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Along with the rapid development of remote sensing satellites and sensor network technology, vast amounts of remote sensing
imagery and in situ observations have been accumulated. Further, various researchers and agencies have released a variety of
thematic image products. These heterogeneous observations are therefore difficult to utilize comprehensively. In this study, an
ontology-based framework for integrating remote sensing imagery, image products, and in situ observations was developed. It
was extended based on the Semantic Sensor Network (SSN) ontology in the Web Ontology Language (OWL). The detailed
process of ontology construction and rule establishment was demonstrated. Combined with some actual remote sensing
imagery, image products, and in situ observations, semantic queries based on DL Query and SPARQL were conducted to

establish the rationality and feasibility of the ontology and framework.

1. Introduction

With the development of remote sensing technology and the
improvement of the resolution of satellite sensors, the appli-
cation of remote sensing to quantitatively obtain the required
parameters on a large scale on the ground has become even
more extensive. However, remote sensing, as a monitoring
method for periodic acquisition, lacks timeliness and is not
suitable for monitoring hot spot regions with rapid varia-
tions, and because of atmospheric interference, the overall
accuracy is not sufficiently high. As a kind of ground-based
monitoring system, wireless sensor networks and remote
sensing data functionally complement each other and can
dynamically monitor all kinds of parameters needed by the
region in quasi-real time. Wireless sensor network technol-
ogy is not only regarded as a new outgrowth of traditional
remote sensing technology but also an extension of remote
sensing, the geographic information system, and the global
positioning system [1, 2]. Therefore, the integration of the

technical characteristics of both, each playing to their respec-
tive advantages, will become a development and application
trend in the future [3, 4].

A large number of studies have focused on integrating
remote sensing and ground-based sensor networks [5-10].
A collaborative inversion method combining a ground
sensor network and HJ-1 satellite remote sensing data was
proposed to retrieve ground temperature [3]. In situ temper-
ature measurement and thermal imaging from flyovers or
drones or satellite remote imaging were used to track the
dynamics of freshwater—seawater mixing behavior in a bay
[9]. Warming trends of perialpine lakes were analyzed based
on homogenized time series of historical satellite and in situ
data [8]. A novel strategy combining global satellite multi-
spectral datasets, environmental constraints, and in situ
acquisition of geospatial data was presented for cash-crop
mapping [7]. From the contents of these studies, it can be
seen that research on integrating remote sensing images
and ground sensor networks is often aimed at a single target,
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using specific remote sensing images. It is difficult to carry
out composite and integrated research.

Constructing uniform resource representations is quite
significant to improve resource sharing and interoperability,
as well as the comprehensive process of decision-making
[11]. Semantic Sensor Network (SSN) ontology [12], pro-
posed by the World Wide Web Consortium (W3C), has been
widely used as an ontology model to solve semantic barriers
in sensor networks [13-21]. However, SSN ontology lacks
descriptions about remote sensing imagery, and satellites
only act as platforms for sensors or actuators. There have
been several studies on the semantics of satellite-based sen-
sors or remote sensing imagery. An ontology for associating
sensor observation capability was developed to facilitate
remote sensing satellite selection in certain earth observation
tasks [22]. A light ontology was constructed to represent the
content of remote sensing imagery based on existing geo-
graphic ontologies, the domain-related corpus, and the
WordNet [23]. The WordNet, identifying concepts having a
similar meaning but using different words, has been widely
applied in evaluating the semantic similarity between words
[24-26]. A two-phase methodology was built to facilitate
the satellite parameterized description and remote sensing
data classification based on the ontology concept [27]. Tak-
ing into the principal scaling factor and various spectral var-
iability consideration, a novel spectral mixture model was
proposed to improve the flexibility of the endmember dictio-
nary by introducing the dictionary of spectral variables [28].
Spectral rules have also been used for semantic classification
of remote sensing imagery [29-31]. In order to make better
use of satellite image resources, the World Meteorological
Organization (WMO) has provided most mission objectives
for major satellite sensors [32]. However, semantic research
about the combination of remote sensing images and ground
sensor networks is still rare.

