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A computer vision system for the estimation of apple volume and weight by using 3D reconstruction and noncontact measuring
methods was investigated. The 3D surface of the apples could be reconstructed by using a single multispectral camera and near-
infrared linear-array structured light. Both the traditional image feature and height information were extracted from the height
maps. Two different type height features (Type I and II) were extracted, and both of them were fused with a projection area to
form combination features (Combination Feature I and II). Partial least squares analysis and least squares-support vector
machine were implemented for calibration models with projection area and combination features as inputs. Grid-Search
Technique and Leave-One-Out Cross-Validation were also investigated to find out the optimal parameter values of the RBF
kernel. The optimal LS-SVM models with Combination Feature II outperformed PLS models. The coefficient and root mean
square error of prediction for the best prediction by LS-SVM were 0.9032 and 10.1155 for volume, whereas 0.8602 and 9.9556
for weight, respectively. The overall results indicated that height information can improve the prediction performance, and the
proposed system could be applied as an alternative to the traditional methods for noncontract measurement of the volume and
weight of apple fruits.

1. Introduction

Volume and weight are two important parameters in the
external quality of apples. Apple volume and weight param-
eters not only have an impact on consumers’ preferences,
thereby influencing their marketing values, but are also con-
sidered indicators of apple quality. Therefore, apple volume
and weight estimation during postharvest handling and pro-
cessing stages are really important and necessary for pro-
ducers and it is a goal of some research [1, 2].

Computer vision systems are being widely used for qual-
ity monitoring and inspection in agricultural products and
food processing. The traditional computer vision systems
imitate the vision of the human eyes by capturing images
using three filters centered at red (R), green (G), and blue
(B) wavelengths [3]. Nowadays, computer vision systems
are playing an indispensable role for external quality inspec-
tion in the automatic grading and sorting systems. Their

applications about fruits and vegetables include defect detec-
tion such as common defect detection on citrus [4, 5], defect
detection on apples [6, 7], defect detection on bananas [8],
size assessment of berries [9], size estimation of sweet onions
[10], automatic classification of fruits [11], and color inspec-
tion of various fruits and vegetables [12, 13].

Various computer vision methods have been investigated
to estimate the volume and weight of agricultural products by
using noncontact measurement methods. Since the 2D digi-
tal images captured by the computer vision systems are com-
posed of pixels, the projected area, perimeter, or length and
width features can be measured in the images by using image
processing algorithms [14]. The most commonly used image
feature and basic convenient measurement for volume and
weight evaluation is the projected area. Ellipsoid approxima-
tion and image processing in the projected area were used to
estimate the volume of watermelons of varying sizes by Koc
[15]. Teoh and Syaifudin [16] measured the projected area
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of mango by image processing and analysis against the actual
weight of mango in a graph, the results showed that the pro-
jected area measured has a high correlation with the actual
weight of mango with R2 = 0:934. Estimation of the volume
and weight of spherical or quasi-spherical objects is relatively
easy due to they have a strong correlation with some dimen-
sional parameters of the 2D projected area, but it becomes
more complex to fruits and vegetables due to their natural
irregularities [17].

