location
information and has a better network scalability, compu-
tational complexity, and overhead. However, the topology-
based method only detects coarse boundary of coverage hole
and has a high missing rate of coverage hole boundary. In
addition to their advantage and disadvantage, the detection
object of both methods is the entire coverage holes in WSN,
called undifferentiated boundary detection. Hence, for the
coverage hole whose scale is specified, both methods have a
high computational complexity and network overhead.

Based on minimum critical threshold, we propose a
boundary detection method for large-scale coverage holes
in WSN, that is, boundary detection for large-scale coverage
holes in WSN based on minimum critical threshold con-
straint (BLW-MCT). The BLW-MCT belongs to geometric-
topological hybrid method, whose characteristics are pre-
sented as topological global rough boundary detection and
geometric local large-scale rough boundary detection and its
iterative thinning. The main contributions of this paper are
summarized as follows.

(1) To reduce the computational complexity and network
overhead of undifferentiated boundary detection, the
minimum critical threshold optimization problem
which can define large-scale coverage holes range in
WSN is highlighted, and its formulaic definition and
approximate solution are given.

(2) To explore a better boundary detectionmethod fusing
minimum critical threshold, blocking flow based
boundary detection transform thought is proposed,
and local large-scale rough boundary detection algo-
rithm and its iterative thinning algorithm realizing
the transform thought are given.

Compared with the existing coverage hole boundary
detection methods, the characteristics of the BLW-MCT are
summarized as follows.

(1) The existing topology-based coverage hole boundary
detection methods usually require a certain amount

of border nodes as a priori knowledge, but the BLW-
MCT does not limit it.

(2) Contrary to existing topology-based methods, the
scalability of existing geometry-based methods is
poor, but the rates of missing coverage hole boundary
are low. The BLW-MCT is geometric-topological
hybrid method, which has not only good network
scalability, but also low rates of missing coverage hole
boundary.

(3) Since both topology-based method and geometry-
based method are undifferentiated boundary detec-
tion, the computational complexity and network
overhead are high in the process of the large-scale
coverage hole boundary detection. By contrast, the
BLW-MCT uses minimum critical threshold to effec-
tively limit the number of coverage holes in WSN,
which, in part, decreases the computational complex-
ity and network overhead.

2. Related Theory

In this section, the network model assumptions are given
firstly. Then the probabilistic sensing model is described.
Finally, blocking cut definition and its judgment method in
blocking theory are introduced.

2.1. Network Model Assumptions. The assumptions of net-
work model are as follows.

(1) WSN is composed of 𝑛 sensor nodes and a sink node
randomly deployed in a two-dimensional square
region 𝐴. WSN is event-driven network, and its
sensor nodes are responsible for sending interesting
events which occurred in 𝐴 to the sink node. WSN is
abstracted to a connected graph 𝐺(𝑉, 𝐸), where 𝑉 =

{𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
} is the set of sensor nodes in 𝐴, and 𝐸 is

the set of edges connecting sensor nodes.
(2) The MAC layer of communication protocol of WSN

adopts wake/sleep mode, in which each sensor node
can autonomously switch between wake and sleep
mode.

(3) Each sensor node in WSN has the same maximum
sensing radius 𝑅

𝑠
and communication radius 𝑅

𝑐
, and

the sensing radius 𝑅
𝑠
can be autonomously adjusted.

(4) All of the available sensors nodes are homogeneous in
behavior of sensing, computing, communication, and
other capabilities.

(5) The location information of sensor node 𝑥 can be
obtained by existing positioning algorithms, and the
sensor node in WSN can acquire the position of sink
node from the flooding protocol.

2.2. Probabilistic Sensing Model. The probabilistic sensing
model [19] reflects the signal strength decays with the
distance from the source, which is close to the actual behavior
of the sensor node, andmore accurately describes the sensing
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coverage ability of WSN. In the probabilistic sensing model,
the probability that sensor node 𝑠

𝑖
in WSN detects the event

which occurred at any position 𝑥 in 𝐴 is

𝑝
𝑖
(𝑥, 𝑠
𝑖
) = 𝑝
0𝑖
𝑒
−𝜆𝑖‖𝑥−𝑥𝑖‖

, (1)

where 𝑝
0𝑖

∈ (0, 1], 𝜆
𝑖
is a positive constant, and ‖𝑥 − 𝑥

𝑖
‖

denotes the Euclidean distance between any position 𝑥 in 𝐴
and 𝑥

𝑖
of sensor node 𝑠

𝑖
in WSN. Furthermore, the sensor

node 𝑠
𝑖
in 𝑝
𝑖
(𝑥, 𝑠
𝑖
) has an omnidirectional sensing ability, and

𝑝
𝑖
(𝑥, 𝑠
𝑖
) is a decreasing and derivative function.

2.3. Blocking Flow Theory. In blocking flow theory, flow
units move in a certain direction in accordance with their
own nature, leading to the network blocking at the position
of some nodes, and then the back flow unit cannot move
forward.Now the network traffic reaches saturation, resulting
in quasi-blocking-cut (maximum blocking cut) [20].

Thenecessary and sufficient condition of judgingwhether
a quasi-blocking-cut is a real blocking cut is as follows [21]:
for any feasible flow in the network, if entrance arcs from the
feasible flow and positive arcs in the quasi-blocking-cut all are
saturated arcs, this quasi-blocking-cut is a real blocking cut,
and the blocking cut is obtained by the feasible flow which
is defined between positive arcs and opposite arcs located on
network flow.

3. Optimization Problem of Minimum
Critical Threshold

Before BLW-MCT execution, a simplified topology-based
boundary detection method is used to pretreat WSN,
obtaining global rough coverage hole boundary (hereinafter
referred to as global rough boundary) and taking the global
rough boundary as research object to carry out BLW-MCT
research. In this section, the minimum critical threshold
optimization problem is proposed. Then, its related symbol
definitions are given, and the formulaic description of the
optimization problem which is based on the symbol defini-
tion is established. Finally, an approximate solution for the
optimization problem is given.

3.1. Problem Posing. Existing boundary detection method
based on geometry or topology can detect all sizes of coverage
hole in WSN, but they will bring about higher network
overhead and computational complexity. Therefore, if the
boundary detection methods can appropriately reduce the
number of coverage holes being detected in WSN according
to practical application demands, the computational com-
plexity and network overhead of boundary detection will be
dramatically reduced.