At present, a large number of image products based on
remote sensing imagery have emerged. These image products
are based on various remote sensing images, using object
identification, parameter extraction, and other methods in
combination with field measurements or referring to existing
datasets if possible. After band selection and fusion, image
enhancement processing, stitching, or cutting, these image
products represent certain thematic information, such as
land use/land cover, precipitation, and surface water.
Although image products and remote sensing imagery are
similar in structure, the specific means of utilizing them are
completely different.

Considering the abovementioned themes, the objective of
this study was to develop an ontology with semantic rules to
integrate remote sensing imagery, image products, and in situ
observations (named RSISO ontology) based on the W3C
OWL 2 Web Ontology Language [33] and the software Pro-
tégé developed by the Stanford Center for Biomedical Infor-
matics Research at the Stanford University School of
Medicine [34]. The ontology was extended from the SSN
ontology based on the concepts of spatial pixel and spectral
rule. This new ontology can be utilized to retrieve available
and potentially valuable remote sensing imageries, image
products, and in situ observations. Specifically, the contribu-
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tions were summarized as follows: (1) an ontology-based
framework was proposed to integrate remote sensing imag-
ery, image products, and in situ observations; (2) the formal
expression of the characteristic index is more conducive to
the sharing and reuse of empirical knowledge in different
fields; and (3) available data can be discovered more easily
by using semantic technology. A new perspective will be pro-
vided by applications of this ontology, making sufficient use
of remote sensing imageries, image products, and in situ
observations. It will be powerful in serving complex and
comprehensive environmental monitoring, disaster manage-
ment, and decision-making processes.

The remainder of this paper is organized as follows. Sec-
tion 2 analyzed the typical remote sensing images and image
products; then, the ontology and related rules were con-
structed. The experimental data and results were described
in Section 3, the discussion was presented in Section 4, and
conclusions and future work are given in Section 5.

2. Materials and Methods

2.1. Overview. The RSISO ontology was designed for inte-
grating remote sensing imagery, image products, and in situ
observations. Typical instances of these three types of obser-
vation data are listed in Table 1. There are three dimensions
of semantics in blending the three kinds of observation data:
spatial, temporal, and thematic. It acts as a semantic frame-
work to achieve validation, fusion, and provenance among
the three kinds of observation data, as illustrated in
Figure 1. The detailed steps of constructing the ontology
are presented in the following subsections.

2.2. Procedure of Ontology Modeling. It is necessary to estab-
lish an ontology in a standard process in order to ensure the
rationality and reusability of the constructed ontology. The
seven-step methodology proposed by Noy and McGuinness
of Stanford University [37] was applied in this study. The
seven-step methodology has been widely used [38-43] and
is closely integrated with the ontology construction software
Protégé [34]. Therefore, it was also used in modeling the
RSISO ontology. The details are as follows.

2.2.1. Determine the Domain of the Ontology. The formal rep-
resentation of earth observation was determined as a domain
with scopes limited to remote sensing imagery, image prod-
ucts, and in situ observations, which were examined in
Table 1 and Section 2.1.

2.2.2. Consider Reusing Existing Ontologies. Because the SSN
has had many successful applications in ground-based sensor
networks, as described in Section 1, we reused the core con-
cepts of SSN. Additionally, GeoSPARQL [44], Time [45],
and WordNet [46, 47] ontology were imported as semantic
descriptions of space and time, respectively. For ontologies
from different sources that were reused, it is necessary to pro-
vide a clear list of prefixes, as shown in Table 2.

2.2.3. List Important Terms in the Ontology. The ontology’s
key terms for the application domain were defined and used
for the class definition in the next step. These terms include
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TasBLE 1: Typical instances of remote sensing imagery, image products, and in situ observations.