In order to extract the height information (the third
dimension) of the agricultural products for a more accurate
evaluation of the volume and weight, three-dimensional
(3D) computer vision techniques have been increasingly
investigated and applied to measure the volume of agricul-
tural products [10]. In order to acquire the 3D images (X
dimension and Y dimension represent the spatial informa-
tion, Z represents the height information) of the objects, var-
ious sensors and techniques could be used. Binocular stereo
vision techniques, which are based on binocular CCD cam-
eras, are the most common ways to generate the 3D images
in the 3D detection. 3D measurement by using binocular ste-
reo vision systems is the process of obtaining depth informa-
tion from a pair of cameras [18]. Chalidabhongse et al.
described a vision system that can reconstruct 3Dmango vol-
ume by using volumetric caving on multiple silhouette
images [19]. After craving all silhouettes, the coarse 3D shape
of the fruit could be obtained, and then, the volume and sur-
face area would be computed. Omid et al. developed an image
processing-based technique to measure the volume and mass
of citrus fruits [20]. Their technique used two cameras to give
perpendicular views of the fruits. The volumes of the fruits
were calculated by dividing the fruit image into a number
of elementary elliptical frustums. The volume is calculated
as the sum of the volumes of individual frustums. However,
3D techniques based on binocular stereo vision systems are
time-consuming and not suitable to be used for online or
real-time volume and weight evaluation of agricultural prod-
ucts due to the complexity of the CCD camera calibration,
feature point extraction, and matching. A laser-based vision
system, which is based on a monocular camera coupled with
a laser, is a classic active 3D computer vision system. Dis-
tance information from the surface of the object to the cam-
era could be measured by the laser-based vision systems by
using the time of flight (TOF) technique [21]. However,
applications about the quality inspection by using laser-
based vision systems are not found yet. An RGB-depth
(RGB-D) vision system, which is based on an RGB-D sensor,
is another type of active 3D computer vision system. RGB-D
vision systems can simultaneously capture the depth and
color images of the scene and automatically map the depth
and color data, resulting in a colored point cloud in a 3D spa-
tial domain [10]. Wang and Li measured the size of the sweet
onions using nondestructive imaging methods based on the
RGB-D sensor [10]; the results demonstrated that it is prom-
ising to estimate the onion size based on its depth image.
Coded structured light-based vision systems are widely used
systems for 3D surface reconstruction and 3D size measure-
ment in industry and precision inspection fields [22, 23].
Storbeck and Daan developed a coded structured light vision

system to evaluate the volume of fish; the accuracy was 95%
[24]. Other applications in the industry have been stated
the coded structured light vision systems are suitable and effi-
cient for size measurement of moving objects on the con-
veyor belt. However, the applications of coded structured
light vision systems for volume and weight measurement in
the food and fruit processing industry are scarce.

2. Objectives

The primary objective of our research was to develop a near-
infrared linear-array structured light vision system to esti-
mate the volume and weight of apples using 3D reconstruc-
tion and noncontact measurement methods. In order to
achieve the primary objective, several subobjectives as fol-
lows have to be fulfilled: (1) developing a near-infrared
linear-array structured light vision system, (2) acquiring the
3D reconstruction and height map images of the inspected
apple, (3) extracting the 2D and 3D image features and
selecting the most relevant features or feature combination,
(4) establishing the multivariate calibration and prediction
models using PLS and LS-SVM, and (5) evaluating the pre-
diction performance of the prediction models and features.

3. Materials and Methods

3.1. Samples Used in Our Research. There are many cultivars
of apples grown in China. “Fuji” apple is one of the most pop-
ular cultivars, favored by consumers due to its rich nutrition
and healthcare benefits. Fuji apples were purchased from a
local fruit market in Beijing, China, on October 15, 2014. A
total of 100 Fuji apples of various sizes and shapes were
selected as the experimental samples in our research. The
diameters of the samples vary from 60mm to 95mm. Two
images were captured for every sample in a random position
by our system. A total of 200 images (3D reconstruction and
height map images) were acquired. Seventy samples were
used for training the regression models, and the rest were
used for validating the models.

3.2. Measuring the Actual Volume and Weight of Apples. The
actual volume and weight of the apples should be measured
for training, calibrating, and validating the noncontract esti-
mation models.

The actual volumes of the apples were measured using
the water displacement method (WDM). In our research,
the apple is dipped into the water with a sinker rod. The
weight of the displaced water is then calculated by subtract-
ing the weight of the water-filled container from the weight
of the container when it contains the fruit [20]. The resulting
value is then used to calculate the actual volume of the apple
by using the following equation [25]:

Volume cm3� �
= Weight of displaced water kgð Þ

Water density kg/cm3ð Þ : ð1Þ

It is noted that the sinker rod used in our research is very
thin; considering that the volume of the apple is far greater
than that of the sinker rod, the volume of the sinker rod
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can be considered negligible and therefore can be neglected
in the volume measurement.