The research object in this paper is large-scale cover-
age hole, and the core goal is to design a fast, accurate,
and efficient large-scale coverage hole boundary detection
method. If the range of large-scale coverage holes in each
global rough boundary can be quantized into a reasonable
threshold, it will be easily introduced to BLW-MCT.That is an
effective method to decrease the computational complexity

and network overhead of boundary detection method and
improve detection precision.

In view of this, the concept of critical threshold which can
exactly define the critical range between the large-scale cover-
age holes and other scales is introduced. Nevertheless, since
the critical threshold is not existing isolated independently
but is closely linked with network application, the critical
threshold cannot be quantized into a constant. Considering
the rates of missing coverage hole boundary under this
condition, the critical threshold should be possibly small, so
we can define the minimum value in critical threshold as
minimum critical threshold and call the process of seeking
the minimum critical threshold minimum critical threshold
optimization problem.

3.2. Symbol Definition. 𝐵
1
, . . . , 𝐵

𝑚
denotes 𝑚 global rough

boundaries inWSN, which are obtained by the step of weight
calculations and point edge deletion in [15].

𝐺
𝑘
(𝑉
𝑘
, 𝐸
𝑘
), 𝑘 ∈ 1, . . . , 𝑚, denotes the network connected

graph within any global rough boundary 𝐵
𝑘
, where 𝑉𝑘 is the

set of active sensor nodes within 𝐵
𝑘
, and 𝐸𝑘 is the set of edges

connecting sensor nodes.
𝑁
𝑘
= {𝑛
𝑘

1
, . . . , 𝑛

𝑘

𝑢
}, 𝑘 ∈ 1, . . . , 𝑚, 𝑢 ∈ 1, . . . , 𝑛, denotes the

set of sensor nodes’ ID in 𝑉𝑘.
𝐵𝑁
𝑘
= {𝑏𝑛

𝑘

1
, . . . , 𝑏𝑛

𝑘

V}, 𝑘 ∈ 1, . . . , 𝑚, V ∈ 1, . . . , 𝑛, denotes
the set of sensor nodes’ ID at 𝐵

𝑘
.

Ω
𝑘

𝑛
𝑘

𝑖

denotes the set of all possible loop-free paths from
sensor node 𝑠

𝑛
𝑘

𝑖

to 𝑠
𝑛
𝑘

1

in 𝑉𝑘.
R
𝑘
denotes the set of coverage sensor nodes within 𝐵

𝑘
,

which is also called active sensor node in this paper.
𝑥
𝑖,𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑚, denotes a Boolean variable;

if the sensor node 𝑠
𝑖
can simultaneously belong to𝑉𝑘 andR

𝑘
,

then 𝑥
𝑖,𝑘
= 1; otherwise, 𝑥

𝑖,𝑘
= 0.

𝐸𝐶
𝑘
= {(𝑛

𝑘

𝑖
, 𝑛
𝑘

𝑗
) : 𝑛
𝑘

𝑖
, 𝑛
𝑘

𝑗
∈ 𝑁
𝑘
, 𝑛
𝑘

𝑖
̸= 𝑛
𝑘

𝑗
, 𝑐(𝑠
𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

) = 1}

denotes the set of strong links in 𝐸
𝑘, where 𝑐 is a Boolean

variable, denoted by the following equation:

𝑐 (𝑠
𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

) = {

1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑠
𝑛
𝑘

𝑖

− 𝑠
𝑛
𝑘

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑅
𝑐

0 otherwise.
(2)

3.3. Problem Formulation. The coverage probability of sens-
ing region can indirectly reflect the scale of coverage holes
inWSN, so using the probabilistic sensing model to establish
the coverage probability for any region in 𝐴 can formulate
minimum critical threshold optimization problem. In addi-
tion, theminimumcritical threshold in different global rough
boundary is different, but its formulation and solution are the
same. Hence, this section considers the global rough bound-
ary𝐵
𝑘
as research object and gives its formulation description

of minimum critical threshold optimization problem.
As the sensing region within the global rough boundary

𝐵
𝑘
can be simultaneously covered by multiple active sensor

nodes located inside 𝐵
𝑘
, on the basis of the probabilistic

sensing model from Formula (1), the collaborative detection
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probability of any point 𝑥 in 𝐵
𝑘
can be denoted by the

following equation:

𝑃
𝑘
(𝑥,R
𝑘
) = 1 −

𝑛

∏

𝑖=1

[1 − 𝑥
𝑖,𝑘
⋅ 𝑝
𝑖
(𝑥, 𝑠
𝑖
)] . (3)

Since 𝑝
𝑖
(𝑥, 𝑠
𝑖
) is a decreasing and derivative function,

the collaborative detection probability of the sensing region
within the global rough boundary 𝐵

𝑘
can be denoted by the

following equation:

I = ∫

𝐵𝑘

𝑃
𝑘
(𝑥,R
𝑘
) 𝑑𝑥. (4)

Based on Formula (4), the minimum critical threshold
optimization problemof the global rough boundary𝐵

𝑘
can be

described as follows: while ensuring the connectivity between
all active sensor nodes within 𝐵

𝑘
, the deviation between the

individual detection probability of 𝐵
𝑘
and the collaborative

detection probability of active sensor nodes within 𝐵
𝑘
is

minimized. As an event occurring, 𝐵
𝑘
’s individual detection

probability is equal to 1. Hence, minimum critical threshold
optimization problem of the global rough boundary 𝐵

𝑘
can

be denoted by the following equation:

Objective function : Min
R𝑘

[1 − ∫

𝐵𝑘

𝑃
𝑘
(𝑥,R
𝑘
) 𝑑𝑥] , (5)

Subject to
𝑛

∑

𝑖=1

𝑥
𝑖,𝑘
≤ 1, ∀𝑘 = 1, . . . , 𝑚, (6)

Ω
𝑘

𝑛
𝑘

𝑖

̸= 𝜙, 𝑖 ∈ 1, . . . , 𝑛, (7)

where constraint (6) ensures that each sensor in the optimiza-
tion result at most belongs to one global rough boundary.
The constraint (7) ensures that active sensor nodes in the
optimization result are all connected and interact with each
other.

