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The increase in element spacing can increase the aperture of the array and improve its resolution performance. However, phase
ambiguity will occur when the array element interval is larger than the minimum half wavelength of the incident signal. The
three acoustic velocity components of the acoustic vector are ingeniously constructed into a new kind of quaternions because of
the special structure of the acoustic vector sensor array, and the rough estimation of the direction of arrival (DOA) is obtained
using the rotation relationship between the subarray steering vectors corresponding to quaternion data. The rough estimate is
used to resolve the phase ambiguity of the spatial phase difference between the array elements, and the high-precision DOA
estimation of the signal can be obtained. Simulation results show that the method is effective.

1. Introduction

The use of electromagnetic wave for communication or tar-
get location has become mainstream. However, the acoustic
wave has more advantages than the electromagnetic wave
in some special circumstances. For example, sound waves
can travel around obstacles, such as mountains, rivers, and
forests, and the sound source detection system can effectively
detect the information of the target. The loss of acoustic wave
propagation is small in water. Thus, the wave can spread for a
long distance. Sonar is a key equipment in underwater com-
munication. The acoustic vector sensor is the core part of
new sonars. A single acoustic vector sensor not only can out-
put the acoustic pressure information of the scalar sensor but
also can measure the acoustic velocity information of each
point directly and synchronously [1, 2]. The acoustic vector
sensor consists of an acoustic pressure component sensor
and a speed sensor in three-speed directions. The vibration
speed sensor may be an acceleration, a displacement, or a
sound pressure gradient sensor [3, 4]. In 2010, Wu et al.
obtained the near-field source model of the acoustic vector

sensor by using the wave equations of the acoustic and parti-
cle velocity fields [5]. In 2012, Song et al. proposed to place
the components of the three speed directions at the coordi-
nate origin and an acoustic pressure component on one of
the coordinate axes; the former is used to estimate the angle
of the sound source, and the latter is used to estimate the dis-
tance information of the sound source [6]. In the array direc-
tion finding, the resolution of the angle with large array
spacing will improve correspondingly. However, when the
array spacing increases to more than half the wavelength of
the incident signal, the pattern of the array will show grating
lobes, which will lead to the ambiguity problem of parameter
estimation [7, 8]. Many ways can be used to solve the ambi-
guity problem. Wang et al. proposed a virtual baseline
method of resolving ambiguity based on the virtual ring [9].
Wong and Zoltowski proposed a uniform plane array
method for solving ambiguity [10]. A nonuniform array
method for solving ambiguity problems was proposed in
[11], and the problem of ambiguity resolution by virtual
array expansion was studied in [12]. In fact, the general mode
of the ambiguity-solving method is to obtain two different
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arrays through array arrangement, virtual reconstruction, or
data processing. One nonsparse array without ambiguity can
enable rough parameter estimation, and the other sparse
array with phase ambiguity can realise accurate parameter
estimation. The accurate and unambiguous estimations of
the direction of arrival (DOA) are obtained by using the
rough estimation of the nonsparse array to solve the phase
ambiguity of the sparse array.

In recent years, array signal processing technology based
on quaternion [13] has attracted increasing attention. In [14],
the singular value decomposition of the quaternion matrix
was studied, and a polarisation wave separation algorithm
based on the real signal quaternion model was proposed. In
[15, 16], the quaternion and biquaternion music algorithms
for two- and three-component vector sensor arrays were pro-
posed, respectively. In [17], the DOA estimation for the six-
component electromagnetic vector sensor array was obtained
using a quad-quaternion music operation. In [18], a qua-
ternion ESPRIT algorithm based on the translation-
invariant cross dipole array was proposed. These studies
show that the parameter estimation algorithm based on
the multivariate number has improved model error toler-
ance by using the constraint relationship between the dif-
ferent imaginary parts of the multivariate number and the
strong constraint condition between the orthogonal vectors
of multivariate number. In this work, a quaternion–ESPRIT
algorithm for solving the direction-finding ambiguity based
on the acoustic vector is proposed. This algorithm is differ-
ent from the previous ambiguity-solving method. The DOA
is roughly estimated using the rotation invariant relation-
ship between the quaternion subarrays and is used to solve
the phase ambiguity of the spatial steering vector. The
phase ambiguity number vector is attained using the rela-
tionship between the estimated value of the phase differ-
ence between sparse elements with phase ambiguity and
the rough value without ambiguity but with low accuracy.
The high-accuracy estimated value without ambiguity is
obtained in the end. This method has a small amount of
computation and can enable high-precision DOA estima-
tion without ambiguity.