The actual gross weights of the apples were measured by
using a digital balance (Shuangquan, China) with an accu-
racy of ±0.01 g.

In our experiment, the volume of the samples vary from
180 cm3 to 360 cm3, and the weight of the samples vary from
160 g to 280 g. The large variations of volumes and weights
could cover almost all the apples in the markets, and this
can ensure the universality and practicability of the system
and algorithm.

3.3. Near-Infrared Linear-Array Structured Light Vision
System. The near-infrared linear-array structured light vision
system developed in our research consists of a computer
(Dell, Intel® Core(TM) i5-2400 CPU @3.10GHz, RAM
4.0GB), a CCD camera (JAI AD-080GE2CCD multispectral
camera, Japan) with a high spatial resolution (1024 × 768
pixels, RGB image), and a high sensitivity in the near-
infrared area (800 nm, NIR image), a conveyor belt, and a
lighting system composed of a pair of visible Light Emitting
Diode (LED) light source and a near-infrared (800 nm)
linear-array structured light. The pair of the visible LED light
source was placed symmetrically above and to each side of
the sample. The near-infrared linear-array structured light
was fixed at the upper left side of the sample with the same
plane and height as the camera. The entire system was
housed in a black box. Both the RGB image and NIR image
at 800nm wavelength could be acquired by the multispectral
camera simultaneously through the same optical path. The
schematic diagram of the main components of our near-
infrared linear-array structured light vision system is illus-
trated in Figure 1.

The image acquisition and feature extraction algorithms,
as well as the control panel, were integrated into the hand-
coded software, implemented in Visual C++ and Open
Source Computer Vision (OpenCV).

3.4. 3D Reconstruction and Height Map Image Acquisition.
The 3D reconstruction and height map image of the
inspected apples were acquired by using the proposed system
in our research; the detailed processes were as follows. The
height information for one pixel in the light strip was mea-
sured by triangulation (Figure 2). The reference plane (con-
veyor belt) is configured to be parallel to the baseline of the
camera and the laser projector. If there is no object under
the camera and projector, the projection light strip will be a
straight line without distortion. However, if there is an object
with a certain height, a light strip with distortion will be pres-
ent in the scene and imaged by the camera. The principle can
be explained by the similar triangle ΔAPB and ΔCPD, and
the relative height h from the surface point P to the reference
plane can be calculated by using the equation:

h
L − h

= d
s
, ð2Þ

where s represents the baseline distance from the CCD
camera to the laser projector, L represents the stand-off dis-

tance from the optical center of the CCD camera to the refer-
ence plane, and d represents the distance between two
corresponding points A and B, which can be extracted by
image processing. Equation (2) can be transformed into:

h = L − h
s

d: ð3Þ

Considering the value of L is far greater than that of h,
equation (3) can be approximated as:

h = L
s
d: ð4Þ

Therefore, the first step of height measurement is to iden-
tify points A and B in the images acquired by the camera. It is
obvious that the x coordinate of point A (x, y) can be
obtained before measurement (actually, the x-coordinate of
all the original pixels in the light strip is the same because
the light strip is perpendicular to the x-axis of the camera
image plane, so the original x-coordinate will be recorded
in the program) and the y of point A (x, y) is the same as
the point P and can be easily obtained by image processing.
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Figure 1: Schematic illustration of the computer vision system used
in our research.
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Figure 2: Measurement principle of the height information by
using a linear-array structured light method.
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As the points B, P, and D are collinear, it is obvious that point
B is easily detected because it is the same pixel for both
inspected part point P and reference plane point B in the
camera image plane. The height of each pixel in the central
line of the light strip will be conducted by equation (3). After
calculating, the height profile would be obtained. The near-
infrared linear-array structured light vision system would
scan the whole apple and calculate the height profiles in the
light strip during the noncontact measurement with the
adjustable motor speed of the convey belt. After the scanning,
the 3D surface of the upper half of the inspected apples would
be reconstructed. In order to make it more intuitive and
visual, the height map would be also present in pseudoco-
lor height map and gray level height map images in this
paper.