Type Example Result
Water level Numerical value
In situ e .
. Precipitation Numerical value
observation

Atmospheric temperature

Numerical value

USGS Landsat 8 Collection 1 Tier 1 and Real-Time Data

Remote sensing
imagery

Raw Scenes
Sentinel-2 MSI: MultiSpectral Instrument, Level-1C

Pixels with multiple spectral bands

Pixels with multiple spectral bands

JRC Monthly Water History, v1.0 [35]

I duct
Frage prociic CHIRPS Daily: Climate Hazards Group InfraRed

Precipitation with Station Data [36]

Pixels with band “waterClass”; values of 0, 1, or 2 of the band
represent no data, no water, or water

Pixels with band “precipitation”; the value of the band is
numerical (unit: mm/day)

=
e == <
\\\ pa <8 - S—
Validation e = =
Fusion
Provenance

Observation data for different themes

In-situ monitoring systems hydrology, meteorofogy and soil)

CHIRPS Daily: Climate Hazards Group
InfraRed Precipitation with Station Data

_ In-situ observed data
~
. Image products

Remote sensed image

e

L

Satellites (MODIS, Landsat 8 and Sentinel 2)

Ak

FiGure 1: The application framework of the proposed ontology.

remote sensing imagery, image product, spatial pixel, band,
and characteristic index. Descriptions, key properties, and
examples of these terms are listed in Table 3.

2.2.4. Define the Classes and Their Relations. Based on terms
enumerated in the former step, five classes—RemoteSen-
singlmage, ImageProduct, SpatialPixel, Band, and Charac-
teristiclndex—were created in the proposed ontology.
RemoteSensinglmage and ImageProduct were set as subclasses
of sosa:Result, SpatialPixel was a subclass of sosa:FeatureOfIn-
terest, and Band was a subclass of sosa:ObservableProperty.
CharacteristicIndex, as a property, cannot be observed directly,
so it was inherited from ssn:Property.

2.2.5. Define the Object Properties of Classes. Object proper-
ties of classes are used in OWL 2 to define relationships
between different classes of individuals. Because the classes
created in the RSISO ontology are subclasses of the classes
existing in the SSN ontology, their related object properties
were inherited from the SSN ontology. The class hierarchy
and their relationships are illustrated in Figure 2.

2.2.6. Define the Data Properties of Classes. Data properties of
classes are used in OWL 2 to connect individuals with literals.
In this step, we defined value type restrictions of data. For
example, the value of property hasID is restricted to be of
datatype string and datatype double for the value of property
hasCloudCover.



that the object to be studied gets the maximum
brightness enhancement on the generated index
image, while the other background objects are
generally suppressed
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TaBLE 2: The namespaces and their descriptions involved in the proposed ontology.
Prefix Namespace URI Description
RSISO http://localhost/RSISO1010.0wl# The ontology with semantic rules to integrate remote sensing imagery, image
products, and in situ observations.
This ontology describes sensors, observations, feature of interest, and related
ssn http://www.w3.org/ns/ssn/ concepts. There is no time, locations, and domain concepts in it. These concepts can
be imported to the SSN ontology from other ontologies via OWL imports.
A lightweight core of SSN is provided by the Sensor, Observation, Sample, and
sosa http://www.w3.org/ns/sosa/ Actuator (SOSA) ontology. It is aimed at broadening the target audience and
application areas in which semantic web ontology can be used.
geo http://www.opengis.net/ont/geosparql# It represents spatial information through a RDF/OWL vocabulary.
geof http:// -opengis.net/def/function/ A series of spatial filter functions were defined in it for SPARQL queries.
geosparql/
time http://www.w3.0rg/2006/time# As an OWL-2 DL ontology, it contains temporal concepts and relationships.
WordNet http://www.w3.0rg/2006/03/wn/wn20/ Based on distinct concepts, English words are grouped into cognitive synonym
instances/synset-bank-noun-2 datasets (synsets). WordNet is a huge database consisted of these lexical datasets.
TaBLE 3: Important terms in the RSISO ontology.
Terms Description Key properties Examples
Rempte Image.s gathered by imaging satellites, reflecting ~ Spatial, spectral, LANDSAT/LC08/CO1/T1_RT/LCO8_ 121040
sensing conditions of the Earth or other observed targets and temporal 20150824
imagery (48] resolutions
Thematic products of remote sensing images JRC Global Surface Water [35], Hansen Global
atic b e o 1§ 1mag Customized by Forest Change [50], CHIRPS Daily: Climate
Image product usually include classified images and index images T .
. o . producers [49] Hazards Group InfraRed Precipitation with
that reflect certain thematic information .
Station Data [36], etc.
Foundational elements in an image, containing  Spatial resolution
Spatial pixel spatial information and values representing the and values of —
intensity of the electromagnetic wave [51] spectral bands
The. electromagnetic radiation of target objects at Band names and B3 (blue, wavelength: 0.53-0.59) in Landsat 8 OLI
various wavelengths along a spectrum measured . .
. . defining the Water (water detection for the month, 0: no data,
Band by remote sensors on board airplanes or satellites .
. spectral range or  1: not water, 1: water) in the JRC Monthly Water
[52]. In image products, bands can represent . .
: . meaning History
specific thematic content
The basic principle of creating these indices is to
find the strongest and weakest reflection bands in
o erta};for:sulttﬁsepfgfgirlezirelir::rfOlﬁgltcierlflglues Normalized Difference Vegetation Index (NDVI)
Characteristic oFban ds is )fur ther enlareed b egometriré series so Thematic [53], Enhanced Vegetation Index (EVI) [54],
index gec by s application Normalized Difference Water Index (NDWI)