2. Acoustic Vector Array Model

A uniform circular array is composed of M elements; R is
the radius of the circular array, as shown in Figure 1. Phase
ambiguity occurs when the interval between the adjacent
elements is greater than the half wavelength, that
is,Δd > λmin/2, where λmin is the minimum wavelength of
the incident signal. The array elements are the acoustic vec-
tor sensors; each of these elements is composed of three
orthogonal velocity sensors along the x-axis, y-axis, and z
-axis, which induce the velocity component of the incoming
wave signal in the x-axis, y-axis, and z-axis directions,
respectively.

Assuming that K narrow-band, zero-mean, and station-
ary signals are incident from the far-field onto the uniform
circular array shown in Figure 1, the incident direction of
the kth signal source is ðθk, ϕkÞ, k = 1,⋯, K , and φn is the
angular coordinates of the nth element. The velocity compo-

nents along the x -, y - and z -axes of the kth unit energy sig-
nal in the Cartesian coordinate system can be expressed as:

uk =

vxk

vyk

vzk

2664
3775 =

sin θk cos ϕk
sin θk sin ϕk

cos θk

2664
3775: ð1Þ

3. Quaternion Method

3.1. Mathematical Model of Quaternion Method. The x-axis
velocity component vxk, y-axis velocity component vyk, and
z-axis velocity component vzk on the same array element
are expressed as quaternion models as Bk:

Bk = vzk + i vxk + jvyk
� �

= cos θk + i sin θk cos ϕk + j sin θk sin ϕkð Þ
= cos θk + i sin θkejϕk = cos θk 1 + i tan θkejϕk

� �
,

ð2Þ

where i and j are the imaginary parts of a quaternion.
The spatial steering vector of the array consisting of the

phase difference between theM array elements and the refer-
ence origin on the circumference is as follows:

q θk, ϕkð Þ = ej 2πR/λkð Þ sin θk cos ϕk−φ1ð Þ,⋯, ej 2πR/λkð Þ sin θk cos
h
� ϕk−φnð Þ⋯ , ej 2πR/λkð Þ sin θk cos ϕk−φMð Þ

i
:

ð3Þ

In the formula (3) above, φn = 2πðn − 1Þ/M, n ∈ ½1,⋯,
M� represents the angular coordinates of the nth element
on the circumference, and λk is the wavelength of the kth
incident signal.
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Figure 1: Uniform circular array geometry.
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The received data of the array at t time can be expressed
as:

X1 tð Þ = 〠
K

k=1
Bk ⊗ q θk, ϕkð Þð ÞSk tð Þ +N1 tð Þ =C1S tð Þ +N1 tð Þ,

ð4Þ

where SkðtÞ is the kth incident signal, ⊗ represents the
Kronecker product, C1 is the steering vector matrix at time
t, SðtÞ is the K incident signals, and N1ðtÞ is the additive
white Gaussian noise at time t.