3.4. Problem Approximate Solution. The minimum critical
threshold optimization problem from Formula (5) is that
the position of all active sensor nodes in the global rough
boundary 𝐵

𝑘
is viewed as optimization variable to seek

the minimum critical threshold of 𝐵
𝑘
. It is obvious that

this optimization problem is NP-hard. Hence, the object
in this section is to give a distributed method solving
this optimization problem, and each sensor node in the
distributedmethod only uses own information to accomplish
a quantitative calculation, which will effectively decrease the
network overhead caused by transmitted message between
sensor nodes.

The gradient information can provide a more accurate
motion direction for sensor nodes in the optimization results,
so the trajectory of sensor nodes within global rough bound-
ary 𝐵
𝑘
optimized by the distributed gradient information can

be denoted by the following equation:

𝑠
𝑡+1

𝑖
= 𝑠
𝑡

𝑖
+ 𝜂
𝑡
(

𝜕I

𝜕𝑠
𝑖

) , (8)

where 𝜕I/𝜕𝑠
𝑖
denotes the gradient of the sensor node 𝑠

𝑖
, 𝑡

denotes the iteration number, and 𝜂
𝑡
is the step size. In order

to ensure the convergence ofmotion trajectory, the step series
{𝜂
𝑡
} is determined by [22].
Since 𝑝

𝑖
(𝑥, 𝑠
𝑖
) is a continuous function, 𝑃

𝑘
(𝑥,R
𝑘
) is also

a continuous function of sensor node 𝑠
𝑖
. Hence, the gradient

𝜕I/𝜕𝑠
𝑖
can be denoted by the following equation:

𝜕 (−I)

𝜕𝑠
𝑖

= −∫

𝐵𝑘

𝜕𝑃
𝑘
(𝑥,R
𝑘
)

𝜕𝑠
𝑖

𝑑𝑥. (9)

For Formula (9), the integral estimate has become the
key to solving the gradient 𝜕I/𝜕𝑠

𝑖
, but it is very difficult to

compute directly.This is because the solving process not only
needs the information of global rough boundary 𝐵

𝑘
but also

provides the position information of all active sensor nodes in
𝐵
𝑘
. To solve the problem, this paper introduces the discretiza-

tionmethod.This is because the gradient of each sensor node
can be calculated by the local information associated with
this sensor node after the integral estimate component from
Formula (9) is discretized.Thereupon, Formula (3) is brought
into Formula (9) and performs discretemethod.The gradient
𝜕I/𝜕𝑠

𝑖
is denoted by the following equation:

𝜕I

𝜕𝑠
𝑖

= −∫

Ω𝑖

∏

𝑘∈Β𝑖

[1 − 𝑥
𝑖,𝑘
⋅ 𝑝
𝑖
(𝑥, 𝑠
𝑖
)]

𝑑𝑝
𝑖
(𝑥, 𝑠
𝑖
)

𝑑𝑑
𝑖
(𝑥)

𝑠
𝑖
− 𝑥

𝑑
𝑖
(𝑥)

𝑑𝑥,

(10)

where 𝐵
𝑖
= {𝑘 : ‖𝑠

𝑖
− 𝑠
𝑘
‖ < 2𝑅

𝑠
}, 𝑘 = 1, . . . , 𝑛,𝑘 ̸= 𝑖, denotes

the set of sensor nodes associated with sensor node 𝑠
𝑖
, 𝑑
𝑖
(𝑥) ≡

‖𝑥 − 𝑠
𝑖
‖, andΩ

𝑖
= {𝑥 : 𝑑

𝑖
(𝑥) ≤ 𝑅

𝑠
} denotes the sensing region

of sensor node 𝑠
𝑖
.

From Formula (10), the gradient 𝜕𝑃
𝑘
(𝑥,R
𝑘
)/𝜕𝑠
𝑖
of sensor

node 𝑠
𝑖
can be calculated by the local information associated

with sensor node 𝑠
𝑖
. So bringing it into Formula (8), the

optimal position set of active sensor node within 𝐵
𝑘
is

denoted by the following equation:

𝑂𝑃
𝑘
= {𝑠
𝑡+1

𝑖
: 𝑠
𝑡

𝑖
∈ R
𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑚} . (11)

The optimal position set𝑂𝑃
𝑘
is used only as an estimated

parameter to estimate the minimum critical threshold of 𝐵
𝑘

ideally, but in fact the sensor node 𝑠𝑡
𝑖
cannot be moved to

optimal position 𝑠
𝑡+1

𝑖
. Besides, for ease of designating the

BLW-MCT in the next section, we give the formula for area
of 𝐵
𝑘
’s minimum critical threshold, which is denoted by the

following equation:

𝑇ℎ
𝐵𝑘
=

[∑
V
𝑖=1

𝑥
𝑥

𝑖
(𝑥
𝑦

𝑖+1
− 𝑥
𝑦

𝑖−1
) − ∑
𝑤

𝑗=1
𝑥
𝑥

𝑗
(𝑥
𝑦

𝑗+1
− 𝑥
𝑦

𝑗−1
)]

2

,

(12)

where 𝑖 ∈ 𝐵𝑁
𝑘, 𝑗 ∈ 𝐵𝑁

𝑂𝑃𝑘 , 𝐵𝑁𝑂𝑃𝑘 = {𝑏𝑛
𝑂𝑃𝑘

1
, . . . , 𝑏𝑛

𝑂𝑃𝑘

𝑤
},

𝑘 ∈ 1, . . . , 𝑚, 𝑤 ∈ 1, . . . , 𝑛, denotes the ID set of sensor nodes
located on boundary in𝑂𝑃𝑘,𝑥𝑥

𝑖
denotes the abscissa of sensor

node 𝑠
𝑖
, and 𝑥𝑦

𝑖
denotes the ordinate of sensor node 𝑠

𝑖
.
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4. BLW-MCT

Theminimum critical threshold of 𝐵
𝑘
is the optimal solution

given by solving Formula (5) under ideal condition. However,
it justmight possibly reduce the number of coverage holes not
suited to the critical range and cannot detect the large-scale
coverage hole boundary inWSN. To seek the exact boundary
of large-scale coverage hole, the transformation thought of
boundary detection hospitable to define the scale of coverage
hole is proposed based on blocking flow theory, and large-
scale coverage hole coarse boundary (hereinafter referred
to as local large-scale rough boundary, denoted by 𝑅

𝑘
)

detection algorithm fusing the minimum critical threshold
𝑇ℎ
𝐵𝑘 and its iterative thinning algorithm are presented with

the transformation thought.