3.5. Feature Extraction and Selection. In order to establish the
prediction models for volume and weight estimation, rele-
vant image features should be extracted and selected. Since
the 3D height map images (X and Y represent the spatial
information, Z represents the height information) are
acquired by our vision system, the features relevant to the
volume and weight are not the same as the image features
extracted from traditional 2D images. Not only the features
relative to boundary shape and projection area as in 2D
images could be extracted, but the features relative to the
height and surface conditions in 3D images could also be
extracted. This makes it more reliable and accurate to esti-
mate the volume and weight of apples in 3D reconstruction
images than that in the 2D images.

In this paper, both the commonly used traditional 2D
image feature (projection area) and height features would
be extracted from the 3D reconstruction images. Two differ-
ent types of height features were extracted from the 3D height
maps of apples.

The projection area can be extracted from the projection
area obtained by thresholding the gray level height map
according to the height information.

Height features can be extracted directly from the 3D
height map images. Two different types of height features
would be extracted in our research. The first type of height
features (marked as Type I feature) was extracted from the
50 concentric annuli equally distributed in the height maps
with an adaptive distance to the size of the inspected apples

by averaging the height values of all pixels as shown in
Figure 3(a). The second type of height features (marked as
Type II feature) was extracted from the 50 vertical lines
equally distributed in the height maps with an adaptive dis-
tance to the size of the inspected apples by averaging the
height values of all pixels as shown in Figure 3(b).

In real-world applications, relevant features are not gen-
erally known beforehand, which results in the extraction of
several features that also include irrelevant ones [14, 26]. In
order to find out the best prediction model and efficient fea-
tures or feature combination, a single projection area and
each type of height feature combined with the projection area
will be fed to the regression models. It should be noted that,
in order to make it clear to the readers, we labeled the combi-
nation of Type I feature and projection area as Combination
Feature I, and the combination of Type II feature and projec-
tion area as Combination Feature II.

3.6. Partial Least Squares (PLS). PLS is a bilinear modeling
method where the original independent information (X
-data) is projected onto a small number of latent variables
(LVs) to simplify the relationship between X and Y for pre-
dicting with the smallest number of LVs [4, 27, 28]. The first
step in PLS is to decompose the matrix, and the model is
given:

X = TP + E, ð5Þ

Y =UQ + F: ð6Þ
In those equations, T and U are the score matrices of X

matrix and Y matrix, P and Q are the loading matrices of
the X matrix and Y matrix, and E and F are the errors which
come from the process of PLS regression.

The second step is that T and U are the processes by lin-
ear regression. It must build the following linear correlation:

U = BT + E, ð7Þ

where B represents the internal relations between U and
T ; in order to reach this object, the coordinate of T is rotated.
In PLS analysis, the optimal number of PLS components that
optimize the predictive ability of the model should be deter-
mined. This choice is typically made with the use of cross-
validation. Prediction residual sum of squares (PRESS) or
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Figure 3: Feature extraction methods: (a) Type I feature; (b) Type II feature.
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total residual variance (RV) for the test samples is used as a
function to determine the number of LVs that optimizes
the predictive ability of the model.