Then, the received data of the array at t + ΔT time can be
represented as:

X2 tð Þ =X1 t + ΔTð Þ = 〠
K

k=1
Bk ⊗ q θk, ϕkð Þð Þej2πf kΔTSk tð Þ

+N2 tð Þ =C2S tð Þ +N2 tð Þ =C1ΘS tð Þ +N2 tð Þ,
ð5Þ

where ΔT is the interval between two snapshots, f k is the fre-
quency of the kth signal, C2 is the steering vector matrices at
time t + ΔT , N2ðtÞ is the additive white Gaussian noise at
time t + ΔT , and

Θ =
ej2πf1ΔT

⋱

ej2πf KΔT

2664
3775: ð6Þ

So the whole received data can be written as:

Z tð Þ =
X1 tð Þ
X2 tð Þ

" #
=

C1

C2

" #
S tð Þ +

N1 tð Þ
N2 tð Þ

" #
=CS tð Þ +N tð Þ,

ð7Þ

where C =
C1

C2

" #
is the whole steering vector matrix, and N

ðtÞ = N1ðtÞ
N2ðtÞ

" #
is the whole additive white Gaussian noise.

3.2. Quaternion Ambiguity Resolution Algorithm. The qua-
ternion correlation matrix of the received data is R

R = E ZZH� �
= CE SSH

� �
CH + E NNH� �

=CRsCH + σ2I, ð8Þ

where Eð·Þ denotes the mathematical expectation, ð·ÞH repre-
sents the conjugate transpose, Rs = E½SSH �, E½NNH � = σ2I, σ2
indicates the white noise power, and I is the identity matrix.

The signal subspace Vs and noise subspace Vn can be
obtained by quaternion eigendecomposition operations of
the data correlation matrix R, V1 and V2 are the firstM rows
and the lastM rows of Vs, respectively. According to the sub-
space theory, it can be got as follows:

V1 = Ĉ1T V2 = Ĉ2T = Ĉ1
bΘT, ð9Þ

V#
1V2T−1 = T−1 bΘ , ð10Þ

where T is the nonsingular matrix; the matrices Ĉ1, Ĉ2, andbΘ are the respective estimates of C1, C2, and Θ; ð·Þ# denotes
the pseudoinverse operator; and ð·Þ−1 represents the inverse
operation. Let ψ =V#

1V2 = ðVH
1 V1Þ−1VH

1 V2, then formula
(10) can be expressed as:

ψT−1 = T−1 bΘ , ð11Þ

where the eigenvalue of ψ constitutes the estimation bΘ of Θ,
which contains the frequency information of the source, and
T−1 is the corresponding eigenvector. The matrix factorisa-
tion of the quaternion is different from that of the long vec-
tor, that is, the eigendecomposition operation of the
quaternion matrices cannot be performed directly. After the
quaternion matrix is obtained, it is usually used to extract
one real part and the three imaginary parts of the quaternion
matrix and reconstruct the complex term to form the com-
plex adjoint matrix. The properties of quaternion matrices
are obtained by studying the properties of the plural adjoint
matrix. Therefore, the corresponding information should be
extracted from the quaternion matrix ψ. Accordingly, the
estimate of the steering vector C1 is obtained as follows:

Ĉ1 =V1T̂
−1, ð12Þ

where T̂−1
is the estimation of T−1.

3.2.1. Rough Estimate of DOA. The eigenvalue bΘ of ψ can be
expressed as follows:

bΘ =
ej2π f̂ 1ΔT

⋱

ej2π f̂ KΔT

2664
3775, ð13Þ

where f̂ 1,⋯, f̂ K are the frequencies of the corresponding
signals.

The frequency of the kth signal source can be estimated
as follows:

f̂ k =
arg bΘkk

� �
2πΔT

, ð14Þ

where arg ð·Þ denotes the operation of the extracting phase
and bΘkk is the kth row and kth column element of the
matrix bΘ .

According to formulas (2) and (12), the steering vector
Ĉ1 can be written as another form:

Ĉ1 = Ĉ1x + iĈ1y: ð15Þ

Among them, Ĉ1x and Ĉ1y satisfy the following rela-
tionships:
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Ĉ1x = Ĉ1y
bΦ1,

bΦ1 = Ĉ1y
� �#Ĉ1x = ĈH

1yĈ1y

� �−1
ĈH

1yĈ1x,
ð16Þ

where

bΦ1 =
tan bθ1ejϕ∧1

⋱

tan bθKe
jϕ∧K

2664
3775: ð17Þ

According to formula (17), the rough estimate of DOA
without ambiguity is obtained.

bθk = tan−1 ∣ bΦ1kk ∣
� � bϕk = arg bΦ1kk

� �
, ð18Þ

where bΦ1kk is the kth row and kth column element of the
matrix bΦ1.