[55], Mangrove Forest Index (MFI) [56], etc.

2.2.7. Create Instances. Individual instances of classes in the
hierarchy were created in the last step. In the RSISO ontol-
ogy, instances mainly refer to kinds of actual remote sensing
images, image products, and observation data from the in
situ sensor. The parts of instances and their important prop-
erties are listed below.

2.3. Rules in the RSISO Ontology

2.3.1. Spatial Unification. Since different coordinate systems
are used in remote sensing imagery, image products, and in
situ observations, the first step is to unify the Worldwide Ref-
erence System (WRS), the Military Grid Reference System

(MGRS), and other coordinate systems into WGS 84. There
are tools and codes to achieve such coordinate conversion,
such as the United States Geological Survey (USGS)’s Land-
sat Acquisition Tool [57] and converting coordinates with
Java code provided by Salkosuo [58]. As such, a detailed con-
version procedure is not described here.

As described in step 2 in Section 2.2, GeoSPARQL was
used to implement spatial semantic queries in the RSISO
ontology proposed in this paper. rsiso:RemoteSensedImagery
and rsiso:ImageProduct were defined as a subclass of sosa:R-
esult in Section 2.2, and they rsiso:hasPixel rsiso:SpatialPixel.
Then, rsiso:SpatialPixel and sosa:FeatureOfInterest were set
as rdfs:subClassOf geo:SpatialObject. Next, the topological
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F1GURE 2: The core classes and object properties in the RSISO ontology. Contents in green were reused from the Semantic Sensor Network

(SSN) ontology.

7
o

geo:hasGeometry

Core classes in the
GeoSPARQL

rdfsisubClassOf
1
geo:Geometry -
- z T -

\

rdfs:subClassOf |

RSISO:SpatialPixel

= TrsisohasPixel )

< RSISO:RemoteSensedImagery >’/ <RSISO:ImageProduct>

FIGURE 3: Spatial semantic extension of RSISO through the
GeoSPARQL.

’
! rdfs:subClassOf

< sosa:FeatureOflnterest

relations between spatial objects, such as intersects, within, or
contains, were established by the Topology Vocabulary
Extension (relation_family) parameterized requirements
class of the GeoSPARQL. The spatial semantic extension of
RSISO through the GeoSPARQL is shown in Figure 3.

2.3.2. Temporal Rule. In the time dimension, in situ data have
a higher resolution, such as hourly precipitation data that
represent rainfall within an hour of the day, while for remote
sensing image data, based on the return period of the carry-
ing satellite platform, there are different temporal resolu-
tions, such as 10 days of Sentinel 2 MSI, where the imagery
typically represents the result of the day and the temporal
resolution of the image product varies (e.g., JRC Monthly
Water History in months, JRC Yearly Water Classification
History in years, and CHIRPS Daily). Time ontology can be
used to define these times (instants or intervals). As shown
in Figure 2, these remote sensing data and remote sensing
products obtained the range time:Temporal Entity of the
sosa:phenomenonTime object property or xsd:dateTime value

by inheriting the sosa:Observation class. They were achieved
in the W3C SSN ontology.

2.3.3. Thematic Rule. Regarding the theme, in situ observa-
tion has explicit content information. For instance, rain
gauges observe an amount of precipitation. Similarly, the
application fields of the image products can be easily found
because they are produced for specific topics, such as JRC
Monthly Water History for surface water and CHIRPS Daily
for precipitation.