4.1. Issue Transformation. Although using the minimum
critical threshold to define the scale of coverage hole can
effectively reduce the number of coverage holes processed by
boundary detectionmethod, the existing boundary detection
method does not restrict the scale of coverage hole, which
makes the minimum critical threshold not to be well-
integrated into the existing boundary detection method.
Hence, we banish the basic thinking of the existing boundary
detection method and search for the resolution from the
blocking cut definition and its judgment method in blocking
theory. Since the blocking flow is with the directed graph
as the research object, we begin with the directed process
of WSN, that is to say, generating a directed shortest path
tree which starts with the tree root. Then by comparing the
coverage hole in the directed shortest path tree with the
blocking cut, it is found that the coverage hole bifurcates
at the node connected with positive arc, flows through the
coverage hole in the opposite direction, and converges on the
node connected with opposite arc. In the directed shortest
path tree, the node connected with positive arc just is the
least common ancestor of the directed shortest path tree and
the node connected with opposite arc just is the leaf node of
the directed shortest path tree, and the feasible flow hugging
coverage hole is equivalent to the shortest path between the
node connected with positive arc and the node connected
with opposite arc, as shown in Figure 1.

According to the above analysis, the boundary detection
problem can be translated into the following problem: finding
a pair of leaf nodes with minimized sum of distance between
the leaf nodes and their least common ancestor in the directed
shortest path tree. After the boundary detection problem
is transformed, the scale of coverage hole in WSN can be
directly presented by the distance between leaf nodes and its
least common ancestor, which is convenient for fusing the
minimum critical threshold.

4.2. Local Large-Scale Coarse Boundary Detection. Based on
the above boundary detection transforming idea, the related
definitions of the local large-scale coarse boundary detection
algorithm can be described as follows.

Definition 1 (least common ancestor). For any two sensor
nodes𝑝, 𝑞 in the directed shortest path tree, if there is a sensor

Opposite arc nodes set

Positive arc/root node
Flow directionFlow unit/ordinary node
Opposite arc/leaf node

Arc/edge

Figure 1: Coverage hole in directed shortest path tree.

node 𝑟which is far away from root node and is the ancestor of
the𝑝, 𝑞, the sensor node 𝑟 is called the least common ancestor
of sensor nodes 𝑝, 𝑞, denoted by LCA(𝑝, 𝑞).

Definition 2 (cut node). The cut node is the sensor node
which is the leaf node in the directed shortest path tree.

Definition 3 (cut node set). The cut node set is the set of all
cut nodes in the directed shortest path tree.

Definition 4 (nonhomeomorphism). For any two manifolds
in the mathematical field of topology, if a manifold is not
transformed into the other manifold by a series of curved,
extended, cut operation, the two manifolds are considered as
nonhomeomorphism. Particularly for any two cut nodes 𝑝, 𝑞
in the directed shortest path tree, if the path 𝑝 to LCA(𝑝, 𝑞)
and the path 𝑞 to LCA(𝑝, 𝑞) are located on both sides of the
coverage hole, two paths are nonhomeomorphism.

Definition 5 (cut node pair). For any two sensor nodes 𝑝,
𝑞 in the directed shortest path tree, if sensor nodes 𝑝,
𝑞 are cut nodes having the same least common ancestor
and path 𝑝 to LCA(𝑝, 𝑞) and the path 𝑞 to LCA(𝑝, 𝑞) are
nonhomeomorphism, the sensor nodes 𝑝, 𝑞 are called cut
node pair, denoted by CNP(𝑝, 𝑞).

Definition 6 (cut node pair set). The cut node pair set is the
set of cut node pairs having the same least common ancestor,
denoted by CNPS.

Definition 7 (horizontal threshold). For any two sensor nodes
𝑝, 𝑞 in the directed shortest path tree, if sensor nodes 𝑝,
𝑞 are the cut node pair, the minimum value between the
distance from 𝑝 to LCA(𝑝, 𝑞) and from 𝑞 to LCA(𝑝, 𝑞) is
called horizontal threshold, denoted by HT.
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Figure 3: Topology graph of local large-scale rough boundary Rk.

Definition 8 (vertical threshold). For any two sensor nodes 𝑝,
𝑞 in the directed shortest path tree, if sensor nodes𝑝, 𝑞 are the
cut node pair, the minimum distance from any sensor node
in the path 𝑝 to LCA(𝑝, 𝑞) to any sensor node in the path 𝑞 to
LCA(𝑝, 𝑞) is called vertical threshold, denoted by VT.

Based upon above definitions, the algorithm of local
large-scale coarse boundary detection in 𝐵

𝑘
is described as

follows. Firstly, the directed shortest path tree𝑇𝑘 is generated
by the directed process of the network𝐺𝑘(𝑉𝑘, 𝐸𝑘) in𝐵

𝑘
.Then,

the cut node pair which keeps the sum of distance between
the cut node pair and least common ancestor LCAk

(𝑠
𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

)

minimum is found from the cut node pair set CNPSk in
𝑇
𝑘, and by comparing the 𝑇ℎ

𝐵𝑘 with the product of the
horizontal threshold HTk and the vertical threshold VTk

of the cut node pair, the local large-scale coverage hole
boundary 𝑅

𝑘
is generated (see Figure 2). The pseudocode of

the local large-scale coarse boundary detection algorithm is
as shown in Algorithm 1.

Algorithm 1 mainly includes three parts: the first part,
from lines 1 to 21, is to generate the directed shortest path tree
𝑇
𝑘 of the network graph 𝐺𝑘(𝑉𝑘, 𝐸𝑘) by the flooding routing

algorithm.The second part, from lines 22 to 27, is to seek the
minimum cut node pair CNP𝑘(𝑠min

𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) from the CNPSk.
The third part, from lines 28 to 36, is to find local large-
scale coarse boundary based on the minimum cut node pair
CNP𝑘(𝑠min

𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

).

4.3. Iterative Thinning of Local Large-Scale Coarse Boundary.
For ease of describing the algorithm of iterative thinning for

local large-scale coarse boundary, the topology graph of local
large-scale rough boundary 𝑅

𝑘
is shown in Figure 3.

Algorithm 1 can effectively find the local large-scale
coarse boundary 𝑅

𝑘
(the blue solid lines in Figure 3), but

there are some redundant shortest paths (the red solid lines
in Figure 3) and the sleep sensor nodes (the black solid lines
in Figure 3) inside 𝑅

𝑘
. As can be seen in Figure 3, the sensor

nodes which are in the redundant shortest paths and sleep-
state are closer to the actual large-scale coverage hole than
the sensor nodes at the local large-scale rough boundary 𝑅

𝑘
.