3.2.2. Ambiguity Resolution Algorithm. According to the

unambiguous rough estimate of bθk and bϕk, the rough phase

difference estimation bΩ1 can be obtained:

bΩ1 = ΔW ⋅
bΓ1kbΓ2k

" #
= W2 −W1½ � ⋅

bΓ1kbΓ2k

" #
, ð19Þ

where ΔW =W2 −W1, W1 =Wð1 : M − 1, :Þ, W2 =Wð2
: M, :Þ, bΓ1k = sin bθk sin bϕk, bΓ2k = sin bθk cos bϕk, Wð1 : M −
1, :Þ represents the submatrix extracted from the first row
to M row of W, and Wð2 : M, :Þ represents the submatrix
extracted from the second row to M row of W, with

W = 2πR/λkð Þ
sin φ1 cos φ1

⋮ ⋮

sin φM cos φM

2664
3775: ð20Þ

Let

ĝ1k = Ĉ1 1 : M − 1, kð Þ, ĝ2k = Ĉ1 2 : M, kð Þ, ð21Þ

where Ĉ1ð1 : M − 1, kÞ and Ĉ1ð2 : M, kÞ denote vectors com-
posed of elements from row 1 to row M and from row 2 to
row M in the column k of the matrix Ĉ1, respectively.

From formula (21), the estimate of spatial steering vec-
tors Δq̂k can be written as:

Δq̂k = ĝ2k:/ĝ1k½ �, ð22Þ

where ½:/� denotes the dot division which is the division cor-
responding elements of two vectors.

By taking the phase on both sides of equation (22), the
estimated value containing the ambiguous phase difference
can be expressed as:

bΩ2 = arg Δq̂k½ �: ð23Þ

The ambiguous vector Pomp can be solved by the follow-
ing formula:

Pomp = arg min
P

bΩ2 + 2πP − bΩ1

��� ���n o
ð24Þ

The expression arg min ð·Þ represents the vector com-
posed of the smallest integer satisfying the condition and P
is the possible vector of ambiguity numbers.

By substituting the obtained ambiguous vector into for-
mula (25), the accurate unambiguous phase difference bΩ3
can be obtained as follows:

bΩ3 = bΩ2 + 2πPomp

h i
= ΔW ⋅

bΓ1k′bΓ2k′

" #
: ð25Þ

From (25), the accurate DOA estimate without ambiguity
is estimated as follows:

θ̂k′ = arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ̂1k′ 2 + Γ̂2k′ 2

q
 �
,

ϕ̂k′ = arctan
Γ̂1k′
Γ̂2k′

 !
, Γ̂2k′ ≥ 0,

ϕ̂k′ = π + arctan
Γ̂1k′
Γ̂2k′

 !
, Γ̂2k′ < 0:

8>>>>><>>>>>:

8>>>>>>>>>><>>>>>>>>>>:
ð26Þ

4. Long Vector Method

4.1. Mathematical Model of the Long Vector Method. The
received data of the acoustic velocity subarray in the x-axis,
y-axis, and z-axis directions can be expressed as:

Xx tð Þ = AxS tð Þ +Nx tð Þ,
Xy tð Þ = AyS tð Þ +Ny tð Þ,
Xz tð Þ = AzS tð Þ +Nz tð Þ,

ð27Þ

where SðtÞ is the incident signal; NxðtÞ, NyðtÞ, and NzðtÞ are,
respectively, the additive white Gaussian noise along the
x-axis, y-axis, and z-axis directions; and Ax, Ay, and Az

are the subarray steering vector along the x-axis, y-axis,
and z-axis directions.