Although the WMO has provided most of the application
topics for remote sensing satellites, it does not explain the
internal relationship between remote sensing satellites and
application topics, so it is unable to expand the application
field of remote sensing satellites according to a wide range
of practical applications. Spectral rules were used for the
classification of remote sensing images, and effective results
were obtained [7, 29, 30]. Therefore, spectral rules were
introduced into the RSISO ontology through the class
RSISO:CharacteristicIndex.

According to the bands contained in the specific
remote sensing images, the available characteristic indexes
can be inferred. For example, according to the calculation
formula of the Normalized Difference Water Index
(NDWI), the green and near-infrared bands were needed
to acquire the index. From the bands listed in Table 4,
both Landsat 8 OLI and Sentinel-2 MSI can obtain the
NDWTI, and sequentially, the land cover of surface water
can be obtained. The difference is that the near-infrared
band corresponds to B5 and B8 in Landsat 8 OLI and
Sentinel-2 MSI, respectively.

Considering the text description difference and semantic
correlation of application objectives, the WordNet ontology
[59] was introduced in the RSISO. The WordNet ontology,
a lexical database of the English language, enables acquiring
synonyms or related words through semantic relevance
[60]. More available data can be discovered by extending
the requirement text and matching the instances of sosa:Ob-
servation of in situ observation, RSISO:Band of image
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TABLE 4: Main properties of instances used in the study.
Type Data Spatial Temporal Other properties
LANDSAT/LC08/C01/T1_RT/LC08_121040_ B2 (blue)
20150824 B3 (green)
LANDSAT/LC08/C01/T1_RT/LC08_121040_ B4 (red)
20150909 B5 (near infrared)

LANDSAT/LC08/C01/T1_RT/LC08_121040_
20151011
Remote sensing

imagery

COPERNICUS/S2/20150913T030946_
20161019T041823_T50RMS

WRS_Row: 40 (resolution:

B6 (shortwave
infrared 1)
B7 (shortwave
infrared 2)
B10 (thermal
infrared 1)
B11 (thermal
infrared 2)

B2 (blue)
B3 (green)
B4 (red)
Revisit interval of B8 (near infrared)

WRS_Path: 121 Revisit interval of

30m) 16 days

MGRS_TILE: 50RMS

COPERNICUS/S2/20151003T030946_ (resolution: 10 m) 5 days B11 (shortwave
20161201T173242_T50RMS infrared 1)
B12 (shortwave
infrared 2)
I duct JRC/GSW1_0/MonthlyHistory/2015_09 Global (resolution: 30 m) Monthly Water'
mage produc
gep UCSB-CHG/CHIRPS/DAILY/20150909 Global (resolution: 0.05°) Daily Precipitation”
] OB_FVo0l20150825 In situ Daily Water flow volume
In situ . OB_FVo0l20150826 In situ Daily Water flow volume
observation
OB_PR20150826 In situ Daily Precipitation

"The value of band “water” has three opinions: 0—no data; 1—not water; 2—water. “The value of band “precipitation” represents the amount of rainfall.

product, and RSISO:CharacteristicIndex of remote sensing
imagery. The structure of the thematic matching in RSISO
is shown in Figure 4.

3. Results

3.1. Implementation of the RSISO Ontology. The RSISO
ontology designed in Section 2 was created with Protégé
(version 5.2.0). The querying sentences were written in
the SPARQL Protocol and RDF Query Language
(SPARQL) [44] and executed by the Protégé SPARQL Plu-
gin (version 2.0.2). HermiT (version 1.3.8.413) was selected
as the reasoner, and the rules for reasoning were encoded
in Semantic Web Rule Language (SWRL) [61] and imple-
mented by SWRL Tab Protégé 5.0 + Plugin (version
2.0.4) in Protégé.