Hence, using the sensor nodes closer to the actual large-scale
coverage hole in location to further thin the local large-scale
coarse boundary 𝑅

𝑘
will make us obtain more accurate large-

scale coverage hole boundary.
Although the rates ofmissing coverage hole boundary can

be effectively reduced by waking the sleep nodes in 𝑅
𝑘
, the

network overhead will rise accordingly. Hence, considering
both the rates of missing coverage hole boundary and net-
work overhead, the algorithm of iterative thinning for local
large-scale coarse boundary is designed by the redundant
shortest path information in 𝑅

𝑘
. The process of iterative

thinning algorithm is divided into two stages: the first
stage takes the network 𝐺𝑘

󸀠

(𝑉
𝑘
󸀠

, 𝐸
𝑘
󸀠

) consisting of the local
large-scale coarse boundary 𝑅

𝑘
and its internal redundant

shortest path as the research object, and the boundary 𝑅󸀠
𝑘

made up of three members, the blue-red path from 𝑠
min
𝑛
𝑘

𝑗

to

LCAk
(𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

), the blue path from 𝑠
min
𝑛
𝑘

𝑖

to LCAk
(𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

),

and the edge 𝑠min
𝑛
𝑘

𝑖

𝑠
min
𝑛
𝑘

𝑗

in Figure 3, is obtained by making use
of the basic operations in graph theory. During this stage,
the redundant shortest path information is used to isolate
the sleep nodes between 𝑅

𝑘
and the redundant shortest path,

which effectively decreases the network overhead. Similar
to the iterative thinning steps of the first stage, the second
stage will only replace the research object 𝐺𝑘

󸀠

(𝑉
𝑘
󸀠

, 𝐸
𝑘
󸀠

) in
the first stage with 𝐺

𝑘
󸀠󸀠

(𝑉
𝑘
󸀠󸀠

, 𝐸
𝑘
󸀠󸀠

) consisting of 𝑅󸀠
𝑘
and its

internal sleep nodes. After this stage, the accurate large-scale
coverage hole boundary 𝑅󸀠󸀠

𝑘
made up of three members, the

blue-red path from 𝑠
min
𝑛
𝑘

𝑗

to LCAk
(𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

), the black-blue

path from 𝑠
min
𝑛
𝑘

𝑖

to LCAk
(𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

), and the edge 𝑠min
𝑛
𝑘

𝑖

𝑠
min
𝑛
𝑘

𝑗

in Figure 3, is generated. The pseudocode of the algorithm
of iterative thinning for local large-scale coarse boundary is
as shown in Algorithm 2.

5. Experiment and Evaluation

In order to evaluate the performance of BLW-MCT, taking
a small-scale WSN as an example, the execution process of
BLW-MCT is given firstly. Then computational complexity
of BLW-MCT is analyzed, and the computational complexity
of each step in BLW-MCT is given. Finally, under different
sensor node density and network scale, the proposed BLW-
MCT is compared with the existing two classes of coverage
hole boundary detection method by taking the number of
packets, boundary detection time, and boundary discovery
number as evaluation parameter.
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Input: Global coarse boundary 𝐵
𝑘
, network graph 𝐺𝑘(𝑉𝑘, 𝐸𝑘) inside 𝐵

𝑘
, the ID set𝑁𝑘 = {𝑛𝑘

1
, . . . , 𝑛

𝑘

V}

of all the sensor nodes in 𝑉𝑘, the minimum critical threshold of large-scale coverage hole 𝑇ℎ𝐵𝑘 .
Output: Local large-scale coarse boundary 𝑅

𝑘
.

(1) while 𝑁𝑘 do
(2) for each sensor node 𝑠

𝑛
𝑘

𝑖

∈ 𝑉
𝑘 do //parallel process

(3) 𝑡
𝑘

𝑛
𝑘

𝑖

←generating a random time remaining;
(4) if 𝑡𝑘

𝑛
𝑘

𝑖

== 0 do
(5) generating a directed shortest path tree 𝑇𝑘(𝑠

𝑛
𝑘

𝑖

);
(6) 𝑁

𝑘
← 𝑁
𝑘
\ {𝑛
𝑘

𝑖
};

(7) broadcasting the ID 𝑛
𝑘

𝑖
of 𝑠
𝑛
𝑘

𝑖

and its initial random time remaining 𝑡𝑘
𝑛
𝑘

𝑖

;
(8) end
(9) if sensor node 𝑠

𝑛
𝑘

𝑗

receives the ID 𝑛
𝑘

𝑖
sent by sensor node 𝑠

𝑛
𝑘

𝑖

do
(10) if 𝑠

𝑛
𝑘

𝑗

doesn’t belong to any directed shortest path tree do
(11) 𝑇

𝑘
(𝑠
𝑛
𝑘

𝑖

) ← 𝑇
𝑘
(𝑠
𝑛
𝑘

𝑖

) ∪ 𝑠
𝑛
𝑘

𝑗

;
(12) 𝑁

𝑘
← 𝑁
𝑘
\ {𝑛
𝑘

𝑗
};

(13) else
(14) if 𝑡𝑘

𝑛
𝑘

𝑖

≥ 𝑡
𝑘

𝑛
𝑘

𝑗

do
(15) 𝑁

𝑘
← 𝑁
𝑘
∪ all node IDs in 𝑇𝑘(𝑠

𝑛
𝑘

𝑖

);
(16) broadcasting the ID 𝑛

𝑘

𝑗
of 𝑠
𝑛
𝑘

𝑗

and its initial random time remaining 𝑡𝑘
𝑛
𝑘

𝑗

;
(17) end if
(18) end if
(19) end if
(20) end for
(21) end while
(22) CNPS𝑘 ← the cut node pair set in the directed shortest path tree 𝑇𝑘;
(23) for each cut node pair CNP𝑘(𝑠

𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

) in CNPS𝑘 do
(24) LCA𝑘(𝑠

𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

) ← Tarjan (𝑇𝑘, 𝑠
𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

);//Tarjan is a offline least common ancestor algorithm
(25) Γ ← computing the sum for path between 𝑠