Ax , Ay, and Az can be further expressed as follows:

Ax = ax θ1, ϕ1ð Þ,⋯,ax θk, ϕkð Þ,⋯,ax θK, ϕKð Þ½ �,
Ay = ay θ1, ϕ1ð Þ,⋯,ay θk, ϕkð Þ,⋯,ay θK, ϕKð Þ� �

,

Az = az θ1, ϕ1ð Þ,⋯,az θk, ϕkð Þ,⋯,az θK, ϕKð Þ½ �,
ð28Þ

where axðθk, ϕkÞ = vxkqðθk, ϕkÞ, ayðθk, ϕkÞ = vykqðθk, ϕkÞ, and
azðθk, ϕkÞ = vzkqðθk, ϕkÞ, with qðθk, ϕkÞ the spatial steering
vector of the array; its expression is the same as formula (3).
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The relationship between the three subarray steering
vectors is:

Ax =AzΦx,

Ay =AzΦy,
ð29Þ

where

Φx =

tan θ1 cos ϕ1

⋱

tan θk cos ϕk

⋱

tan θK cos ϕK

266666666664

377777777775

Φy =

tan θ1 sin ϕ1

⋱

tan θk sin ϕk

⋱

tan θK sin ϕK

266666666664

377777777775
:

ð30Þ

The received data of the acoustic velocity subarray along
the x-axis, y-axis, and z-axis directions are arranged in
sequence to form a long vector; then, the received data of
the array at t and t + ΔT time can be expressed as:

�X1 tð Þ = 〠
K

k=1
uk ⊗ q θk, ϕkð Þð ÞSk tð Þ +N1 tð Þ = �C1S tð Þ +N1 tð Þ,

�X2 tð Þ = �X1 t + ΔTð Þ = 〠
K

k=1
uk ⊗ q θk, ϕkð Þð Þej2πf kΔTSk tð Þ

+N2 tð Þ = �C1ΘS tð Þ +N2 tð Þ = �C2S tð Þ +N2 tð Þ,
ð31Þ

where �C1 = ½Ax ; Ay ; Az� is an array steering vector at time t,
⊗ denotes the Kronecker product, SkðtÞ is the kth element of
SðtÞ, N1ðtÞ is the receiving noise of the whole array at time t,
N2ðtÞ is the receiving noise of the whole array at time t + ΔT,
NxðtÞ is the noise received by the x-axis vibration velocity
subarray, NyðtÞ and NzðtÞ are the noises received by the y
-axis and z-axis vibration velocity subarrays, respectively,
and the expression of uk is the same as formula (1). �C2 = �C1
Θ is an array steering vector at time t + ΔT.

In summary, the whole received data can be written as:

�Z tð Þ =
�X1 tð Þ
�X2 tð Þ

" #
=

�C1

�C2

" #
S tð Þ +

N1 tð Þ
N2 tð Þ

" #
= �CS tð Þ + �N tð Þ,

ð32Þ

where �C =
�C1

�C2

" #
, �NðtÞ = N1ðtÞ

N2ðtÞ

" #
.

4.2. Long Vector Ambiguity Resolution Algorithm. The plural
received data correlation matrix is:

�R = E �Z�ZH
h i

= �CE SSH
� �

�CH + E �N�NH
h i

= �CRs
�CH + σ2I:

ð33Þ

The signal and noise subspace Us and Un can be obtained
by the complex domain eigendecomposition of the data cor-
relation matrix �R. The signal subspace is divided into front
and back halves, and the estimation of signal frequency f k
and steering vector b�C1 can be obtained by the ESPRIT
method. The process is similar to Section 3.2.

where

b�C1 =

Âx

Ây

Âz

2664
3775: ð34Þ

4.2.1. Rough Estimate of DOA. According to formulas (29)
and (34), the following estimates can be obtained:

bΦx = Â#
Z Âx,bΦy = Â#
Z Ây:

ð35Þ

The rough estimate value of DOA without ambiguity is
given by:

eθk = tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibΦ2

x k, kð Þ + bΦ2
y k, kð Þ

q
 �
,

eϕk =
tan−1

bΦy k, kð ÞbΦx k, kð Þ

 ! bΦy k, kð Þ ≥ 0

π + tan−1
bΦy k, kð ÞbΦx k, kð Þ

 ! bΦy k, kð Þ < 0

8>>>>><>>>>>:
,

ð36Þ

where bΦxðk, kÞ and bΦyðk, kÞ are the kth row and kth

column element of bΦx. The ambiguity resolution algorithm
is the same as in Section 3.2.2.