As shown in Figure 5, the ontology determines the classes
and their relationships, which define different types of obser-
vation data and information available from these results. The
classes ImageProduct and RemoteSensedlmagery were
designed as a subClassof class Result of SSN. They have the
hasPixel property to describe the SpatialPixel contained in
them. The difference between them is that the Band con-
tained in ImageProduct refers to specific application objec-
tives; however, Band in RemoteSensedImagery represents
the reflection value in a particular band range. For example,
the values of the “water” band in the ImageProduct JRC
Monthly Water History stand for permanent water, seasonal
water, or no water. In contrast, the values of Band in Remote-

SensedImagery cannot be used directly to identify the type of
land surface cover. The values of particular bands can be used
to obtain the land surface cover index, such as the NDVI and
NDWTI, through a mature and reliable normalized calculation
method. In the proposed ontology, CharacteristicIndex rep-
resents the type of surface cover that can be inferred from
the bands that RemoteSensedImagery has. Because Character-
isticIndex cannot be observed by sensors, it was designed as a
subClassOf Property. The parts of classes and properties cre-
ated by Protégé are shown in Figure 5.

Classes or individuals are linked through the object prop-
erties defined in the ontology. These object properties, as
interactions between different objects, are the significant
elements in the ontology. The main object properties in the
proposed ontology are listed in Table 5.

3.2. Inference Based on Rules. Rules were defined in Protégé
to provide principles for logical reasoning based on experi-
ential knowledge. Experiential knowledge originates from
the long-term practice of professionals. The ontology was
proposed to find the potential application domains of
remote sensing imagery, image products, and in situ sen-
sors. The in situ sensors themselves have clear observation
targets, and the image products can also distinguish their
meaning by the band names. Therefore, the rules are
mainly used to discover the potential application domains
of remote sensing images by calculating different land cover
indices. The parts of the rules created for the ontology are
listed below.
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Requirement text

WordNet
+ Semantic extending

A collection of synonyms =
Matching {Keyword 1, Keyword 2, ---}
1
sosa:ObservableProperty RSISO:Band RSISO:CharacteristicIndex
Image productr ) ~ Remote sense! imagery 4
Available data

FiGUre 4: The structure of the thematic rules in RSISO.

@ Characteristicl

o @ FeatureOfIntere
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B @ owl:Thing 'S
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I .
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i entity” k- £
A \
O~
ki". Observation

— | ObservableProperty | EJ. Band

'ne tilter text
«— "interval overlapped by' (Domain>Range)
«—'interval starts' (Domain>Range)
« — after (Domain>Range)
« — before (Domain>Range)
»— has individual

v — has subclass

# Index NDVI

« — hasCharacteristicindex (Domain>Range)
< — hasFeatureOfinterest (Domain>Range)
hasNDVI (Domain>Range)

«— hasResult (Domain>Range)

LS
W,
N
\)

~ b
~ -
i

v

) NearInfraredRed
7 @ Green

« — isFeatureOfinterestOf (Domain>Range)

« — isResultOf (Domain>Range)

< — madeBySensor (Domain >Range)

m < —madeObservation (Domain>Range)
+ — observedProperty (Domain>Range)

v

phenomenonTime (Domain>Range)

FIGURE 5: Parts of classes and properties in the proposed ontology.

TaBLE 5: The main object properties and the description of the RSISO ontology, including domain and range assignment.

Object property Domain Range Description
RemoteSensedImagery Relation between imagery and bands. Bands may be interpretive or used
hasBand Band .
ImageProduct to recognize land cover by formulas.
. RemoteSensedImagery o Relation between imagery and spatial pixels. These pixels own their own
hasPixel ImageProduct SpatialPixel spatial information and can be combined into features of interest.

hasCharacteristic RemoteSensedImagery

Relation between remote sensing imagery and particular characteristics.
CharacteristicIndex  This property is derived from the bands of the remote sensing imagery
and the rules of calculating the characteristic index through the bands.




Rule 1. Based on NDVI, if an instance of RemoteSensedIma-
gery contains observedProperty Band_NearInfraredRed_
LandSurface and Band_Red_LandSurface, it can be inferred

Observation(?0)"
observedProperty(?o,
BandyearInfraredRed, andSurface)"
observedProperty(?o,
Band_Red_LandSurface)

where ?0 means the observation instance we want to
obtain, Band_NearInfraredRed_LandSurface and Band_
Red_LandSurface represent two instances of class Band,
and Index_NDVI means the Normalized Difference Vegeta-
tion Index, an instance of the class CharacteristicIndex.