𝑛
𝑘

𝑖

to LCA𝑘(𝑠
𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

) and 𝑠
𝑛
𝑘

𝑗

to LCA𝑘(𝑠
𝑛
𝑘

𝑖

, 𝑠
𝑛
𝑘

𝑗

);
(26) end for
(27) CNP𝑘(𝑠min

𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) ← finding the cut node pair corresponding with the minimum value in Γ;

(28) LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) ← Tarjan (𝑇𝑘, 𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

);

(29) SP𝑘
1
← the shortest path between 𝑠min

𝑛
𝑘

𝑖

to LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

);

(30) SP𝑘
2
← the shortest path between 𝑠min

𝑛
𝑘

𝑗

to LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

);

(31) HT𝑘 ←Min(SP𝑘
1
, SP𝑘
2
);

(32) VT𝑘 ←Min| SP𝑘
1
− SP𝑘
2
|;

(33) if HT𝑘 × VT𝑘 ≥ Th𝐵𝑘 do
(34) 𝑅

𝑘
← SP𝑘

1
∪ SP𝑘
2
∪ (𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

);
(35) end if
(36) return 𝑅

𝑘
;

Algorithm 1: Local large-scale coarse boundary detection algorithm.

5.1. Execution Process of BLW-MCT. Figure 4(a) shows the
initial distribution of WSN consisting of 1200 sensor nodes
deployed randomly within a sensing region of 100m × 100m,
where the sensor node is presented by the circle whose
periphery is green and interior is black. The sensing radius
of each sensor node is 5m, and the communication radius of
each sensor node is 7m.The communication link is presented
by blue line. The static sink node located in the center of

sensing region is presented by circle whose periphery is green
and interior is red.

Based on the coverage degree of WSN, the contour plane
related to the coverage degree is sketched in Figure 4(b). The
coverage condition of initial WSN is intuitively read by the
color bar located in the right of Figure 4(b); for example, the
value zero correspondingwith the deep blue indicates that the
region colored by deep blue is not covered by any sensor node;
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Input: The local large-scale coarse boundary 𝑅
𝑘
, the minimum cut node pair CNP𝑘(𝑠min

𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

), the least common

ancestor LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

).
Output: The accurate large-scale coverage hole boundary 𝑅󸀠󸀠

𝑘
.

(1) 𝐺𝑘
󸀠

(𝑉
𝑘
󸀠

, 𝐸
𝑘
󸀠

) ← the network consisting of 𝑅
𝑘
and its internal redundant shortest paths; //The first stage

(2) SPT𝑘
󸀠

← generating the shortest path tree of the 𝐺𝑘
󸀠

(𝑉
𝑘
󸀠

, 𝐸
𝑘
󸀠

);
(3) SP𝑘

󸀠

1
← searching the shortest path from 𝑠

min
𝑛
𝑘

𝑖

to LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) in the SPT𝑘
󸀠

;

(4) SP𝑘
󸀠

2
← searching the shortest path from 𝑠

min
𝑛
𝑘

𝑗

to LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) in the SPT𝑘
󸀠

;

(5) 𝑅󸀠
𝑘
← SP𝑘

󸀠

1
∪ SP𝑘

󸀠

2
∪ (𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

);

(6) 𝐺𝑘
󸀠󸀠

(𝑉
𝑘
󸀠󸀠

, 𝐸
𝑘
󸀠󸀠

) ← the network consisting of 𝑅󸀠
𝑘
and its internal sleep nodes; //The second stage

(7) SPT𝑘
󸀠󸀠

← generating the shortest path tree of the 𝐺𝑘
󸀠󸀠

(𝑉
𝑘
󸀠󸀠

, 𝐸
𝑘
󸀠󸀠

);
(8) SP𝑘

󸀠󸀠

1
← searching the shortest path from 𝑠

min
𝑛
𝑘

𝑖

to LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) in the SPT𝑘
󸀠󸀠

;

(9) SP𝑘
󸀠󸀠

2
← searching the shortest path from 𝑠

min
𝑛
𝑘

𝑗

to LCA𝑘(𝑠min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

) in the SPT𝑘
󸀠󸀠

;

(10) 𝑅󸀠󸀠
𝑘
← SP𝑘

󸀠󸀠

1
∪ SP𝑘

󸀠󸀠

2
∪ (𝑠

min
𝑛
𝑘

𝑖

, 𝑠
min
𝑛
𝑘

𝑗

);
(11) return 𝑅

󸀠󸀠

𝑘
;

Algorithm 2: Iterative thinning algorithm for local large-scale coarse boundary.

that is to say, the deep blue regions are the coverage holes of
initial WSN.

Figure 4(c) gives the global coarse boundary of initial
WSN, which is drawn by the PLEX (http://mii.stanford.edu/
research/comptop/programs/) according to the weight cal-
culations and point edge deletion mechanism in [15]. The
global coarse boundary is presented by the closed polygon
consisting of the red line.

Figures 4(d), 4(e), and 4(f) are key execution process
of BLW-MCT. Taking any global coarse boundary 𝐵

𝑘
in

Figure 4(c) as an example, the directed shortest path tree 𝑇𝑘

of 𝐺𝑘(𝑉𝑘, 𝐸𝑘) consisting of the sensor nodes in 𝐵
𝑘
is given

by Figure 4(d), whose root node is presented by circle whose
periphery is green and interior is red and shortest path is
presented by red line. On the basis of 𝑇𝑘 in Figure 4(d), the
local large-scale coarse boundary 𝑅

𝑘
is given by Figure 4(e)

according to the minimum critical threshold 𝑇ℎ
𝐵𝑘 , whose

boundary is presented by the closed polygon consisting of the
blue line and node is presented by circle whose periphery is
blue and interior is black. Based on the local large-scale coarse
boundary 𝑅

𝑘
, the accurate large-scale coverage hole bound-

ary 𝑅󸀠󸀠
𝑘
is given by the two-stage iterative thinning, whose

boundary is presented by the closed polygon consisting of the
green line and node is made up of three members, the sleep
node presented by circle whose interior is gray,𝑅

𝑘
’s boundary

node presented by circle whose periphery is blue and interior
is black, and 𝐵

𝑘
’s boundary node presented by circle whose

periphery is green and interior is gray.

5.2. Computational Complexity Analysis for BLW-MCT. The
computational complexity of each step in BLW-MCT is
shown in Table 1. The computational complexity analysis for
each step in BLW-MCT is given as follows.