3.7. Least Squares-Support Vector Machine (LS-SVM). LS-
SVM, a state-of-the-art statistical learning method, is capable
of dealing with linear and nonlinear multivariate analysis and
resolving these problems in a relatively fast way. Moreover,
the support vector machine (SVM) is capable of learning in
high-dimensional feature space with fewer training data. It
employs a set of linear equations instead of quadratic pro-
gramming problems to obtain the support vectors. SVM
embodies the structural risk minimization principle instead
of the traditional empirical risk minimization principle to
avoid over-fitting problems. The LS-SVM regression model
can be expressed as [4]:

y xð Þ = 〠
N

k=1
αkK x, xkð Þ + b, ð8Þ

where Kðx, xkÞ is the kernel function, xk is the input vector,
αk is the Lagrange multiplier called support value, and b is
the bias. The frequently used kernel function Kðx, xkÞ
includes linear kernel, nonlinear kernel, and radial basis
function (RBF) kernel. Kðx, xkÞ must follow Mercer’s condi-
tion and perform the linear and nonlinear mapping [29, 30],
considering that the RBF kernel is a nonlinear function and a
more compact supported kernel and could reduce the com-
putational complexity of the training procedure while giving
good performance under general smoothness assumptions.
In our study, the RBF kernel function was used and the
RBF kernel function is defined as follows:

K x, xkð Þ = exp −
xk − xk k2
2σ2

� �
, ð9Þ

where kxk − xk represents the distance between the input
vector and threshold vector, and σ is a width vector.

The proper kernel parameter setting plays a crucial role
in building a good LS-SVM regression model with high pre-
diction accuracy and stability. In this study, we used Grid-
Search Technique and Leave-One-Out Cross-Validation to
find out the optimal parameter values, including the regular-
ization parameter gam (γ) and the RBF kernel function
parameter sig2 (σ2). Grid-Search is a two-dimensional mini-
mization procedure based on exhaustive search in a limited
range. Detailed information about Grid-Search Technique
and Leave-One-Out Cross-Validation can be found in the lit-
erature [28].

3.8. Evaluation of the Performance of the Methods. The per-
formance of the model calibration and prediction was
assessed in terms of correlation coefficient (r), root mean
square error of calibration (RMSEC), and root mean square
error of prediction (RMSEP). The main evaluation indices
were r and RMSEP in our study. The bias was taken into con-
sideration for distinguishing systematic error. These indices
are defined as follows [4, 29]:

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 y∧i − yið Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 y∧i − ymð Þ2
q , ð10Þ

RMSEC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nc

〠
nc

i=1
y∧i − yið Þ2,

s
ð11Þ

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
np

〠
np

i=1
y∧i − yið Þ2

vuut , ð12Þ

bias = 1
n
〠
n

i=1
ŷi − yið Þ, ð13Þ

where ŷi is the predicted value of the i-th observation, yi is
the measured value of the i-th observation, ym is the mean
value of the calibration or prediction set, and n, nc, and np
are the number of observations in the data set, calibration,
and prediction set, respectively. Generally, a good model
should have higher correlation coefficients and lower
RMSEC, RMSEP, and bias values, but also a small difference
between RMSEC and RMSEP.

3.9. Flowchart of Our Method. The flowchart of the proposed
method is shown in Figure 4. The main steps include 3D
reconstruction, feature extraction, feature fusion, multivari-
able calibration, and prediction.

4. Results and Discussion

4.1. Results of 3D Surface Reconstruction. Figure 5 shows the
results of 3D surface reconstruction in three different forms,
namely, 3D reconstruction, gray level height map images,
and pseudocolor height map images. Figure 5(a) shows the
3D surface reconstruction with the actual diameter and
height of the inspected apple samples. It is noted that the sur-
face of 3D reconstruction is coarse due to the low cost of our
system hardware and equation simplification, but the overall
reconstruction results could be acceptable for volume and
weight estimation. Figure 5(b) shows the 3D height map
images in gray level (X and Y dimensions represent the spa-
tial information, and Z dimension represents the intensity; in
our research, different height was denoted as different gray
level intensity from the value of 0 to 255). The projection area
and 3D height information would be extracted from the gray
level height map images. As humans are more sensitive to
color images, pseudocolor images from the top view of apples
are illustrated in Figure 5(c). Different height was denoted
with a different color, and deeper color means the higher
height. As shown in Figure 5(c), the pseudocolor height
map images present a higher height in the central area and
a lower height in the edge positions; stems and calyxes in
apples also present a relatively lower height. It is should be
noted that only the upper surface could be reconstructed by
our computer vision system and methods due to the camera
could only capture the near-infrared linear-array structured
light strip projecting on the upper half surface of the apple,
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and all the image processing and feature extraction were con-
ducted in gray level height map images.