5. Performance Analysis of the Algorithm

5.1. Scope of Application Analysis. The quaternion ESPRIT
parameter estimation method is convenient for estimating
the roughly estimated angle of arrival of the signal. It inge-
niously combines three velocity sensor subarrays into a qua-
ternion subarray by using the rotation relationship between
the quaternion subarrays. Comparing formulas (18) and (36)
reveals that the quaternion method has evident advantages
in calculating the rough estimation of the angle of arrival.
The rotation invariant relationship between direct and delayed
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sampling data can be used to estimate the parameters for
narrow-band far-field signals with different frequencies; in this
scenario, no requirement is imposed for the array configura-
tion. The translation invariant relationship between subarrays
should be used for parameter estimation of the same-
frequency signal; this approach is only suitable for uniform
array and results in array aperture loss. For uniform L-array,
the eigendecomposition should be performed using the
translation-invariant relationship in the x- and y-axis direc-
tions to obtain the spatial steering vector in these directions.

5.2. Computational Complexity Analysis. The following is a
comparison of the computational cost of the algorithms
based on the two models. Given that the amount of algorith-
mic computation depends on hardware and software, we
only focus on the computational complexity of the covari-
ance matrix of the algorithm. Without loss of generality, an
array of M acoustic velocity vector sensors is considered. In
data processing, N snapshots are used to estimate the data
covariance matrix. The data covariance matrices based on
the quaternion and plural model are expressed as follows:

RS =
1
N
〠
N

n=1
ZsnZH

sn =
1
N
〠
M

n=1
Rsn,

RL =
1
N
〠
N

n=1
ZLnZH

Ln =
1
N
〠
N

n=1
RLn:

ð37Þ

Each of the array elements is composed of three orthogo-
nal velocity sensors along the x-, y-, and z-axis directions.
Quaternion is Zsn ∈HM , Rsn contains M2quaternion ele-
ments, storage matrix Rsn requires 4M2 machine memory
units, and the multiplication of two quaternions is equivalent
to 16 real multiplications and 12 real additions. The operation
of the matrix Rsn requires 16M2 real multiplications and 12
M2 real additions. Thus, 16M2N real multiplications, 4M2

real divisions, and 12M2N + ðN‐1Þ4M2 = 16M2N‐4M2 real
additions are required for the operation of the matrix RS.
The plural is ZLn ∈ C3M , RLn contains 9M2 complex units,
storage matrix RLn requires 9M2 machine memory units,
and the multiplication of two plurals is equivalent to 4 real
multiplications and 2 real additions. The operation of the
matrix RLn requires 36M2 real multiplications and 18M2 real
additions. Thus, the operation of the matrix RL requires 36
M2N real multiplications, 18M2real divisions, and 18M2N
+ ðN‐1Þ9M2 = 27M2N‐9M2 real additions. Under the same
array conditions, the storage units needed for the calculation
of the quaternion covariance matrix and the real number
addition, multiplication, and division operations are less than
those for the long-vector method.

6. Simulation Experiment and Analysis

The proposed algorithm in this paper is applicable to uni-
form linear array, uniform circular array, and so on. With-
out loss of generality, the simulation experiment takes
uniform circular array as an example. Two far-field, nar-
row-band, non-Gaussian stationary sound signals are inci-

dent into the uniform circular acoustic vector sensor array
shown in Figure 1. The receiving array is composed of 9
array element s; the incident signal parameters are set as
follows: ðθ1, ϕ1Þ = ð72∘, 85∘Þ, ðθ2, ϕ2Þ = ð30∘, 40∘Þ, digital
frequencies ð f 1′ , f 2′Þ = ð0:75, 0:45Þ, the interelement d with
ambiguity is 2:5λmin, 200 Monte Carlo experiments, and
the noise is zero-mean additive white Gaussian noise.