Table 1: Computational complexity of each step in BLW-MCT.

Step Complexity
Global coarse boundary detection 𝑂(𝑛

2
)

Minimum critical threshold approximate solution 𝑂(1)

Local large-scale coarse boundary detection 𝑂(𝑛
2
)

Local large-scale coarse boundary iterative thinning 𝑂(𝑛
2
)

Similar to [15], the step of global coarse boundary detec-
tion just removes the detection process of edges and nodes
related to boundary. Hence, the computational complexity of
this step in the worst case is 𝑂(𝑛2).

In order to reduce the network overhead from transfer-
ring message between sensor nodes, the step of minimum
critical threshold approximate solution only uses the local
information to solve the minimum critical threshold, so the
computational complexity of this step is 𝑂(1).

The step of local large-scale coarse boundary detection
includes generating the directed shortest path tree, searching
for the least common ancestor, obtaining the cut node pair
set, and generating the local large-scale coarse boundary.
The substep of generating the directed shortest path tree
just needs each sensor to broadcast some message using the
flooding routing algorithm,whose computational complexity
in the worst case is 𝑂(𝑛2). The substep of searching for the
least common ancestor adopts the offline Tarjan algorithm
to find the least common ancestor, so that the computational
complexity of this substep in theworst case is𝑂(𝑚+𝑄), where
𝑚 is the number of sensor nodes in the directed shortest path
tree and𝑄 is the number of inquiries. Obviously,𝑚 and𝑄 are
far less than 𝑛, so that the computational complexity of this
substep in the worst case is 𝑂(𝑛). The substep of obtaining
the cut node pair set is finding the set of any two leaf nodes in
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Figure 4: Implementation process of BLW-MCT: (a) initial distribution of WSN; (b) contour plane of initial WSN’s coverage degree; (c)
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compliance with Definition 5. Obviously, the number of leaf
nodes in the directed shortest path tree in the worst case is
(𝑚−1) and the number of judgingwhether any two leaf nodes
complywithDefinition 5 is ⌈(𝑚−1)/2⌉2, so the computational
complexity of this substep in the worst case is 𝑂(𝑛2). The
substep of generating the local large-scale coarse boundary is
searching for the cut node pair in the cut node pair set which
makes the sum of distance from itself to the least common
ancestorminimum, and the local large-scale coarse boundary
consists of the path from the minimum cut node pair to the
least common ancestor. In the worst case, the computational
complexity of this substep is 𝑂(𝑛). According to the above
computational complexity of each substep, the computational
complexity of local large-scale coarse boundary detection in
the worst case is 𝑂(𝑛2).

The step of local large-scale coarse boundary iterative
thinning mainly includes two processes of generating the
shortest path tree: the shortest path tree in the first process
is generated from the network graph consisting of the local
large-scale coarse boundary and its internal active nodes,
whose computational complexity is 𝑂(𝑝2), where 𝑝 is the
number of active nodes in the local large-scale coarse
boundary. Obviously, 𝑝 is less than 𝑚 and 𝑚 is far less
than 𝑛, so that the computational complexity in the first
process in the worst case is 𝑂(𝑛2); the shortest path tree
in the second process is generated from the network graph
consisting of the first iterative thinning boundary and its
internal sleep nodes, whose computational complexity is
𝑂(𝑞
2
), where 𝑞 is the number of sleep nodes in the first

iterative thinning boundary. Obviously, 𝑞 is less than 𝑚 and
𝑚 is far less than n, so that the computational complexity
of generating this shortest path trees in the worst case is
𝑂(𝑛
2
) too. Hence, according to the computational complexity

of above two processes of generating the shortest path tree,
the computational complexity of local large-scale coarse
boundary iterative thinning in the worst case is 𝑂(𝑛2).

Since BLW-MCT is a distributed method, the com-
putational complexity of BLW-MCT is equivalent to the
computational complexity of any global coarse boundary 𝐵

𝑘

in the worst case. From the above analysis, the computational
complexity of BLW-MCT is 𝑂(𝑛2).

5.3. Comparative Experiment. To evaluate the performance
of BLW-MCT, we compare it with the existing two classes
of coverage hole boundary detection method, which are,
respectively, localization-based boundary detection method
[14] (LBM) andhomology-based boundary detectionmethod
[18] (HBM). Besides, we introduce the size of packets,
boundary detection time, and boundary discovery number
as evaluation parameter evaluating the three methods men-
tioned above. In those three evaluation parameters, the size
of packets is the sum of packets demanded by the process
that boundary detection method discovers all coverage holes
in WSN, which can adequately reflect the network overhead.
The time during boundary detection is from the detection
with the first sensor node until all coverage holes inWSN are
detected, which can effectively measure the computational
complexity of the boundary detectionmethod.The boundary

discovery number is the number of coverage hole boundaries
detected by the boundary detection method, which can
reflect the accuracy of the boundary detection method to
some extent.

To accomplish the comparative experiment in this sec-
tion, a square sensing region of𝑀×𝑀 is established, where
𝑛 sensor nodes are deployed randomly. The sink node is
located in the center of sensing region and its position is
fixed. The sensing radius of all sensor nodes is 7m, and its
communication radius is 10m. Considering the randomness
of network topology, we repeat 50 experiments for the size
of packets and the boundary detection time, respectively, and
select the average of 50 experiments as the results. For the
boundary discovery number, if selecting the average of 50
experiments as the results will produce large error, this is
because the large-scale coverage hole is only discussed in
this paper, and the boundary discovery number is relatively
small. So the sum of 50 experiments is selected as result of the
boundary discovery number.

Figure 5 shows the performance comparison of BLW-
MCT, LBM, and HBM in terms of the size of packets,
boundary detection time, and boundary discovery number
with the increase of 𝑛 in WSN. During the experiment,
sensing region is always 100m × 100m. As shown in Figure 5,
the sizes of packets, boundary detection time, and boundary
discovery number of the three methods mentioned above
all gradually decrease with increasing the number of sensor
nodes 𝑛.