4.2. Estimation Results of PLS and LS-SVM for Volume. The
traditional image feature (projection area) and the two types
of combination features were used to establish the regression
model for noncontact measuring by using two popular
regression models PLS and LS-SVM, respectively. It is noted
that both the models were established with the same samples,
and normalization processing was also applied before
calibration.

Before establishing the LS-SVM calibration model, three
crucial problems need to be solved, namely, the determina-
tion of the optimal input feature subset, proper kernel func-
tion, and the best kernel parameters. Feature subset is

obtained in the feature extraction step, and two different
combination features would be used as the input data set,
respectively. Kernel function was chosen as RBF. So the
remaining important problem is to decide the best kernel
parameters, including regularization parameter gam (γ) and
the RBF kernel function parameter sig2 (σ2). These two
parameters determine the learning ability, prediction ability,
and generalization ability of LS-SVM [30]. Gam (γ) is used to
maximize model performance (on training) and minimize
the model complexity. Large gam (γ) implies little regulariza-
tion and thus a more nonlinear model. sig2 (σ2) influences
the number of neighbors in the model. And large sig2 (σ2)
means more neighbors in the model which leads to a more
nonlinear model. In this paper, a two-step Grid-Search tech-
nique using geometric steps with Leave-One-Out Cross-

(a)

(b)

(c)

Figure 5: 3D surface reconstruction results: (a) 3D surface reconstruction with the actual diameter and height of the inspected apple samples,
(b) 3D height map images in gray level, and (c) 3D height map images in pseudocolor.

Near-infrared 
linear light strip 

acquisition

Centerline of the 
strip extracting and 
profile representing

Height of all pixels 
obtaining and 3D 

reconstruction

3D reconstruction

Traditional image 
feature: 2D 

projection area

3D height 
information feature:

Type I

Feature extraction

3D height 
information feature:

Type II

Projection
area

Combination 
Feature I 

Combination 
Feature II

Feature fusion

Single variable feature

Combination feature

PLS calibration 
model

LS-SVM 
calibration model

Multivariable 
calibration

PLS prediction 
model

LS-SVM 
prediction model 

Multivariable 
prediction

Parameter
optimization

Figure 4: Flowchart of our methods for volume and weight estimation.
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Validation was employed to obtain the optimal gam (γ) and
sig2 (σ2) within the region of (10-2 to 106) which were set
based on experience. The first step of Grid-Search was for a
crude search with a large step size and the second step for
the specified search with a small step size. For each combina-
tion of gam (γ) and sig2 (σ2) parameters, the root mean
square error of cross-validation (RMSECV) was calculated
and the optimum parameters were selected when a smaller
RMSECV was produced. The optimizing processes for vol-
ume estimation by using Combination Feature I and Combi-
nation Feature II as input data are shown in Figure 6. The
grids “.” in the first step are 10 × 10, and the searching step
in the first step is large. The optimal search area is deter-
mined by the error contour line. The grids “ × ” in the second
step are 10 × 10, and the searching step in the second step is
smaller. The optimal search area is determined based on the
first step. In the volume estimation by using LS-SVM, the ini-
tial value of γ and σ2 were set to 0.01, and the optimal pair of
(γ, σ2) was found at the value of γ = 7035:6 and σ2 = 29983:9
when using the Combination Feature I as the input data; the
optimal pair of (γ, σ2) was found at the value of γ = 22712:6
and σ2 = 89418:1 when using the Combination Feature II as
the input data. This indicates that the LS-SVM mode estab-
lished with Combination Feature II is a more nonlinear
model compared with that with Combination Feature I.