Observation(?0)"
observedProperty(7o,
Bandreen, andSurface)" -
observedProperty(7o,
Band_NearInfraredRed_LandSurface)

where ?0 means the observation instance we want to
obtain, Band_Green_LandSurface and Band_NearInfrare-
dRed_LandSurface represent two instances of class Band,
and Index_NDWI means the Normalized Difference Water
Index, an instance of the class CharacteristicIndex.

Observation(?0)"
observedProperty(?o,
observedProperty(?o,
Bandyed, andSurface)"

observedProperty(?o,

Band_Green_LandSurface)

We can input “Observation and hasCharacteristicIndex
value Index_NDVI,” “Observation and hasCharacteristicIn-
dex value Index. NDWI,” or “Observation and hasCharacter-
isticIndex value Index_EVI” in the DL Query tab of Protégé
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that the instance hasCharacteristicIndex Index_NDVI. The
rule was written as (1).

— > hasCharacteristicIndex(?o0, Index NDVI) (1)

Rule 2. Based on the NDWI, if an instance of RemoteSensedI-
magery contains observedProperty Band_Green_LandSurface
and Band_NearInfraredRed_LandSurface, it can be inferred
that the instance hasCharacteristicIndex Index_ NDWI. The
rule was written as (2).

> hasCharacteristicIndex(?0, Index NDWI) (2)

Rule 3. Based on the EVI, if an instance of RemoteSensedIma-
gery contains observedProperty Band_NearInfraredRed_
LandSurface, Band_Red_LandSurface and Band_Green_
LandSurface, it can be inferred that the instance hasCharac-
teristicIndex Index_EVI. The rule was written as (3).

— > hasCharacteristicIndex(?o, Index_EVI) (3)

to acquire all imagery instances which can be used to obtain
computable NDVI, NDWI, or EVI values.

Similarly, other rules can be built on the basis of existing
experience and knowledge.
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observation

JRC/GSW1_0/MonthlyHistory/2015_08
LANDSAT/LC08/C01/T1_RT/LCO8_121040_20150824
LANDSAT/LCO8/C01/T1_RT/LCO8_121040_20150909
0B_FV0l20150824_DMC

0B_FV0l20150825_DMC

0B_FV0l20150826_DMC

0B_FV0l20150827_DMC

0B_FV0l20150828_DMC

0B_FV0l20150829_DMC

0B_FV0l20150830_DMC

0B_FV0l20150831_DMC

0B_FV0l20150901_DMC

0B_FV0l20150902_DMC

0B_FV0l20150903_DMC

0B_FV0l20150904_DMC

datetime

“2015-08-31T00:00:00+08:00"~ " <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-24T02:44:07+08:00"~ " <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-09-09T02:44:13+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-24T08:00:00+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-25T08:00:00+08:00"~ "~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-26T08:00:00+08:00" "~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-27T08:00:00+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-28T08:00:00+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
“2015-08-29T08:00:00+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-307T08:00:00+08:00" "~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-08-31T08:00:00+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-09-01T08:00:00+08:00"~~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-09-02T08:00:00+08:00"~ " <http://www.w3.0rg/2001/XMLSchema#dateTime>
"2015-09-03T08:00:00+08:00" "~ <http://www.w3.0rg/2001/XMLSchema#dateTime>

"2015-09-04T08:00:00+08:00" "~ <http://www.w3.0rg/2001/XMLSchema#dateTime>
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FIGURE 6: A variety of results that meet the time conditions, including image product (the first row, JRC Monthly Water History), imagery
(the second and third rows, two Landsat 8 OLI images), and in situ observation (the rest).

3.3. Semantic Query Using the RSISO Ontology. In order to
evaluate the RSISO ontology, a series of semantic querying
and reasoning was designed. The querying language was
encoded in the SPARQL and executed in the SPARQL Query
tab of Protégé.

On the one hand, we can acquire various heterogeneous
observations which are observed in a specified period. For
example, all observations, including between “2015-08-23"
and “2015-09-10,” can be obtained by following the SPARQL
sentence based on the presented RSISO ontology model. The
results are shown in Figure 6.