In Figure 5(a), the sizes of packets of BLW-MCT, LBM,
and HBM all gradually decrease with the increase of 𝑛. This
is because the increasing of 𝑛 brings about the decrease of the
coverage hole number under unchanged sensing region; then
the sizes of packets generated by BLW-MCT, LBM, and HBM
all decrease. However, the decreased degrees of the size of
packets are different, in which the size of packets generated
by BLW-MCT is minimum, HBM is about 10% higher than
BLW-MCT, and LBM is about 15% higher than BLW-MCT.
This is because the size of packets of BLW-MCT only comes
from the large-scale coverage holes inWSNdetected by BLW-
MCT, but LBM and HBM belong to the undifferentiated
boundary detection, whose packets come from all coverage
holes in WSN detected by them. Hence, the sizes of packets
of LBM and HBM are greater than BLW-MCT. Besides, there
is the triangle coverage hole in our experiment, but this type
of coverage hole in WSN is not detected by HBM. So the size
of packets of HBM is 5% lower than LBM. In Figure 5(b), the
boundary detection time of BLW-MCT is less than LBM and
HBM, and the time difference between them will decrease
with the increasing of 𝑛.This is because the sparser the sensor
node density in WSN, the higher the appearance probability
of the large-scale coverage hole. We can also see from the
figure that the boundary detection times of LBM and HBM
decrease slowly in the beginning and then gradually increase.
This is because the increase of 𝑛does not decrease the number
of coverage holes in WSN in the beginning, and the number
of coverage holes in WSN rapidly decreases with 𝑛 further
increase. In Figure 5(c), the T type of line in Figure 5(c)
presents the total number of real coverage hole boundaries
in 50 experiments, and the remaining histograms are the



Journal of Sensors 11

1200 1400 1600 1800 2000
0

50

100

150

200

250

300

The number of sensor nodes n (sensors) 

Th
e s

iz
e o

f p
ac

ke
ts 

(b
yt

e)

BLW-MCT
HBM
LBM

M = 100m × 100m

(a)

1200 1400 1600 1800 2000
0

10

20

30

40

50

60

The number of sensor nodes n (sensors) 

Bo
un

da
ry

 d
et

ec
tio

n 
tim

e (
s)

BLW-MCT
HBM
LBM

M = 100m × 100m

(b)

1200 1300 1400 1500 1600 1700 1800 1900 2000
0

50

100

150

200

The number of sensor nodes n (sensors) 

 Th
e b

ou
nd

ar
y 

di
sc

ov
er

y 
nu

m
be

r (
se

ns
or

s)
 

BLW-MCT
LBM
HBM

M = 100m × 100m

(c)

Figure 5: Performance comparison of different number of sensors: (a) size of packets; (b) boundary detection time; (c) boundary discovery
number.

total number of coverage hole boundaries detected by the
boundary detection method. It can be seen from the figure
that the boundary discovery numbers of BLW-MCT, LBM,
and HBM all gradually decrease with the increase of 𝑛. More
specifically, the boundary discovery numbers of BLW-MCT
and LBM are basically identical, which are the same as the
total number of real coverage hole boundaries. But because
HBM only detects the nontriangle large-scale coverage hole
in WSN, the boundary discovery number of HBM is about
7% lower than the number of real coverage hole boundaries.

Figure 6 depicts the performance comparison of BLW-
MCT, LBM, and HBM in terms of the size of packets,
boundary detection time, and boundary discovery number
with the increase of the border length of sensing region 𝑀.

During the experiment, the sensor node density in sensing
region is limited to 0.12 sensors/m2, and the sensing region
varies from 100m × 100m to 600m × 600m. Since the sensor
node density is limited, the number of sensor nodes will
change with the increase of𝑀. For example, when𝑀 is equal
to 100m, that is, sensing region is 100m × 100m, there are
10000 × 0.12 = 1200 sensors deployed in this sensing region.

Unlike the simulation result in Figure 5, the simulation
result in Figure 6 studies the network scale effects on the
three evaluation parameters mentioned above. It can be
seen from the figure that the three evaluation parameters
mentioned above of BLW-MCT, LBM, andHBMall obviously
increase with the increasing of 𝑀. In Figures 6(a) and 6(b),
the size of packets and the boundary detection time all
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Figure 6: Performance comparison of different border length in sensing area: (a) size of packets; (b) boundary detection time; (c) boundary
discovery number.

rapidly increase with the increasing of 𝑀. This is because
sensing region grows exponentially while 𝑀 grows linearly,
which will inevitably lead to an increase in the number of
coverage holes in WSN. On the basis of that, combining with
the cause analysis for Figure 5(a), we will deduce that the
size of packets and boundary detection time of BLW-MCT
are less than LBM and HBM, but the size of packets and
boundary detection time of HBM are slightly less than LBM.
In Figure 6(c), boundary discovery numbers all obviously
increase with the increasing of 𝑀. When 𝑀 is less than
150m, the total boundary discovery numbers of BLW-MCT
and LBM are basically identical, which are the same as the
total real coverage hole boundaries. As the 𝑀 increased to
around 250m, the total boundary discovery number of BLW-
MCT is the same as the total real coverage hole boundaries,

but the total boundary discovery number of LBM is less
than that of BLW-MCT. When the𝑀 increases to more than
300m, the total boundary discovery number of BLW-MCT
basically remains the same as the total real coverage hole
boundaries, but the total boundary discovery number of LBM
may be less than that of HBM. This is because the position
error of LBM will rapidly increase with the increasing of M,
which directly decreases the total number of coverage hole
boundaries detected by LBM.

6. Conclusions

The large-scale coverage hole boundary detection plays an
important role in exploiting application fields for wireless
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sensor network and improving the response speed for large-
scale coverage hole recovery. We carry out some beneficial
exploration and try in this respect and propose a boundary
detection method for large-scale coverage holes in WSN
based onminimum critical threshold constraint. On the basis
of existing researches, we introduce the concept of minimum
critical threshold, which can define large-scale coverage holes
range and reduce the number of coverage holes detected by
boundary detection method; we propose local-scale rough
boundary detection and its iterative thinning algorithm,
which can bring the minimum critical threshold organically
into large-scale coverage hole boundary detection to detect
the accurate large-scale coverage hole boundary in WSN
quickly and efficiently. Comparing the BLW-MCT presented
in this paper with LBM and HBM, the experimental results
show that the computational complexity and network over-
head of BLW-MCT outperform that of LBM andHBM under
keeping the rates of missing coverage hole boundary almost
invariant. Besides, BLW-MCT has better performance in
network scalability with the increase of network scale, which
will not only help to improve the efficiency of large-scale
coverage hole boundary detection in large-scaleWSNbutwill
also lay a foundation for using the external mobile device to
recover large-scale coverage hole.
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