In order to find out the best features and models, five
models were established based on the traditional 2D image
feature and two different types of combination features.
Figure 7 shows the noncontact measuring results versus
actual volume measured by the water displacement method
(WDM) charts for PLS and LS-SVM. Figure 7(a) shows the
measurement results estimation by the PLS model using the
traditional projection area are plotted against the actual vol-
ume measured by WDM. The solid line is the regression line
corresponding to the ideal, unity correlation between the pre-

dicted and reference values. The correlation coefficients,
RMSEP, for prediction sets were 0.8493 and 16.9978, respec-
tively. Figure 7(a) indicates that the PLS model based on the
projection area has some prediction power; as a popular tra-
ditional 2D image feature, the projection area could be used
for volume measurement in the situation of demand on rela-
tively low precision. Figures 7(b) and 7(c) show the measure-
ment results estimation by the PLS model using the two
different types of combination features are plotted against
the actual volume measured by WDM. The correlation coef-
ficients, RMSEP, for prediction sets of the PLS model with
Combination Feature I were 0.6676 and 24.5473, and with
Combination Feature II were 0.8618 and 16.3042. The unity
correlation between the predicted and reference values in
Figures 7(b) and 7(c) also indicated the PLS model with
Combination Feature II outperformed the PLS model with
Combination Feature I. Figures 7(d) and 7(e) show the mea-
surement results estimation by LS-SVM model using the two
different types of combination features are plotted against the
actual volume measured by WDM. The correlation coeffi-
cients, RMSEP, for the prediction sets of the LS-SVM model
with Combination Feature I were 0.8927 and 10.7424, and
with Combination Feature II were 0.9032 and 10.1155. As
the two different unity correlations between the predicted
and reference values illustrated in Figures 7(d) and 7(e), the
LS-SVMmodel with Combination Feature II could get better
prediction results than that of the LS-SVMmodel with Com-
bination Feature I.

Compared with the PLS model with the traditional 2D
image feature, the PLS model with Combination Feature II
could get better prediction performance. The better predic-
tion performance mainly benefits from the height informa-
tion from the 3D surface reconstruction. Compared with
the PLS models, both the LS-SVM models could get a better
prediction performance; the reason might be that the LS-
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Figure 6: Optimization of gam (γ) and sig2 (σ2) parameters for LS-SVM in volume estimation. (a) Optimizing processes for volume
estimation by using Combination Feature I. (b) Optimizing processes for volume estimation by using Combination Feature II.
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Figure 7: Measured versus estimated values for volume prediction by the PLS and LS-SVM models.
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SVMmodels took the nonlinear information of the combina-
tion features into consideration, and the nonlinear informa-
tion had improved the prediction precision. Compared with
other models and features, the LS-SVM model with Combi-
nation Feature II has the strongest ability for volume non-
contact estimation.

4.3. Estimation Results of PLS and LS-SVM for Weight. In
order to find out the best model and features for apple weight
estimation, a similar process with volume estimation was
conducted. In the weight estimation by using LS-SVM, the
initial value of γ and σ2 were also set to 0.01, and the optimal
pair of (γ, σ2) was found at the value of γ = 67935:7 and σ2

= 373443:9 when using Combination Feature I as the input
data; the optimal pair of (γ, σ2) was found at the value of γ
= 1739556:5 and σ2 = 257323:3 when using the Combina-
tion Feature II as the input data. The optimizing processes
for weight estimation by using the Combination Feature I
and Combination Feature II as input data are shown in
Figures 8(a) and 8(b), respectively.