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema

PREFIX :http://localhost/RSISO1010.0wl

SELECT ?observation ?datetime

WHERE

{

?fobservation :resultTime ?datetime .

FILTER (?datetime >=
+08:00""Mxsd:dateTime &¢»  ?datetime <=
10T00:00:00+08:00 " xsd:dateTime)

}

On the other hand, sosa:observedProperty can be used to
obtain the properties of in situ observations, such as water
level and flow volume and precipitation. Combined with
the rule definition for remote sensing imagery in Section
3.2, observations with similar or complementary properties
can be found, such as the water field in JRC Monthly Water
History and NDWTI in Landsat 8 OLI imagery. In addition,
the retrieval of heterogeneous data can be achieved according
to spatial conditions, by introducing the functions of GeoS-
PARQL. Combining the semantic query conditions of time,
space, and topic, the specific available data can be retrieved.
Combining the formulation of reasoning rules and the
semantic conditions of time, space, and topic, the specific

"2015-08-23T00:00:00
"2015-09-

available data can be obtained more easily. This is beneficial
for the fusion analysis of satellite—earth observations.

4. Discussion

4.1. Integrated Application with In Situ and Remote Sensing
Observation and Image Products. There are an increasing
number of in situ and satellite-based sensors, and a large
number of image products using remote sensing imagery
are emerging. This provides a great opportunity for research
work, such as satellite—-ground cooperative monitoring,
image product correction, and remote sensing image inver-
sion evaluation. At the same time, it also brings challenges
to the management mode, association technologies, and
query methods of the heterogeneous observed data. Up to
now, some studies have applied spectral rules to the auto-
matic application of remote sensing images [29, 30] without,
however, considering in situ observations. The proposed
ontology model, based on the mature SSN ontology for man-
aging in situ sensor networks, extends the objects of remote
sensing imagery and image products so that these observa-
tion results can be uniformly managed and queried, which
will be very beneficial to the integrated application of hetero-
geneous observation data.

4.2. Prior Knowledge Expressed in SWRL Can Be Extended
and Shared Better. The reasoning capability provided by
RDF description logic and SPARQL is limited. On the basis
of OWL, we established some rules based on SWRL, so as
to improve and optimize knowledge reasoning. Furthermore,
based on the formal expression of SWRL, which is a W3C
specification, experts in different fields, such as precision
agriculture, climate change, extreme weather, and emergency
decision-making, can transform their knowledge into the


http://www.w3.org/2001/XMLSchema
http://localhost/RSISO1010.owl
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rules of ontology so that reusing and sharing their knowledge
becomes feasible.

4.3. Image Products Can Be Used More Widely Based on
Semantic Queries. With the accumulation of remote sensing
image data, different kinds of thematic image products have
been released by scientists or institutes, for example, Global
Surface Water by the European Commission’s Joint Research
Centre [62] and Rainfall Estimates from Rain Gauge and
Satellite Observations (CHIRPS) by the Climate Hazards
Center at the University of California, Santa Barbara [63].
These image products have great reference value for related
research, but because they are professional and not popular,
their role is not easy to be recognized. The ontology proposed
in this paper provides a channel to manage and discover
these imaging products, taking into account both in situ
and remote sensing observations.

5. Conclusions

In this work, we developed an ontology-based framework for
integrating remote sensing imagery, image products, and in
situ observations. It was developed by expanding the W3C
SSN ontology with spatial, temporal, and thematic rules.
The detailed process of ontology construction and rule estab-
lishment was demonstrated. Combined with some actual
remote sensing images, image products, and in situ observa-
tions, some semantic queries based on DL Query and
SPARQL were implemented, and the rationality and feasibil-
ity of the ontology and framework proposed in this paper
were proved. In addition, more rules can be built up by
SWRL based on existing experience and knowledge. It will
be beneficial for the reuse and sharing of professional knowl-
edge and taking full advantage of impact products.

The current work realizes the ontology prototype of inte-
grated management and preliminary reasoning of remote
sensing images, image products, and in situ observation data.
However, more semantic obstacles will be encountered in the
comprehensive application of multisource data. The ontol-
ogy proposed in this paper needs to be further integrated
with the existing ontology and improved in more complex
engineering projects.
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