6.1. Simulation Experiment. Figures 2 and 3 are the scatter
diagrams of the estimated results, the number of snapshots
is 50, and the SNR is set to 20 dB. From the intuitive compar-
ison of the two graphs, it can be seen that the elevation and
azimuth angles of the quaternion deambiguity algorithm
are more concentrated around the actual value, while the
angle estimation of the long vector de-ambiguity algorithm
is more scattered. It is shown that the quaternion de-
ambiguity algorithm has a little improvement in parameter
estimation accuracy compared with the long vector de-
ambiguity algorithm, but the calculation amount and storage
space of the quaternion de-ambiguity algorithm is much less
than that of the long vector de-ambiguity algorithm.
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Figure 2: DOA scatter diagram using the quaternion method.
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Figure 3: DOA scatter diagram using the long vector method.
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Figures 4 and 5 plot the root mean square error (RMSE)
of elevation angle and azimuth angle, respectively estimated
by long vector and quaternion de-ambiguity method, at dif-
ferent snapshot number levels. The SNR is set as 10 dB. It
can be seen from Figures 4 and 5 that the RMSE of the eleva-
tion and azimuth angles of the two algorithms decreases with
the increase of the number of snapshots. The RMSE perfor-
mance of the quaternion-based de-ambiguity algorithm is
better than that of the long vector de-ambiguity algorithm
in the snapshot number range from 25 to 75.

Figures 6 and 7 show the success probability of the eleva-
tion angle and azimuth angle, respectively, estimated by the

long vector and quaternion de-ambiguity method, at differ-
ent snapshot number levels. The SNR is set as 10 dB. It can
be seen that the success probability of elevation and azimuth
angles of the two algorithms increase with the increase of the
number of snapshots. The success probability of the elevation
angle and azimuth angle based on the quaternion-based de-
ambiguity algorithm is better than that of the long vector
de-ambiguity algorithm in the snapshot number range from
25 to 60 and from 25 to 55, respectively.

6.2. Performance Analysis. The proposed method needs a qua-
ternion eigendecomposition and a complex eigendecomposi-
tion. The eigenvalue of the plural eigendecomposition can be
used to calculate the rough estimate of the direction of arrival
of the signal, and the eigenvectors constitute the estimation of
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Figure 4: The RMSE of elevation versus the snapshot number.
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Figure 5: The RMSE of azimuth versus the snapshot number.
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Figure 6: The success probability of elevation.
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Figure 7: The success probability of azimuth.
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the spatial steering vector. The parameters are automatically
paired, and no additional pairing operations are required. How-
ever, the long-vectormethod needs to divide the signal subspace
into three subarrays corresponding to the steering vectors along
the x, y, and z-axes. The complex eigendecomposition of the full
data must be performed, and two additional complex eigende-
compositions are needed. The eigenvectors of the two latter
eigendecompositions are used to estimate the steering vector
and the direction of arrival of the signal. The two eigendecom-
positions are performed separately, and additional pairing
operations are required.

7. Conclusion

The proposed phase ambiguity resolution method of the
sparse array can effectively improve the estimation accuracy
of parameters and the flexibility of array placement. A set
of rough and unambiguous estimates of DOA can be given
very conveniently through the ingenious combination of
three acoustic velocity sensors into quaternion data. Thus,
the phase ambiguity of the sparse array steering vector can
be solved, and high-precision DOA estimates are herein
obtained. The vector orthogonality between the quaternion
data components is fully utilised, and the automatic match-
ing of the eigenvalues and eigenvectors does not require addi-
tional matching operations. The quaternion method is less
computationally complex than the long-vector method.
ESPRIT of the long vector can be applied to arbitrarily dis-
tributed arrays in space and has a wide application range.
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