In order to find out the best features and models for
weight estimation, five models were also established based
on the traditional 2D image feature and two different types
of combination features. Figure 9 shows the noncontact mea-
suring results versus the actual weight measured by digital
balance charts for PLS and LS-SVM. The solid line is the
regression line corresponding to the ideal, unity correlation
between the predicted and reference values. The correlation
coefficient, RMSEP, for prediction sets were 0.8221 and
15.0121, respectively. Figure 9(a) indicates that the PLS
model based on the traditional 2D image feature has some
prediction power in weight estimation. Figures 9(b) and
9(c) show the measurement results estimation by the PLS
model using the two different types of combination features
are plotted against the actual weight measured by digital bal-

ance. The correlation coefficient, RMSEP, for prediction sets
of the PLS model with Combination Feature I were 0.6394
and 21.1072, and with Combination Feature II were 0.8315
and 14.7238. Compared to the PLS model with the traditional
2D feature, the PLS models with combination features do not
show any obvious advantages in weight estimation.
Figures 9(d) and 9(e) show the measurement results estima-
tion by the LS-SVM model using the two different types of
combination features are plotted against the actual weight
measured by digital balance. The correlation coefficient,
RMSEP, for prediction sets of the LS-SVM model with Com-
bination Feature I were 0.8602 and 9.9556, and with Combi-
nation Feature II were 0.8234 and 11.4991. Compared to the
PLS models, the LS-SVM models get more satisfied measur-
ing results in weight estimation. Both prediction precision
of the LS-SVM models could be accepted. However, consid-
ering the LS-SVM model with Combination Feature II has
the strongest ability for volume noncontact estimation, and
extracting both of the two types of height information is
time-consuming; in real-world applications, the LS-SVM
model with Combination Feature II is the preferred model
for volume and weight noncontact measuring applications.

It should also be noted that the weight estimation results
of PLS and LS-SVM are similar with volume estimation by
using the PLS and LS-SVM models; the reason might be that
the apple density could be assumed constant, and results also
indicated that there was a significant positive linear correla-
tion between the volume and weight.

5. Conclusions

A computer vision system for apple volume and weight non-
contact measurement was designed and developed. Estima-
tion of the volume and weight of apples by using 3D
reconstruction, image processing, and regression methods
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Figure 8: Optimization of gam (γ) and sig2 (σ2) parameters for LS-SVM in weight estimation. (a) Optimizing processes for weight estimation
by using Combination Feature I. (b) Optimizing processes for weight estimation by using Combination Feature II.
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were also studied with the proposed platform of computer
vision and near-infrared linear-array structured lighting
system.

The 3D upper surface of apples was reconstructed by
using the proposed system and triangulation method as mov-
ing the fruit on a conveyor belt. Both the traditional 2D
image feature (projection area) and 3D height information
(two types of fifty mean height values) were extracted by
using image processing methods. Two popular regression
modeling methods, PLS and LS-SVM, were developed with
traditional and two types of combination features. RBF and
a two-step Grid-Search technique were applied in LS-SVM
models. The results indicated that the PLS model with Com-
bination Feature II could get better prediction accuracy in
volume and weight estimation than the PLS model with the
traditional 2D image feature, and both LS-SVM models with
two types of combination features performed better than all
the PLS models. Results indicated that the 3D height infor-
mation could greatly improve the prediction performance.
For volume estimation, the LS-SVM model with Combina-
tion Feature II could get the best performance, and for weight
estimation, the LS-SVM model with Combination Feature I
could get the best performance. Considering that the LS-
SVM model with Combination Feature II has the strongest
ability for volume noncontact estimation, and extracting
both of the two types of height information is time-consum-
ing, in the real-world applications, the LS-SVM model with
Combination Feature II could be chosen as the preferred
model for volume and weight noncontact measuring
applications.

The system and method developed in this study provide
an alternative to the traditional methods for noncontract
measurement of the volume and weight of agricultural prod-
ucts. The proposed system is easily constructed by using low-
cost cameras without any complex calibration. The present
work might be easily extended in 3D reconstruction, stem/-
calyx recognition, 3D shape detection, and whole surface
inspection of axisymmetric agricultural products. And our
future work will be focused on these extended areas by using
the proposed near-infrared linear-array structured lighting
vision system.
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